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Abstract

   Several technologies such as traffic engineering, service function
   chaining, or policy based routing, are used to steer traffic through
   a specific, user-defined path.  This document defines mechanisms to
   securely prove that traffic transited the defined path.  The
   mechanisms allow to securely verify whether all packets traversed all
   those nodes of a given path that they are supposed to visit.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 9, 2017.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
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   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   Several deployments use traffic engineering, policy routing, segment
   routing or Service Function Chaining (SFC) [RFC7665] to steer packets
   through a specific set of nodes.  In certain cases regulatory
   obligations or a compliance policy require operators to prove that
   all packets that are supposed to follow a specific path are indeed
   being forwarded across and exact set of pre-determined nodes.

   If a packet flow is supposed to go through a series of service
   functions or network nodes, it has to be proven that indeed all
   packets of the flow followed the path or service chain or collection
   of nodes specified by the policy.  In case some packets of a flow
   weren’t appropriately processed, a verification device should
   determine the policy violation and take corresponding actions
   corresponding to the policy (e.g., drop or redirect the packet, send
   an alert etc.).  In today’s deployments, the proof that a packet
   traversed a particular path or service chain is typically delivered
   in an indirect way: Service appliances and network forwarding are in
   different trust domains.  Physical hand-off-points are defined
   between these trust domains (i.e.  physical interfaces).  Or in other
   terms, in the "network forwarding domain" things are wired up in a
   way that traffic is delivered to the ingress interface of a service
   appliance and received back from an egress interface of a service
   appliance.  This "wiring" is verified and then trusted upon.  The
   evolution to Network Function Virtualization (NFV) and modern service
   chaining concepts (using technologies such as LISP, NSH, Segment
   Routing (SR), etc.) blurs the line between the different trust
   domains, because the hand-off-points are no longer clearly defined
   physical interfaces, but are virtual interfaces.  As a consequence,
   different trust layers should not to be mixed in the same device.
   For an NFV scenario a different type of proof is required.  Offering
   a proof that a packet indeed traversed a specific set of service
   functions or nodes allows operators to evolve from the above
   described indirect methods of proving that packets visit a
   predetermined set of nodes.

   The solution approach presented in this document is based on a small
   portion of operational data added to every packet.  This "in-band"
   operational data is also referred to as "proof of transit data", or
   POT data.  The POT data is updated at every required node and is used
   to verify whether a packet traversed all required nodes.  A
   particular set of nodes "to be verified" is either described by a set
   of secret keys, or a set of shares of a single secret.  Nodes on the
   path retrieve their individual keys or shares of a key (using for
   e.g., Shamir’s Secret Sharing scheme) from a central controller.  The
   complete key set is only known to the controller and a verifier node,
   which is typically the ultimate node on a path that performs
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   verification.  Each node in the path uses its secret or share of the
   secret to update the POT data of the packets as the packets pass
   through the node.  When the verifier receives a packet, it uses its
   key(s) along with data found in the packet to validate whether the
   packet traversed the path correctly.

2.  Conventions

   Abbreviations used in this document:

   MTU:       Maximum Transmit Unit

   SR:        Segment Routing

   NSH:       Network Service Header

   SFC:       Service Function Chain

   POT:       Proof of Transit

   POT-profile:  Proof of Transit Profile that has the necessary data
              for nodes to participate in proof of transit

3.  Proof of Transit

   This section discusses methods and algorithms to provide for a "proof
   of transit" for packets traversing a specific path.  A path which is
   to be verified consists of a set of nodes.  Transit of the data
   packets through those nodes is to be proven.  Besides the nodes, the
   setup also includes a Controller that creates secrets and secrets
   shares and configures the nodes for POT operations.

   The methods how traffic is identified and associated to a specific
   path is outside the scope of this document.  Identification could be
   done using a filter (e.g., 5-tupel classifier), or an identifier
   which is already present in the packet (e.g., path or service
   identifier, flow-label, etc.).

