
Network Working Group F. Brockners
Internet-Draft S. Bhandari
Intended status: Experimental S. Dara
Expires: January 9, 2017 C. Pignataro
 Cisco
 July 8, 2016

 Proof of Transit
 draft-brockners-proof-of-transit-00

Abstract

 Several technologies such as traffic engineering, service function
 chaining, or policy based routing, are used to steer traffic through
 a specific, user-defined path. This document defines mechanisms to
 securely prove that traffic transited the defined path. The
 mechanisms allow to securely verify whether all packets traversed all
 those nodes of a given path that they are supposed to visit.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Brockners, et al. Expires January 9, 2017 [Page 1]

Internet-Draft Proof of Transit July 2016

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Conventions . 4
 3. Proof of Transit . 4
 3.1. Basic Idea . 4
 3.2. Solution Approach . 5
 3.2.1. Setup . 6
 3.2.2. In Transit . 6
 3.2.3. Verification . 6
 3.3. Example for Illustration 6
 3.3.1. Basic Version . 6
 3.3.1.1. Secret Shares 7
 3.3.1.2. Lagrange Polynomials 7
 3.3.1.3. LPC Computation 7
 3.3.1.4. Reconstruction 8
 3.3.1.5. Verification 8
 3.3.2. Enhanced Version 8
 3.3.2.1. Random Polynomial 8
 3.3.2.2. Reconstruction 9
 3.3.2.3. Verification 9
 3.4. Operational Aspects 10
 4. Sizing the Data for Proof of Transit 10
 5. Node Configuration . 11
 5.1. Procedure . 11
 5.2. YANG Model . 12
 6. IANA Considerations . 15
 7. Manageability Considerations 15
 8. Security Considerations 15
 8.1. Proof of Transit . 15
 8.2. Anti Replay . 16
 8.3. Anti Tampering . 16
 8.4. Recycling . 16
 8.5. Redundant Nodes and Failover 16
 8.6. Controller Operation 17
 8.7. Verification Scope 17
 8.7.1. Node Ordering . 17
 8.7.2. Stealth Nodes . 17
 9. Acknowledgements . 18
 10. Normative References . 18
 Authors’ Addresses . 18

Brockners, et al. Expires January 9, 2017 [Page 2]

Internet-Draft Proof of Transit July 2016

1. Introduction

 Several deployments use traffic engineering, policy routing, segment
 routing or Service Function Chaining (SFC) [RFC7665] to steer packets
 through a specific set of nodes. In certain cases regulatory
 obligations or a compliance policy require operators to prove that
 all packets that are supposed to follow a specific path are indeed
 being forwarded across and exact set of pre-determined nodes.

 If a packet flow is supposed to go through a series of service
 functions or network nodes, it has to be proven that indeed all
 packets of the flow followed the path or service chain or collection
 of nodes specified by the policy. In case some packets of a flow
 weren’t appropriately processed, a verification device should
 determine the policy violation and take corresponding actions
 corresponding to the policy (e.g., drop or redirect the packet, send
 an alert etc.). In today’s deployments, the proof that a packet
 traversed a particular path or service chain is typically delivered
 in an indirect way: Service appliances and network forwarding are in
 different trust domains. Physical hand-off-points are defined
 between these trust domains (i.e. physical interfaces). Or in other
 terms, in the "network forwarding domain" things are wired up in a
 way that traffic is delivered to the ingress interface of a service
 appliance and received back from an egress interface of a service
 appliance. This "wiring" is verified and then trusted upon. The
 evolution to Network Function Virtualization (NFV) and modern service
 chaining concepts (using technologies such as LISP, NSH, Segment
 Routing (SR), etc.) blurs the line between the different trust
 domains, because the hand-off-points are no longer clearly defined
 physical interfaces, but are virtual interfaces. As a consequence,
 different trust layers should not to be mixed in the same device.
 For an NFV scenario a different type of proof is required. Offering
 a proof that a packet indeed traversed a specific set of service
 functions or nodes allows operators to evolve from the above
 described indirect methods of proving that packets visit a
 predetermined set of nodes.

