MPTCP Wor ki ng Group B. Hesmans

I nternet-Draft O Bonaventure
I ntended status: |nformational UCLouvai n
Expi res: January 7, 2017 July 06, 2016

A socket APl to control Miltipath TCP
dr aft - hesmans- npt cp- socket - 00

Abst r act

Thi s docunment proposes an enhanced socket APl to allow applications
to control the operation of a Miultipath TCP stack.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (1ETF). Note that other groups may also distribute

wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on January 7, 2017.
Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Hesmans & Bonaventure Expi res January 7, 2017 [Page 1]

Internet-Draft MPTCP API July 2016

Tabl e of Contents

1. Introduction 2
2. Basic operation 3
3. Miltipath TCP Socket API 5
3.1. Subflowlist 5
3.2. (Open subflow . 7
3.3. dose subflow. 8
3.4. GCet subflow tuple . 9
3.5. Subfl ow socket option . e e e e e 9
4. | ANA considerations 10
5. Security considerations 11
6. Conclusion 1
7. Acknow edgenents 11
8. References, .. 11
8.1. Normative References 1
8.2. Informative References 12
Authors’ Addresses .. 13
1. Introduction

Mul tipath TCP [RFC6824] was designed as an increnentally depl oyabl e
[RFC6182] extension to TCP [RFC0793]. One of its design objectives
was to remain backward conpatible with the traditional socket APl to
enabl e applications to benefit fromMiltipath TCP wi thout requiring
any nodification. This solution has been adopted by the Miltipath

TCP inplementation in the Linux kernel [MiltipathTCP-Linux]. |In this
i npl ementation, once Multipath TCP has been enabled, all TCP
applications autonatically use it. It is possible to turn Miltipath

TCP of f on a per socket basis, but this is rarely used. The

Mul tipath TCP stack contains a nodule, called the path nanager, that
controls the utilisation of the different paths. Three path nanagers
have been i npl enent ed

o the "full nmesh" path manager, which is the default one, tries to
create subflows in full nmesh anpbng all the client addresses and
al | addresses advertised by the server. Al subflows are created
by the client because the server assumes that the client is often
behi nd a NAT or firewall

o the "ndiffports" path nanager was designed for single-honmed hosts.
It creates n parallel subflows between the client and the server
It has been defined notably for datacenters [SI GCOVL1]

o the "user space" path manager [CONEXT15] uses Netlink to expose

events to specific applications and enables themto control the
operation of the underlying MPTCP stack

Hesmans & Bonaventure Expi res January 7, 2017 [Page 2]

Internet-Draft MPTCP API July 2016

However, discussions with users of the Miultipath TCP inpl ementation
in the Linux kernel indicate that they would often want a finer
control on the underlying stack and nore precisely on the utilisation
of the different subflows. Smartphone applications are a typica
exanpl e. Measurenents indicate that with the default path manager,
there are many subflows that are created w thout being used [PAMR016]
[COWAG2016]. This increases energy consunption and coul d be avoi ded
on Milti path-TCP aware applications.

The Multipath TCP i npl enentation used in Apple smartphones, tablets
and | aptops [Appl e- MPTCP] took a different approach. This MPTCP
stack is not exposed by default to the applications. To use MPTCP
they need to use a specific address fanmily and special systemcalls
[ANRW2016] .

Using a new address fanmily and new systemcalls is a ngjor
nmodi fi cation and application devel opers nmay not agree to naintain
different versions of their applications that run above regular TCP
and Multipath TCP. 1In this docunent, we propose a sinple but
powerful APl that relies only on socket options and the existing
systemcalls to interact with the MPTCP stack. Application

devel opers are already used to mani pul ate socket options and coul d
thus easily extend their applications to better utilize the
under|lying MPTCP stack when available. This approach is simlar to
the APl outlined in [RFC6897], but to our know edge, this APl has
never been inplemented. W also note that during the | ast decade the
socket APl exposed by SCTP evolved to use nore socket options

[RFC6458] .