   The solution approach is detailed in two steps.  Initially the
   concept of the approach is explained.  This concept is then further
   refined to make it operationally feasible.

3.1.  Basic Idea

   The method relies on adding POT data to all packets that traverse a
   path.  The added POT data allows a verifying node (egress node) to
   check whether a packet traversed the identified set of nodes on a
   path correctly or not.  Security mechanisms are natively built into
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   the generation of the POT data to protect against misuse (i.e.
   configuration mistakes, malicious administrators playing tricks with
   routing, capturing, spoofing and replaying packets).  The mechanism
   for POT leverages "Shamir’s secret sharing scheme" [SSS].

   Shamir’s secret sharing base idea: A polynomial (represented by its
   co-efficients) is chosen as a secret by the controller.  A polynomial
   represents a curve.  A set of well defined points on the curve are
   needed to construct the polynomial.  Each point of the polynomial is
   called "share" of the secret.  A single secret is associated with a
   particular set of nodes, which typically represent the path, to be
   verified.  Shares of the single secret (i.e., points on the curve)
   are securely distributed from a Controller to the network nodes.
   Nodes use their respective share to update a cumulative value in the
   POT data of each packet.  Only a verifying node has access to the
   complete secret.  The verifying node validates the correctness of the
   received POT data by reconstructing the curve.

   The polynomial cannot be constructed if any of the points are missed
   or tampered.  Per Shamir’s Secret Sharing Scheme, any lesser points
   means one or more nodes are missed.  Details of the precise
   configuration needed for achieving security are discussed further
   below.

   While applicable in theory, a vanilla approach based on Shamir’s
   secret sharing could be easily attacked.  If the same polynomial is
   reused for every packet for a path a passive attacker could reuse the
   value.  As a consequence, one could consider creating a different
   polynomial per packet.  Such an approach would be operationally
   complex.  It would be complex to configure and recycle so many curves
   and their respective points for each node.  Rather than using a
   single polynomial, two polynomials are used for the solution
   approach: A secret polynomial which is kept constant, and a per-
   packet polynomial which is public.  Operations are performed on the
   sum of those two polynomials - creating a third polynomial which is
   secret and per packet.

3.2.  Solution Approach

   Solution approach: The overall algorithm uses two polynomials: POLY-1
   and POLY-2.  POLY-1 is secret and constant.  Each node gets a point
   on POLY-1 at setup-time and keeps it secret.  POLY-2 is public,
   random and per packet.  Each node generates a point on POLY-2 each
   time a packet crosses it.  Each node then calculates (point on POLY-1
   + point on POLY-2) to get a (point on POLY-3) and passes it to
   verifier by adding it to each packet.  The verifier constructs POLY-3
   from the points given by all the nodes and cross checks whether
   POLY-3 = POLY-1 + POLY-2.  Only the verifier knows POLY-1.  The
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   solution leverages finite field arithmetic in a field of size "prime
   number".

   Detailed algorithms are discussed next.  A simple example is
   discussed in Section 3.3.

3.2.1.  Setup

   A controller generates a first polynomial (POLY-1) of degree k and
   k+1 points on the polynomial.  The constant coefficient of POLY-1 is
   considered the SECRET.  The non-constant coefficients are used to
   generate the Lagrange Polynomial Constants (LPC).  Each of the k
   nodes (including verifier) are assigned a point on the polynomial
   i.e., shares of the SECRET.  The verifier is configured with the
   SECRET.  The Controller also generates coefficients (except the
   constant coefficient, called "RND", which is changed on a per packet
   basis) of a second polynomial POLY-2 of the same degree.  Each node
   is configured with the LPC of POLY-2.  Note that POLY-2 is public.