 The solution approach presented in this document is based on a small
 portion of operational data added to every packet. This "in-band"
 operational data is also referred to as "proof of transit data", or
 POT data. The POT data is updated at every required node and is used
 to verify whether a packet traversed all required nodes. A
 particular set of nodes "to be verified" is either described by a set
 of secret keys, or a set of shares of a single secret. Nodes on the
 path retrieve their individual keys or shares of a key (using for
 e.g., Shamir’s Secret Sharing scheme) from a central controller. The
 complete key set is only known to the controller and a verifier node,
 which is typically the ultimate node on a path that performs

Brockners, et al. Expires January 9, 2017 [Page 3]

Internet-Draft Proof of Transit July 2016

 verification. Each node in the path uses its secret or share of the
 secret to update the POT data of the packets as the packets pass
 through the node. When the verifier receives a packet, it uses its
 key(s) along with data found in the packet to validate whether the
 packet traversed the path correctly.

2. Conventions

 Abbreviations used in this document:

 MTU: Maximum Transmit Unit

 SR: Segment Routing

 NSH: Network Service Header

 SFC: Service Function Chain

 POT: Proof of Transit

 POT-profile: Proof of Transit Profile that has the necessary data
 for nodes to participate in proof of transit

3. Proof of Transit

 This section discusses methods and algorithms to provide for a "proof
 of transit" for packets traversing a specific path. A path which is
 to be verified consists of a set of nodes. Transit of the data
 packets through those nodes is to be proven. Besides the nodes, the
 setup also includes a Controller that creates secrets and secrets
 shares and configures the nodes for POT operations.

 The methods how traffic is identified and associated to a specific
 path is outside the scope of this document. Identification could be
 done using a filter (e.g., 5-tupel classifier), or an identifier
 which is already present in the packet (e.g., path or service
 identifier, flow-label, etc.).

 The solution approach is detailed in two steps. Initially the
 concept of the approach is explained. This concept is then further
 refined to make it operationally feasible.

3.1. Basic Idea

 The method relies on adding POT data to all packets that traverse a
 path. The added POT data allows a verifying node (egress node) to
 check whether a packet traversed the identified set of nodes on a
 path correctly or not. Security mechanisms are natively built into

Brockners, et al. Expires January 9, 2017 [Page 4]

Internet-Draft Proof of Transit July 2016

 the generation of the POT data to protect against misuse (i.e.
 configuration mistakes, malicious administrators playing tricks with
 routing, capturing, spoofing and replaying packets). The mechanism
 for POT leverages "Shamir’s secret sharing scheme" [SSS].

 Shamir’s secret sharing base idea: A polynomial (represented by its
 co-efficients) is chosen as a secret by the controller. A polynomial
 represents a curve. A set of well defined points on the curve are
 needed to construct the polynomial. Each point of the polynomial is
 called "share" of the secret. A single secret is associated with a
 particular set of nodes, which typically represent the path, to be
 verified. Shares of the single secret (i.e., points on the curve)
 are securely distributed from a Controller to the network nodes.
 Nodes use their respective share to update a cumulative value in the
 POT data of each packet. Only a verifying node has access to the
 complete secret. The verifying node validates the correctness of the
 received POT data by reconstructing the curve.

 The polynomial cannot be constructed if any of the points are missed
 or tampered. Per Shamir’s Secret Sharing Scheme, any lesser points
 means one or more nodes are missed. Details of the precise
 configuration needed for achieving security are discussed further
 below.

 While applicable in theory, a vanilla approach based on Shamir’s
 secret sharing could be easily attacked. If the same polynomial is
 reused for every packet for a path a passive attacker could reuse the
 value. As a consequence, one could consider creating a different
 polynomial per packet. Such an approach would be operationally
 complex. It would be complex to configure and recycle so many curves
 and their respective points for each node. Rather than using a
 single polynomial, two polynomials are used for the solution
 approach: A secret polynomial which is kept constant, and a per-
 packet polynomial which is public. Operations are performed on the
 sum of those two polynomials - creating a third polynomial which is
 secret and per packet.

3.2. Solution Approach

 Solution approach: The overall algorithm uses two polynomials: POLY-1
 and POLY-2. POLY-1 is secret and constant. Each node gets a point
 on POLY-1 at setup-time and keeps it secret. POLY-2 is public,
 random and per packet. Each node generates a point on POLY-2 each
 time a packet crosses it. Each node then calculates (point on POLY-1
 + point on POLY-2) to get a (point on POLY-3) and passes it to
 verifier by adding it to each packet. The verifier constructs POLY-3
 from the points given by all the nodes and cross checks whether
 POLY-3 = POLY-1 + POLY-2. Only the verifier knows POLY-1. The

Brockners, et al. Expires January 9, 2017 [Page 5]

Internet-Draft Proof of Transit July 2016

 solution leverages finite field arithmetic in a field of size "prime
 number".