Thi s docunent is organised as follows. W first describe the basic
operation of our enhanced APl in section Section 2. W then showin
section Section 3 how the "getsockopt" and "setsockopt" systemcalls
can be used to control the underlying Miultipath TCP stack. W focus
on basic operations like retrieving the list of subflows that conpose
a Multipath TCP connection, establishing a new subflow or term nating
an existing subflowin this first version of the docunent. W will
address in the next revision of this document nore advanced topics
such as non-blocking I/O and the utilisation of the "recvnmsg" and
"sendnsg" system calls.

2. Basic operation
In this section, we briefly describe the basic utilisation of the
enhanced socket APl for Miultipath TCP. As an illustration, we

consi der a dual - homed smart phone having a WFi and a cellul ar
interface that interacts with a single honed server

Hesmans & Bonaventure Expi res January 7, 2017 [Page 3]

Internet-Draft MPTCP API July 2016

We assune for sinplicity in this exanple that the server is passive.
It creates a |listening socket and accepts incomi ng connections
through the follow ng systemcalls

o "socket()"
o "bind()"
o "listen()"

Then data can be sent (resp. received) with the "send()" (resp
"recv()") systemcalls and the connection can be terminated by using
the "close()" or "shutdown()" systemcalls.

On the client side, the followi ng systemcalls are used to create a
Mul ti path TCP connection

o "socket()"
o "connect()"

The "connect ()" systemcall succeeds once the initial subflow of the
Mul ti path TCP connection has been established. W assune here that
Mul tipath TCP has been negotiated successfully. The client can then
send and receive data by using the "send()" and "recv()" system
calls.

The enhanced socket APl enables the client (and al so the server since
the protocol is symetrical, but we ignore this in this section) to
control the utilisation of the different subflows. This control is
performed by setting and retrieving socket options through the
"setsockopt ()" and "getsockopt()" systemcalls. Four main socket
options are defined to control the subflows used by the underlying
Mul ti path TCP connection

o "MPTCP_GET _SUB IDS" can only be used by "getsockopt()". It is
used to retrieve the current list of the subflows that conpose the
underlying Miultipath TCP connection. |In this list, each one
identifier is associated with each subfl ow.

o "MPTCP_GET _SUB TUPLE". This socket option is equivalent to the
"get peernanme()" systemcall with regular TCP, but on a per subflow
basis. Wen used with "getsockopt()", it allows to retrieve the
| P addresses and ports of the two endpoints of a particul ar
subf | ow.

o "MPTCP_OPEN SUB TUPLE". This socket option is the equivalent to
the "connect ()" systemcall, but it operates on subflows. It

Hesmans & Bonaventure Expi res January 7, 2017 [Page 4]

Internet-Draft MPTCP API July 2016

3.

1.

allows to attenpt to establish a new subflow by specifying its
(renote and optionally local) endpoints.

o "MPTCP_CLOSE SUB ID'. This socket option allows to close a
speci fic subflow

As an exanpl e, consider a snmartphone application that creates a
Mul ti path TCP connection. This connection is established by using
the "connect ()" systemcall. The MPTCP stack selects the outgoing
interface based on its routing table. Let us assune that the initial
subflow is established over the cellular interface. This is the only
subfl ow used for this connection at this time. To performa
handover, the smartphone application would use "MPTCP_OPEN _SUB TUPLE"
to create a new subflow over the WFi interface. It can then use
"MPTCP_GET_SUB TUPLE" to retrieve the | ocal and renote addresses of
this subflow Now that the WFi subflow is active, the application
can use "MPTCP_CLCSE SUB ID'" to close the cellular subflow

Mul tipath TCP Socket API

From an application viewpoint, the interaction with the underlying
stack is aw ays perforned through a single socket. This unique
socket is used even if a Multipath TCP stack is used and nmany

subfl ows have been established. This single socket abstraction is

i mportant because the applications exchange data t hrough a bytestream
with both TCP and Multipath TCP. W preserve this abstraction in the
proposed enhanced socket APl but expose some details of the
under|ying MPTCP stack to the application

For all the socket options presented bell ow, we assune that the
underlying Miltipath TCP connection is still a Miltipath TCP
connection. Oherwi se (e.g. after a fallback), they return an error
and set errno to "EOPNOTSUPP" is returned.