3.2.2.  In Transit

   For each packet, the source node generates a random number (RND).  It
   is considered as the constant coefficient for POLY-2.  A cumulative
   value (CML) is initialized to 0.  Both RND, CML are carried as within
   the packet POT data.  As the packet visits each node, the RND is
   retrieved from the packet and the respective share of POLY-2 is
   calculated.  Each node calculates (Share(POLY-1)+Share(POLY-2)) and
   CML is updated with this sum.  This step is performed by each node
   until the packet completes the path.  The verifier also performs the
   step with its respective share.

3.2.3.  Verification

   The verifier cross checks whether CML = SECRET + RND.  If this
   matches then the packet traversed the specified set of nodes in the
   path.  This is due to the additive homomorphic property of Shamir’s
   Secret Sharing scheme.

3.3.  Example for Illustration

   This section shows a simple example to illustrate step by step the
   approach described above.

3.3.1.  Basic Version

   Assumption: We like to verify that packets pass through 3 nodes.
   Consequently we need a polynomial of degree 2.
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   Choices: Prime = 53.  POLY-1(x) = (3x^2 + 3x + 10) mod 53.  The
   secret to be re-constructed is the constant coefficient of POLY-1,
   i.e., SECRET=10.  It is important to note that all operations are
   done over a finite field (i.e., modulo prime).

3.3.1.1.  Secret Shares

   The shares of the secret are the points on POLY-1 chosen for the 3
   nodes.  Here we use x0=2, x1=4, x2=5.

      POLY-1(2) = 28 => (x0,y0) = (2,28)

      POLY-1(4) = 17 => (x1,y1) = (4,17)

      POLY-1(5) = 47 => (x2,y2) = (5,47)

   The three points above are the points on the curve which are
   considered the shares of the secret.  They are assigned to three
   nodes respectively and are kept secret.

3.3.1.2.  Lagrange Polynomials

   Lagrange basis polynomials (or Lagrange polynomials) are used for
   polynomial interpolation.  For a given set of points on the curve
   Lagrange polynomials (as defined below) are used to reconstruct the
   curve and thus reconstruct the complete secret.

      l0(x) = (((x-x1)/(x0-x1))*((x-x2)/x0-x2))) mod 53 =
      (((x-4)/(2-4))*((x-5)/2-5))) mod 53 =
      (10/3 - 3x/2 + (1/6)x^2) mod 53

      l1(x) = (((x-x0)/(x1-x0))*((x-x2)/x1-x2))) mod 53 =
      (-5 + 7x/2 - (1/2)x^2) mod 53

      l2(x) = (((x-x0)/(x2-x0))*((x-x1)/x2-x1))) mod 53 =
      (8/3 - 2 + (1/3)x^2) mod 53

3.3.1.3.  LPC Computation

   Since x0=2, x1=4, x2=5 are chosen points.  Given that computations
   are done over a finite arithmetic field ("modulo a prime number"),
   the Lagrange basis polynomial constants (LPC) are computed modulo 53.
   The Lagrange polynomial constant (LPC) would be 10/3 , -5 , 8/3.

      LPC(x0) = (10/3) mod 53 = 21

      LPC(x1) = (-5) mod 53 = 48
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      LPC(x2) = (8/3) mod 53 = 38

   For a general way to compute the modular multiplicative inverse, see
   e.g., the Euclidean algorithm.

3.3.1.4.  Reconstruction

   Reconstruction of the polynomial is well defined as

   POLY1(x) = l0(x)*y0 + l1(x)*y1 + l2(x)*y2.

   Subsequently, the SECRET, which is the constant coefficient of
   POLY1(x) can be computed as below

   SECRET = (y0*LPC(l0)+y1*LPC(l1)+y2*LPC(l2)) mod 53.

   The secret can be easily reconstructed using the y-values and the
   LPC:

   SECRET = (y0*LPC(l0) + y1*LPC(l1) + y2*LPC(l2)) mod 53 = mod (28 * 21
   + 17 * 48 + 47 * 38) mod 53 = 3190 mod 53 = 10.