 Detailed algorithms are discussed next. A simple example is
 discussed in Section 3.3.

3.2.1. Setup

 A controller generates a first polynomial (POLY-1) of degree k and
 k+1 points on the polynomial. The constant coefficient of POLY-1 is
 considered the SECRET. The non-constant coefficients are used to
 generate the Lagrange Polynomial Constants (LPC). Each of the k
 nodes (including verifier) are assigned a point on the polynomial
 i.e., shares of the SECRET. The verifier is configured with the
 SECRET. The Controller also generates coefficients (except the
 constant coefficient, called "RND", which is changed on a per packet
 basis) of a second polynomial POLY-2 of the same degree. Each node
 is configured with the LPC of POLY-2. Note that POLY-2 is public.

3.2.2. In Transit

 For each packet, the source node generates a random number (RND). It
 is considered as the constant coefficient for POLY-2. A cumulative
 value (CML) is initialized to 0. Both RND, CML are carried as within
 the packet POT data. As the packet visits each node, the RND is
 retrieved from the packet and the respective share of POLY-2 is
 calculated. Each node calculates (Share(POLY-1)+Share(POLY-2)) and
 CML is updated with this sum. This step is performed by each node
 until the packet completes the path. The verifier also performs the
 step with its respective share.

3.2.3. Verification

 The verifier cross checks whether CML = SECRET + RND. If this
 matches then the packet traversed the specified set of nodes in the
 path. This is due to the additive homomorphic property of Shamir’s
 Secret Sharing scheme.

3.3. Example for Illustration

 This section shows a simple example to illustrate step by step the
 approach described above.

3.3.1. Basic Version

 Assumption: We like to verify that packets pass through 3 nodes.
 Consequently we need a polynomial of degree 2.

Brockners, et al. Expires January 9, 2017 [Page 6]

Internet-Draft Proof of Transit July 2016

 Choices: Prime = 53. POLY-1(x) = (3x^2 + 3x + 10) mod 53. The
 secret to be re-constructed is the constant coefficient of POLY-1,
 i.e., SECRET=10. It is important to note that all operations are
 done over a finite field (i.e., modulo prime).

3.3.1.1. Secret Shares

 The shares of the secret are the points on POLY-1 chosen for the 3
 nodes. Here we use x0=2, x1=4, x2=5.

 POLY-1(2) = 28 => (x0,y0) = (2,28)

 POLY-1(4) = 17 => (x1,y1) = (4,17)

 POLY-1(5) = 47 => (x2,y2) = (5,47)

 The three points above are the points on the curve which are
 considered the shares of the secret. They are assigned to three
 nodes respectively and are kept secret.

3.3.1.2. Lagrange Polynomials

 Lagrange basis polynomials (or Lagrange polynomials) are used for
 polynomial interpolation. For a given set of points on the curve
 Lagrange polynomials (as defined below) are used to reconstruct the
 curve and thus reconstruct the complete secret.

 l0(x) = (((x-x1)/(x0-x1))*((x-x2)/x0-x2))) mod 53 =
 (((x-4)/(2-4))*((x-5)/2-5))) mod 53 =
 (10/3 - 3x/2 + (1/6)x^2) mod 53

 l1(x) = (((x-x0)/(x1-x0))*((x-x2)/x1-x2))) mod 53 =
 (-5 + 7x/2 - (1/2)x^2) mod 53

 l2(x) = (((x-x0)/(x2-x0))*((x-x1)/x2-x1))) mod 53 =
 (8/3 - 2 + (1/3)x^2) mod 53

3.3.1.3. LPC Computation

 Since x0=2, x1=4, x2=5 are chosen points. Given that computations
 are done over a finite arithmetic field ("modulo a prime number"),
 the Lagrange basis polynomial constants (LPC) are computed modulo 53.
 The Lagrange polynomial constant (LPC) would be 10/3 , -5 , 8/3.

 LPC(x0) = (10/3) mod 53 = 21

 LPC(x1) = (-5) mod 53 = 48

Brockners, et al. Expires January 9, 2017 [Page 7]

Internet-Draft Proof of Transit July 2016

 LPC(x2) = (8/3) mod 53 = 38

 For a general way to compute the modular multiplicative inverse, see
 e.g., the Euclidean algorithm.

3.3.1.4. Reconstruction

 Reconstruction of the polynomial is well defined as

 POLY1(x) = l0(x)*y0 + l1(x)*y1 + l2(x)*y2.