Subfl ow | i st

Hesmans & Bonaventure Expi res January 7, 2017 [Page 5]

Internet-Draft MPTCP API July 2016

The first inportant information that a stack can expose are the
different subflows that are conbined within a given Miltipath TCP
connection. For this, we need a data structure that represents the
di fferent subflows that conpose a connection. The "nptcp_sub_ids"
structure shown in figure Figure 1 contains an array with the status
of the different subflows that conpose a given connection. The
actual size of the array depends on the nunber of subflows and is
defined with the "sub _count” field. The "nptcp_sub_status" structure
reflects the status of each subflow A subflowis identified by its
"id'". In addition to the "id" of the subflow, the "nptcp_sub_status"
structure contains one flag : the "low _prio" flag. It is set to 1
when the subflow is defined as a back-up subflow. Oher flags could
be exposed through this structure in the future.

struct nptcp_sub_status {

__u8 id;

__ule | ow prio:1;
b
struct nptcp_sub_ids {

_u8 sub_count;

struct nptcp_sub_status sub_status[];
b

Figure 1: The nptcp_sub_ids and nptcp_sub_status structures

This structure is used by the "MPTCP_GET_SUB | DS" socket option

More precisely, the "getsockopt", when used with the
"MPTCP_GET_SUB | DS" socket option can retrieve the "nptcp_sub_ids" of
the underlying Miultipath TCP connection. This call may return an
enpty array if the connection does not contain any subflow. This can
happen with Miltipath TCP when the | ast subfl ow conposing the
connecti on has been term nated abruptly.

The "id" that is returned in the "nptcp_sub_ids" structure is
i mportant because it identifies the subflow and is used as an
identifier by the other socket options.

The call may return the error "EINVAL" if the buffer passed by the
application is too small to copy the array of subfl ow status.

A sinple exanple of its utilisation is presented in figure Figure 2
int i;

unsigned int optlen

struct nptcp_sub_ids *ids;

optlen = 42;

Hesmans & Bonaventure Expi res January 7, 2017 [Page 6]

Internet-Draft MPTCP API July 2016

ids = malloc(optlen);
get sockopt (sockfd, | PPROTO TCP, MPTCP_GET_SUB IDS, ids, &optlen);

for(i = 0; i < ids->sub_count; i++){
printf("Subflowid : %\n", ids->sub status[i].id);

Figure 2: Sanple code for the utilisation of MPTCP_CET_SUB | DS
3.2. (Open subfl ow

Anot her inportant part of the APl is to enable an application to open
new subflows. This is possible through the "MPTCP_OPEN SUB TUPLE"
socket option. This option uses the "nptcp_sub tuple” structure
shown in figure Figure 3 to pass the priority, local and renote
endpoi nts of the new subfl ow

struct nptcp_sub_tuple {
_u8 id;
_u8 prio;

__u8 addrs[0] ;

Figure 3: The nptcp_sub_tuple structure

The "id" field is an output. This is the "id" of the created
subflow. The "prio" field indicates if the new subfl ow should be
consi dered as back-up or not. The "addrs" nust be a pair array of
size two. The first address nust be the address of the source and
the second address nust be the address of the destination. The
actual structure passed nmust be either "sockaddr_in"or

"sockaddr _in6", but the two elenments of the array nust be of the same
type. The struct "sockaddr" can be used to deternine which one is
actual |l y passed

The caller can also set the source address to be either "I NADDR _ANY"
for 1Pv4 or "in6addr_any" for IPv6. In this case, the kernel chooses
the source address to be used for the new subfl ow.