   One observes that the secret reconstruction can easily be performed
   cumulatively hop by hop.  CML represents the cumulative value.  It is
   the POT data in the packet that is updated at each hop with the
   node’s respective (yi*LPC(i)), where i is their respective value.

3.3.1.5.  Verification

   Upon completion of the path, the resulting CML is retrieved by the
   verifier from the packet POT data.  Recall that verifier is
   preconfigured with the original SECRET.  It is cross checked with the
   CML by the verifier.  Subsequent actions based on the verification
   failing or succeeding could be taken as per the configured policies.

3.3.2.  Enhanced Version

   As observed previously, the vanilla algorithm that involves a single
   secret polynomial is not secure.  We enhance the solution with usage
   of a random second polynomial chosen per packet.

3.3.2.1.  Random Polynomial

   Let the second polynomial POLY-2 be (RND + 7x + 10 x^2).  RND is a
   random number and is generated for each packet.  Note that POLY-2 is
   public and need not be kept secret.  The nodes can be pre-configured
   with the non-constant coefficients (for example, 7 and 10 in this
   case could be configured through the Controller on each node).
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3.3.2.2.  Reconstruction

   Recall that each node is preconfigured with their respective
   Share(POLY-1).  Each node calculates its respective Share(POLY-2)
   using the RND value retrieved from the packet.  The CML
   reconstruction is enhanced as below.  At every node, CML is updated
   as

   CML = CML+(((Share(POLY-1)+ Share(POLY-2)) * LPC) mod Prime.

   Lets observe the packet level transformations in detail.  For the
   example packet here, let the value RND be 45.  Thus POLY-2 would be
   (45 + 7x + 10x^2).

   The shares that could be generated are (2,46), (4,21), (5,12).

      At source: The fields RND = 45.  CML = 0.

      At node-1 (x0): Respective share of POLY-2 is generated i.e (2,46)
      because share index of node-1 is 2.

      CML = 0 + ((28 + 46)* 21) mod 53 = 17.

      At node-2 (x1): Respective share of POLY-2 is generated i.e (4,21)
      because share index of node-2 is 4.

      CML = 17 + ((17 + 21)*48) mod 53 = 17 + 22 = 39.

      At node-3 (x2), which is also the verifier: The respective share
      of POLY-2 is generated i.e (5,12) because the share index of the
      verifier is 12.

      CML = 39 + ((47 + 12)*38) mod 53 = 39 + 16 = 55 mod 53 = 2

   The verification using CML is discussed in next section.

3.3.2.3.  Verification

   As shown in the above example, for final verification, the verifier
   compares:

   VERIFY = (SECRET + RND) mod Prime, with Prime = 53 here.

   VERIFY = (RND-1 + RND-2) mod Prime = ( 10 + 45 ) mod 53 = 2.

   Since VERIFY = CML the packet is proven to have gone through nodes 1,
   2, and 3.
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3.4.  Operational Aspects

   To operationalize this scheme, a central controller is used to
   generate the necessary polynomials, the secret share per node, the
   prime number, etc. and distributing the data to the nodes
   participating in proof of transit.  The identified node that performs
   the verification is provided with the verification key.  The
   information provided from the Controller to each of the nodes
   participating in proof of transit is referred to as a proof of
   transit profile (POT-profile).

   To optimize the overall data amount of exchanged and the processing
   at the nodes the following optimizations are performed:

   1.  The points (x,y) for each of the nodes on the public and private
       polynomials are picked such that the x component of the points
       match.  This lends to the LPC values which are used to calculate
       the cumulative value CML to be constant.  Note that the LPC are
       only depending on the x components.  The can be computed at the
       controller and communicated to the nodes.  Otherwise, one would
       need to distributed the x components to all the nodes.

   2.  A pre-evaluated portion of the public polynomial for each of the
       nodes is calculated and added to the POT-profile.  Without this
       all the coefficients of the public polynomial had to be added to
       the POT profile and each node had to evaluate them.