 Subsequently, the SECRET, which is the constant coefficient of
 POLY1(x) can be computed as below

 SECRET = (y0*LPC(l0)+y1*LPC(l1)+y2*LPC(l2)) mod 53.

 The secret can be easily reconstructed using the y-values and the
 LPC:

 SECRET = (y0*LPC(l0) + y1*LPC(l1) + y2*LPC(l2)) mod 53 = mod (28 * 21
 + 17 * 48 + 47 * 38) mod 53 = 3190 mod 53 = 10.

 One observes that the secret reconstruction can easily be performed
 cumulatively hop by hop. CML represents the cumulative value. It is
 the POT data in the packet that is updated at each hop with the
 node’s respective (yi*LPC(i)), where i is their respective value.

3.3.1.5. Verification

 Upon completion of the path, the resulting CML is retrieved by the
 verifier from the packet POT data. Recall that verifier is
 preconfigured with the original SECRET. It is cross checked with the
 CML by the verifier. Subsequent actions based on the verification
 failing or succeeding could be taken as per the configured policies.

3.3.2. Enhanced Version

 As observed previously, the vanilla algorithm that involves a single
 secret polynomial is not secure. We enhance the solution with usage
 of a random second polynomial chosen per packet.

3.3.2.1. Random Polynomial

 Let the second polynomial POLY-2 be (RND + 7x + 10 x^2). RND is a
 random number and is generated for each packet. Note that POLY-2 is
 public and need not be kept secret. The nodes can be pre-configured
 with the non-constant coefficients (for example, 7 and 10 in this
 case could be configured through the Controller on each node).

Brockners, et al. Expires January 9, 2017 [Page 8]

Internet-Draft Proof of Transit July 2016

3.3.2.2. Reconstruction

 Recall that each node is preconfigured with their respective
 Share(POLY-1). Each node calculates its respective Share(POLY-2)
 using the RND value retrieved from the packet. The CML
 reconstruction is enhanced as below. At every node, CML is updated
 as

 CML = CML+(((Share(POLY-1)+ Share(POLY-2)) * LPC) mod Prime.

 Lets observe the packet level transformations in detail. For the
 example packet here, let the value RND be 45. Thus POLY-2 would be
 (45 + 7x + 10x^2).

 The shares that could be generated are (2,46), (4,21), (5,12).

 At source: The fields RND = 45. CML = 0.

 At node-1 (x0): Respective share of POLY-2 is generated i.e (2,46)
 because share index of node-1 is 2.

 CML = 0 + ((28 + 46)* 21) mod 53 = 17.

 At node-2 (x1): Respective share of POLY-2 is generated i.e (4,21)
 because share index of node-2 is 4.

 CML = 17 + ((17 + 21)*48) mod 53 = 17 + 22 = 39.

 At node-3 (x2), which is also the verifier: The respective share
 of POLY-2 is generated i.e (5,12) because the share index of the
 verifier is 12.

 CML = 39 + ((47 + 12)*38) mod 53 = 39 + 16 = 55 mod 53 = 2

 The verification using CML is discussed in next section.

3.3.2.3. Verification

 As shown in the above example, for final verification, the verifier
 compares:

 VERIFY = (SECRET + RND) mod Prime, with Prime = 53 here.

 VERIFY = (RND-1 + RND-2) mod Prime = (10 + 45) mod 53 = 2.

 Since VERIFY = CML the packet is proven to have gone through nodes 1,
 2, and 3.

Brockners, et al. Expires January 9, 2017 [Page 9]

Internet-Draft Proof of Transit July 2016

3.4. Operational Aspects

 To operationalize this scheme, a central controller is used to
 generate the necessary polynomials, the secret share per node, the
 prime number, etc. and distributing the data to the nodes
 participating in proof of transit. The identified node that performs
 the verification is provided with the verification key. The
 information provided from the Controller to each of the nodes
 participating in proof of transit is referred to as a proof of
 transit profile (POT-profile).

 To optimize the overall data amount of exchanged and the processing
 at the nodes the following optimizations are performed:

 1. The points (x,y) for each of the nodes on the public and private
 polynomials are picked such that the x component of the points
 match. This lends to the LPC values which are used to calculate
 the cumulative value CML to be constant. Note that the LPC are
 only depending on the x components. The can be computed at the
 controller and communicated to the nodes. Otherwise, one would
 need to distributed the x components to all the nodes.

 2. A pre-evaluated portion of the public polynomial for each of the
 nodes is calculated and added to the POT-profile. Without this
 all the coefficients of the public polynomial had to be added to
 the POT profile and each node had to evaluate them.