Errors returned by either "bind()" or "connect()" are returned if an
error occurred during the process.

An exanple is provided in figure Figure 4.
unsigned int optlen

struct nptcp_sub _tuple *sub_tuple;
struct sockaddr in *addr;

Hesmans & Bonaventure Expi res January 7, 2017 [Page 7]

Internet-Draft MPTCP API July 2016

int error;

optlen = sizeof (struct nptcp_sub_tuple) +
2 * sizeof (struct sockaddr _in);
sub_tuple = nmall oc(optlen);

sub_tuple->id

:0,
sub_tuple->prio =

0;

addr = (struct sockaddr in*) &sub_tupl e->addrs[O0];
addr->sin_fanmly = AF_I NET

addr->si n_port = htons(12345);

i net _pton(AF_I NET, "10.0.0.1", &addr->sin_addr);
addr ++;

addr->sin_fanmly = AF_I NET

addr->si n_port = htons(1234);

i net_pton(AF_I NET, "10.1.0.1", &addr->sin_addr);

error = getsockopt(sockfd, |IPPROTO TCP, MPTCP_OPEN SUB TUPLE
sub_tuple, &optlen);

Figure 4: Sanple code to establish an additional subflow
3.3. dose subfl ow
To cl ose a subflow, the socket option "MPTCP_CLOSE SUBFLOW is used.
This option used the "nptcp_close sub_id" structure defined in figure

Fi gure 5.

struct nptcp_close_sub_id {

__u8 id;
i nt how,
H
Figure 5: The nptcp_close_sub_id structure
In the above structure, "id" is the identifier of the subflow that
needs to be closed. If the "id" is invalid, "EINVAL" is returned.

The "how' field is used to define how to subflow should be
termnated. It recognises the same set of constant that are used by
"shutdown()". In addition to this set, "RST" can be used to

i ndi cates that the subflow should be term nated by sending an "RST".

Hesmans & Bonaventure Expi res January 7, 2017 [Page 8]

Internet-Draft MPTCP API July 2016

3.4. Get subflow tuple

An application may al so be interested by the addresses and ports that
are used by a given subflow. To retrieve this information, the
socket option "MPTCP_CGET _SUB TUPLE" is used in conbination with the
"nptcp_sub_tuple" structure shown in figure Figure 6
struct nptcp_sub_tuple {

_u8 id;

__u8 addrs[0] ;
b

Figure 6: The nptcp_sub_tuple structure

This is the sanme structure as the one used to open a subflow but in
this context, "id" is the input and "addrs" is the output.

A sanple code is provided in figure Figure 7

unsigned int optlen
struct nptcp_sub_tuple *sub_tuple;

optlen = 100;

sub_tuple = malloc(optlen);

sub_tuple->d = sub_id;

get sockopt (sockfd, | PPROTO TCP, MPTCP_GET_SUB TUPLE, sub_tuple
&opt | en) ;

sin = (struct sockaddr_in*) &sub_tupl e->addrs[0];

printf("\tip src : % src port : %u\n", inet_ntoa(sin->sin_addr),
nt ohs(sin->sin_port));

Si n++;

printf("\tip dst : % dst port : %u\n", inet_ntoa(sin->sin_addr),
nt ohs(sin->sin_port));

Figure 7: Sanple code using the MPTCP_CGET_SUB TUPLE option
3.5. Subfl ow socket option
TCP/ 1P inplementations support different socket options. Sone of
them can be applied to the TCP | ayer while others can be applied to

the IP layer. To be able to issue a socket option on a specific
subfl ow, we define the "MPTCP_SUB CETSOCKOPT" and

Hesmans & Bonaventure Expi res January 7, 2017 [Page 9]