   3.  To provide flexibility on the size of the cumulative and random
       numbers carried in the POT data a field to indicate this is
       shared and interpreted at the nodes.

4.  Sizing the Data for Proof of Transit

   Proof of transit requires transport of two data records in every
   packet that should be verified:

   1.  RND: Random number (the constant coefficient of public
       polynomial)

   2.  CML: Cumulative

   The size of the data records determines how often a new set of
   polynomials would need to be created.  At maximum, the largest RND
   number that can be represented with a given number of bits determines
   the number of unique polynomials POLY-2 that can be created.  The
   table below shows the maximum interval for how long a single set of
   polynomials could last for a variety of bit rates and RND sizes: When
   choosing 64 bits for RND and CML data records, the time between a
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   renewal of secrets could be as long as 3,100 years, even when running
   at 100 Gbps.

   +-------------+--------------+------------------+-------------------+
   |   Transfer  |  Secret/RND  | Max # of packets |   Time RND lasts  |
   |     rate    |     size     |                  |                   |
   +-------------+--------------+------------------+-------------------+
   |    1 Gbps   |      64      |  2^64 = approx.  |  approx. 310,000  |
   |             |              |     2*10^19      |       years       |
   |   10 Gbps   |      64      |  2^64 = approx.  |   approx. 31,000  |
   |             |              |     2*10^19      |       years       |
   |   100 Gbps  |      64      |  2^64 = approx.  |   approx. 3,100   |
   |             |              |     2*10^19      |       years       |
   |    1 Gbps   |      32      |  2^32 = approx.  |   2,200 seconds   |
   |             |              |      4*10^9      |                   |
   |   10 Gbps   |      32      |  2^32 = approx.  |    220 seconds    |
   |             |              |      4*10^9      |                   |
   |   100 Gbps  |      32      |  2^32 = approx.  |     22 seconds    |
   |             |              |      4*10^9      |                   |
   +-------------+--------------+------------------+-------------------+

                      Table assumes 64 octet packets

                   Table 1: Proof of transit data sizing

5.  Node Configuration

   A POT system consists of a number of nodes that participate in POT
   and a Controller, which serves as a control and configuration entity.
   The Controller is to create the required parameters (polynomials,
   prime number, etc.) and communicate those to the nodes.  The sum of
   all parameters for a specific node is referred to as "POT-profile".
   This document does not define a specific protocol to be used between
   Controller and nodes.  It only defines the procedures and the
   associated YANG data model.

5.1.  Procedure

   The Controller creates new POT-profiles at a constant rate and
   communicates the POT-profile to the nodes.  The controller labels a
   POT-profile "even" or "odd" and the Controller cycles between "even"
   and "odd" labeled profiles.  The rate at which the POT-profiles are
   communicated to the nodes is configurable and is more frequent than
   the speed at which a POT-profile is "used up" (see table above).
   Once the POT-profile has been successfully communicated to all nodes
   (e.g., all Netconf transactions completed, in case Netconf is used as
   a protocol), the controller sends an "enable POT-profile" request to
   the ingress node.
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   All nodes maintain two POT-profiles (an even and an odd POT-profile):
   One POT-profile is currently active and in use; one profile is
   standby and about to get used.  A flag in the packet is indicating
   whether the odd or even POT-profile is to be used by a node.  This is
   to ensure that during profile change the service is not disrupted.
   If the "odd" profile is active, the Controller can communicate the
   "even" profile to all nodes.  Only if all the nodes have received the
   POT-profile, the Controller will tell the ingress node to switch to
   the "even" profile.  Given that the indicator travels within the
   packet, all nodes will switch to the "even" profile.  The "even"
   profile gets active on all nodes and nodes are ready to receive a new
   "odd" profile.