 3. To provide flexibility on the size of the cumulative and random
 numbers carried in the POT data a field to indicate this is
 shared and interpreted at the nodes.

4. Sizing the Data for Proof of Transit

 Proof of transit requires transport of two data records in every
 packet that should be verified:

 1. RND: Random number (the constant coefficient of public
 polynomial)

 2. CML: Cumulative

 The size of the data records determines how often a new set of
 polynomials would need to be created. At maximum, the largest RND
 number that can be represented with a given number of bits determines
 the number of unique polynomials POLY-2 that can be created. The
 table below shows the maximum interval for how long a single set of
 polynomials could last for a variety of bit rates and RND sizes: When
 choosing 64 bits for RND and CML data records, the time between a

Brockners, et al. Expires January 9, 2017 [Page 10]

Internet-Draft Proof of Transit July 2016

 renewal of secrets could be as long as 3,100 years, even when running
 at 100 Gbps.

 +-------------+--------------+------------------+-------------------+
 | Transfer | Secret/RND | Max # of packets | Time RND lasts |
 | rate | size | | |
 +-------------+--------------+------------------+-------------------+
1 Gbps	64	2^64 = approx.	approx. 310,000
		2*10^19	years
10 Gbps	64	2^64 = approx.	approx. 31,000
		2*10^19	years
100 Gbps	64	2^64 = approx.	approx. 3,100
		2*10^19	years
1 Gbps	32	2^32 = approx.	2,200 seconds
		4*10^9	
10 Gbps	32	2^32 = approx.	220 seconds
		4*10^9	
100 Gbps	32	2^32 = approx.	22 seconds
		4*10^9	
 +-------------+--------------+------------------+-------------------+

 Table assumes 64 octet packets

 Table 1: Proof of transit data sizing

5. Node Configuration

 A POT system consists of a number of nodes that participate in POT
 and a Controller, which serves as a control and configuration entity.
 The Controller is to create the required parameters (polynomials,
 prime number, etc.) and communicate those to the nodes. The sum of
 all parameters for a specific node is referred to as "POT-profile".
 This document does not define a specific protocol to be used between
 Controller and nodes. It only defines the procedures and the
 associated YANG data model.

5.1. Procedure

 The Controller creates new POT-profiles at a constant rate and
 communicates the POT-profile to the nodes. The controller labels a
 POT-profile "even" or "odd" and the Controller cycles between "even"
 and "odd" labeled profiles. The rate at which the POT-profiles are
 communicated to the nodes is configurable and is more frequent than
 the speed at which a POT-profile is "used up" (see table above).
 Once the POT-profile has been successfully communicated to all nodes
 (e.g., all Netconf transactions completed, in case Netconf is used as
 a protocol), the controller sends an "enable POT-profile" request to
 the ingress node.

Brockners, et al. Expires January 9, 2017 [Page 11]

Internet-Draft Proof of Transit July 2016

 All nodes maintain two POT-profiles (an even and an odd POT-profile):
 One POT-profile is currently active and in use; one profile is
 standby and about to get used. A flag in the packet is indicating
 whether the odd or even POT-profile is to be used by a node. This is
 to ensure that during profile change the service is not disrupted.
 If the "odd" profile is active, the Controller can communicate the
 "even" profile to all nodes. Only if all the nodes have received the
 POT-profile, the Controller will tell the ingress node to switch to
 the "even" profile. Given that the indicator travels within the
 packet, all nodes will switch to the "even" profile. The "even"
 profile gets active on all nodes and nodes are ready to receive a new
 "odd" profile.

 Unless the ingress node receives a request to switch profiles, it’ll
 continue to use the active profile. If a profile is "used up" the
 ingress node will recycle the active profile and start over (this
 could give rise to replay attacks in theory - but with 2^32 or 2^64
 packets this isn’t really likely in reality).