Internet-Draft MPTCP API July 2016

"MPTCP_SUB_SETSOCKOPT" options. These two socket options use
respectively the structures presented in figure Figure 8.

struct nptcp_sub_get sockopt {

__u8 id;
i nt | evel ;
i nt opt nane;
char _ user *opt val
unsigned int __ user *optlen
|
struct nptcp_sub_setsockopt {
__u8 id;
i nt | evel ;
i nt opt nane;
char __user *opt val
unsi gned i nt optlen
b

Figure 8: Structures used by the '‘MPTCP_SUB GETSOCKOPT'* and
“* MPTCP_SUB_SETSOCKOPT' * opti ons

In the two structures "id" indicates to which subflow the socket
option should be redirected. The end of each structure contains the
i nformati on needed to performthe socket option call on the subflow

Figure Figure 9 illustrates how the | P_TSO socket option can be
applied on a particular subfl ow

unsigned int optlen, sub_optlen
struct nptcp_sub_setsockopt sub_sso;
int val = 12;

optlen = sizeof (struct nptcp_sub_setsockopt);

sub_optlen = sizeof(int);

sub_sso.id = sub_id;

sub_sso.level = | PPROTO I P;

sub_sso.optnane = | P_TCS

sub_sso.optlen = sub_optl en;

sub_sso.optval = (char *) &val

set sockopt (sockfd, | PPROTO TCP, MPTCP_SUB SETSOCKOPT, &sub_sso,
optlen);

Fi gure 9: Exanpl e socket option

4. | ANA consi derations

Hesmans & Bonaventure Expi res January 7, 2017 [Page 10]

Internet-Draft MPTCP API July 2016

5.

8.

8.

There are no | ANA considerations in this docunent.
Security considerations

TCP and UDP inplenmentations usually reserve port nunbers bel ow 1024
for privileged users. On such inplenmentations, Miltipath TCP should
restrict the ability of the users to create subflows on privil eged
ports through the "MPTCP_OPEN SUB TUPLE".

For simlar reasons, the "MPTCP_SUB SETSOCKOPT" socket option should
not enabl e an unprivileged user to retrieve or nodify a socket option
on a subflow if he is not allowed to perform such actions on a
regul ar TCP connection

Applications requiring strong security should inplement cryptographic
protocol s such as TLS [RFC5246] or ssh [RFC4251]. The proposed AP
enabl es such application to better control their utilisation of the
underlying interfaces by managi ng the different subfl ows.

Concl usi on

In this docunent, we have docunented an enhanced socket APl that
enabl es applications to control the creation and the rel ease of
subflows by the underlying Miltipath TCP stack. W expect that a
standardi sed APl supported by different inplenmentations will be an

i mportant stop for the deployment of Miltipath TCP aware applications
on both multi homed hosts such as smartphones as well as on servers.
Thi s enhanced APl has already been inplenented on the Miultipath TCP

i mpl ementation in the Linux kernel. Future versions of this docunent
will address nore advanced utilisations of the socket APl such as
non-bl ocking 1/0O and the "sendnsg()" and "recvnsg()" systemcalls.

Acknowl edgenent s

We would Iike to thank Christoph Paasch, Quentin De Coni nck Rao
Shoai b for their comments on an early version of this docunent.

Ref er ences
1. Normative References
[RFCO793] Postel, J., "Transmi ssion Control Protocol", STD 7, RFC

793, DA 10.17487/ RFCO793, Septenber 1981
<http://ww. rfc-editor.org/info/rfc793>

Hesmans & Bonaventure Expi res January 7, 2017 [Page 11]

Internet-Draft MPTCP API July 2016

[RFC6824] Ford, A, Raiciu, C., Handley, M, and O Bonaventure,
"TCP Extensions for Miultipath Operation with Miltiple
Addr esses", RFC 6824, DO 10.17487/ RFC6824, January 2013,
<http://ww.rfc-editor.org/info/rfc6824>.