   Unless the ingress node receives a request to switch profiles, it’ll
   continue to use the active profile.  If a profile is "used up" the
   ingress node will recycle the active profile and start over (this
   could give rise to replay attacks in theory - but with 2^32 or 2^64
   packets this isn’t really likely in reality).

5.2.  YANG Model

   This section defines that YANG data model for the information
   exchange between the Controller and the nodes.

   module ietf-pot-profile {

     yang-version 1;

     namespace "urn:ietf:params:xml:ns:yang:ietf-pot-profile";

     prefix ietf-pot-profile;

     organization "IETF xxx Working Group";

     contact "";

     description "This module contains a collection of YANG
                  definitions for proof of transit configuration
                  parameters. The model is meant for proof of
                  transit and is targeted for communicating the
                  POT-profile between a controller and nodes
                  participating in proof of transit.";

     revision 2016-06-15 {
       description
         "Initial revision.";
       reference
         "";
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     }

     typedef profile-index-range {
       type int32 {
         range "0 .. 1";
       }
       description
         "Range used for the profile index. Currently restricted to
          0 or 1 to identify the odd or even profiles.";
     }

     grouping pot-profile {
       description "A grouping for proof of transit profiles.";
       list pot-profile-list {
         key "pot-profile-index";
         ordered-by user;
         description "A set of pot profiles.";

         leaf pot-profile-index {
           type profile-index-range;
           mandatory true;
           description
             "Proof of transit profile index.";
         }

         leaf prime-number {
           type uint64;
           mandatory true;
           description
             "Prime number used for module math computation";
         }

         leaf secret-share {
           type uint64;
           mandatory true;
           description
             "Share of the secret of polynomial 1 used in computation";
         }

         leaf public-polynomial {
           type uint64;
           mandatory true;
           description
             "Pre evaluated Public polynomial";
         }

         leaf lpc {
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           type uint64;
           mandatory true;
           description
             "Lagrange Polynomial Coefficient";
         }

         leaf validator {
           type boolean;
           default "false";
           description
             "True if the node is a verifier node";
         }

         leaf validator-key {
           type uint64;
           description
             "Secret key for validating the path, constant of poly 1";
         }

         leaf bitmask {
           type uint64;
           default 4294967295;
           description
             "Number of bits as mask used in controlling the size of the
              random value generation. 32-bits of mask is default.";
         }
       }
     }

     container pot-profiles {
       description "A group of proof of transit profiles.";

       list pot-profile-set {
         key "pot-profile-name";
         ordered-by user;
         description
           "Set of proof of transit profiles that group parameters
            required to classify and compute proof of transit
            metadata at a node";

         leaf pot-profile-name {
           type string;
           mandatory true;
           description
             "Unique identifier for each proof of transit profile";
         }

         leaf active-profile-index {
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           type profile-index-range;
           description
             "Proof of transit profile index that is currently active.
              Will be set in the first hop of the path or chain.
              Other nodes will not use this field.";
         }

         uses pot-profile;
       }
     /*** Container: end ***/
     }
   /*** module: end ***/
   }

6.  IANA Considerations

   IANA considerations will be added in a future version of this
   document.

7.  Manageability Considerations

   Manageability considerations will be addressed in a later version of
   this document.

8.  Security Considerations

   Different security requirements achieved by the solution approach are
   discussed here.

8.1.  Proof of Transit

   Proof of correctness and security of the solution approach is per
   Shamir’s Secret Sharing Scheme [SSS].  Cryptographically speaking it
   achieves information-theoretic security i.e., it cannot be broken by
   an attacker even with unlimited computing power.  As long as the
   below conditions are met it is impossible for an attacker to bypass
   one or multiple nodes without getting caught.

   o  If there are k+1 nodes in the path, the polynomials (POLY-1, POLY-
      2) should be of degree k.  Also k+1 points of POLY-1 are chosen
      and assigned to each node respectively.  The verifier can re-
      construct the k degree polynomial (POLY-3) only when all the
      points are correctly retrieved.

   o  The Shares of the SECRET (i.e., points on POLY-1 ) are kept secret
      by individual nodes.
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   An attacker bypassing a few nodes will miss adding a respective point
   on POLY-1 to corresponding point on POLY-2 , thus the verifier cannot
   construct POLY-3 for cross verification.