8.2. Informative References

[ANRW2016]
Hesmans, B. and O. Bonaventure, "An enhanced socket API
for Multipath TCP", 2016, <https://irtf.org/anrw 2016/
anrwl6-final 16. pdf >.

[Appl e- MPTCP]
Apple, Inc, ., "i0OS - Miultipath TCP Support in iCs 7",
n.d., <https://support.apple.conlfen-us/HI201373>.

[COMMAG2016]
De Coninck, Q, Baerts, M, Hesmans, B., and O
Bonavent ure, "Observing Real Smartphone Applications over
Mul tipath TCP', | EEE Conmuni cati ons Magazine , March 2016,
<http://inl.info.ucl.ac.bel/publications/observing-real-
smart phone- appli cati ons-over-multi path-tcp>.

[CONEXT15]
Hesmans, B., Detal, G, Barre, S., Bauduin, R, and O
Bonaventure, "SMAPP - Towards Smart Miltipath TCP-enabl ed
APPl i cations”, Proc. Conext 2015, Heidel berg, Germany ,
Decenber 2015, <http://inl.info.ucl.ac.bel/publications/
smapp-towar ds-smart - nul ti pat h-t cp- enabl ed- appl i cati ons>.

[Mul ti pat hTCP- Li nux]
Paasch, C., Barre, S., and . et al, "Miultipath TCP
i npl ementation in the Linux kernel", n.d.,
<http://ww. nul ti path-tcp. org>.

[PAMR016] De Coninck, Q, Baerts, M, Hesmans, B., and O
Bonaventure, "A First Analysis of Miltipath TCP on
Smart phones”, 17th International Passive and Active
Measur ement s Conference (PAM2016) , March 2016, <http://
inl.info.ucl.ac.bel/publications/first-analysis-nultipath-
t cp- smart phones>.

[RFC4251] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
Protocol Architecture", RFC 4251, DO 10.17487/ RFCA251,
January 2006, <http://ww. rfc-editor.org/info/rfc4251>.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, DO 10.17487/

Hesmans & Bonaventure Expi res January 7, 2017 [Page 12]

Internet-Draft MPTCP API

RFC5246, August 2008,
<http://ww. rfc-editor.org/info/rfc5246>.

[RFC6182] Ford, A, Raiciu, C., Handley, M, Barre, S.,

July 2016

and J.

lyengar, "Architectural Guidelines for Miultipath TCP
Devel oprment”, RFC 6182, DO 10.17487/ RFC6182, March 2011,

<http://wwmv rfc-editor.org/info/rfc6182>.

[RFC6458] Stewart, R, Tuexen, M, Poon, K., Lei, P., and V.
Yasevi ch, "Sockets APl Extensions for the Stream Control
Transm ssion Protocol (SCTP)", RFC 6458, DO 10.17487/

RFC6458, Decenber 2011,
<http://wwmv rfc-editor.org/info/rfc6458>.

[RFC6897] Scharf, M and A Ford, "Miltipath TCP (MPTCP) Application
Interface Considerations", RFC 6897, DO 10.17487/ RFC6897,
March 2013, <http://www.rfc-editor.org/info/rfc6897>.

[S| GOOWML1]

Raiciu, C, Barre, S., Pluntke, C., G eenhal gh, A,
Wschik, D., and M Handl ey, "Inproving datacenter

performance and robustness with nmultipath TCP",
Proceedi ngs of the ACM SI GCOW 2011 conference ,

<http://doi.acmorg/10. 1145/ 2018436. 2018467>.
Aut hors’ Addr esses

Benj am n Hesmans
UCLouvai n

Emai | : Benj am n. Hesmans@icl ouvai n. be
divier Bonaventure
UCLouvai n

Email : A ivier.Bonavent ur e@icl ouvai n. be

Hesmans & Bonaventure Expi res January 7, 2017

2011,

[Page 13]