8.2.  Anti Replay

   A passive attacker observing CML values across nodes (i.e., as the
   packets entering and leaving), cannot perform differential analysis
   to construct the points on POLY-1 as the operations are done modulo
   prime.  The solution approach is flexible, one could use different
   points on POLY-1 or different polynomials as POLY-1 across different
   paths, traffic profiles or service chains.

   Doing differential analysis across packets could be mitigated with
   POLY-2 being be random.  Further an attacker could reuse a set of RND
   and all the intermediate CML values to bypass certain nodes in later
   packets.  Such attacks could be avoided by carefully choosing POLY-2
   as a timestamp concatenated with a random string.  The verifier could
   use the timestamp to mitigate reuse within a time window.

8.3.  Anti Tampering

   An active attacker could not insert any arbitrary value for CML.
   This would subsequently fail the reconstruction of the POLY-3.  Also
   an attacker could not update the CML with a previously observed
   value.  This could subsequently be detected by using timestamps
   within the RND value as discussed above.

8.4.  Recycling

   The solution approach is flexible for recycling long term secrets
   like POLY-1.  All the nodes could be periodically updated with shares
   of new SECRET as best practice.  The table above could be consulted
   for refresh cycles (see Section 4).

8.5.  Redundant Nodes and Failover

   A "node" or "service" in terms of POT can be implemented by one or
   multiple physical entities.  In case of multiple physical entities
   (e.g., for load-balancing, or business continuity situations -
   consider for example a set of firewalls), all physical entities which
   are implementing the same POT node are given that same share of the
   secret.  This makes multiple physical entities represent the same POT
   node from an algorithm perspective.
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8.6.  Controller Operation

   The Controller needs to be secured given that it creates and holds
   the secrets, as need to be the nodes.  The communication between
   Controller and the nodes also needs to be secured.  As secure
   communication protocol such as for example Netconf over SSH should be
   chosen for Controller to node communication.

   The Controller only interacts with the nodes during the initial
   configuration and thereafter at regular intervals at which the
   operator chooses to switch to a new set of secrets.  In case 64 bits
   are used for the data-records "CML" and "RND" which are carried
   within the data packet, the regular intervals are expected to be
   quite long (e.g., at 100 Gbps, a profile would only be used up after
   3100 years) - see Section 4 above, thus even a "headless" operation
   without a Controller can be considered feasible.  In such a case, the
   Controller would only be used for the initial configuration of the
   POT-profiles.

8.7.  Verification Scope

   The POT solution defined in this document verifies that a data-packet
   traversed or transited a specific set of nodes.  From an algorithm
   perspective, a "node" is an abstract entity.  It could be represented
   by one or multiple physical or virtual network devices, or is could
   be a component within a networking device or system.  The latter
   would be the case if a forwarding path within a device would need to
   be securely verified.

8.7.1.  Node Ordering

   POT using Shamir’s secret sharing scheme as discussed in this
   document provides for a means to verify that a set of nodes has been
   visited by a data packet.  It does not verify the order in which the
   data packet visited the nodes.  In case the order in which a data
   packet traversed a particular set of nodes needs to be verified as
   well, alternate schemes that e.g., rely on nested encryption could to
   be considered.

8.7.2.  Stealth Nodes

   The POT approach discussed in this document is to prove that a data
   packet traversed a specific set of "nodes".  This set could be all
   nodes within a path, but could also be a subset of nodes in a path.
   Consequently, the POT approach isn’t suited to detect whether
   "stealth" nodes which do not participate in proof-of-transit have
   been inserted into a path.
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