5.2. YANG Model

 This section defines that YANG data model for the information
 exchange between the Controller and the nodes.

 module ietf-pot-profile {

 yang-version 1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-pot-profile";

 prefix ietf-pot-profile;

 organization "IETF xxx Working Group";

 contact "";

 description "This module contains a collection of YANG
 definitions for proof of transit configuration
 parameters. The model is meant for proof of
 transit and is targeted for communicating the
 POT-profile between a controller and nodes
 participating in proof of transit.";

 revision 2016-06-15 {
 description
 "Initial revision.";
 reference
 "";

Brockners, et al. Expires January 9, 2017 [Page 12]

Internet-Draft Proof of Transit July 2016

 }

 typedef profile-index-range {
 type int32 {
 range "0 .. 1";
 }
 description
 "Range used for the profile index. Currently restricted to
 0 or 1 to identify the odd or even profiles.";
 }

 grouping pot-profile {
 description "A grouping for proof of transit profiles.";
 list pot-profile-list {
 key "pot-profile-index";
 ordered-by user;
 description "A set of pot profiles.";

 leaf pot-profile-index {
 type profile-index-range;
 mandatory true;
 description
 "Proof of transit profile index.";
 }

 leaf prime-number {
 type uint64;
 mandatory true;
 description
 "Prime number used for module math computation";
 }

 leaf secret-share {
 type uint64;
 mandatory true;
 description
 "Share of the secret of polynomial 1 used in computation";
 }

 leaf public-polynomial {
 type uint64;
 mandatory true;
 description
 "Pre evaluated Public polynomial";
 }

 leaf lpc {

Brockners, et al. Expires January 9, 2017 [Page 13]

Internet-Draft Proof of Transit July 2016

 type uint64;
 mandatory true;
 description
 "Lagrange Polynomial Coefficient";
 }

 leaf validator {
 type boolean;
 default "false";
 description
 "True if the node is a verifier node";
 }

 leaf validator-key {
 type uint64;
 description
 "Secret key for validating the path, constant of poly 1";
 }

 leaf bitmask {
 type uint64;
 default 4294967295;
 description
 "Number of bits as mask used in controlling the size of the
 random value generation. 32-bits of mask is default.";
 }
 }
 }

 container pot-profiles {
 description "A group of proof of transit profiles.";

 list pot-profile-set {
 key "pot-profile-name";
 ordered-by user;
 description
 "Set of proof of transit profiles that group parameters
 required to classify and compute proof of transit
 metadata at a node";

 leaf pot-profile-name {
 type string;
 mandatory true;
 description
 "Unique identifier for each proof of transit profile";
 }

 leaf active-profile-index {

Brockners, et al. Expires January 9, 2017 [Page 14]

Internet-Draft Proof of Transit July 2016

 type profile-index-range;
 description
 "Proof of transit profile index that is currently active.
 Will be set in the first hop of the path or chain.
 Other nodes will not use this field.";
 }

 uses pot-profile;
 }
 /*** Container: end ***/
 }
 /*** module: end ***/
 }

6. IANA Considerations

 IANA considerations will be added in a future version of this
 document.

7. Manageability Considerations

 Manageability considerations will be addressed in a later version of
 this document.

8. Security Considerations

 Different security requirements achieved by the solution approach are
 discussed here.

8.1. Proof of Transit

 Proof of correctness and security of the solution approach is per
 Shamir’s Secret Sharing Scheme [SSS]. Cryptographically speaking it
 achieves information-theoretic security i.e., it cannot be broken by
 an attacker even with unlimited computing power. As long as the
 below conditions are met it is impossible for an attacker to bypass
 one or multiple nodes without getting caught.

 o If there are k+1 nodes in the path, the polynomials (POLY-1, POLY-
 2) should be of degree k. Also k+1 points of POLY-1 are chosen
 and assigned to each node respectively. The verifier can re-
 construct the k degree polynomial (POLY-3) only when all the
 points are correctly retrieved.

 o The Shares of the SECRET (i.e., points on POLY-1) are kept secret
 by individual nodes.

Brockners, et al. Expires January 9, 2017 [Page 15]

Internet-Draft Proof of Transit July 2016

 An attacker bypassing a few nodes will miss adding a respective point
 on POLY-1 to corresponding point on POLY-2 , thus the verifier cannot
 construct POLY-3 for cross verification.

8.2. Anti Replay

 A passive attacker observing CML values across nodes (i.e., as the
 packets entering and leaving), cannot perform differential analysis
 to construct the points on POLY-1 as the operations are done modulo
 prime. The solution approach is flexible, one could use different
 points on POLY-1 or different polynomials as POLY-1 across different
 paths, traffic profiles or service chains.

 Doing differential analysis across packets could be mitigated with
 POLY-2 being be random. Further an attacker could reuse a set of RND
 and all the intermediate CML values to bypass certain nodes in later
 packets. Such attacks could be avoided by carefully choosing POLY-2
 as a timestamp concatenated with a random string. The verifier could
 use the timestamp to mitigate reuse within a time window.

8.3. Anti Tampering

 An active attacker could not insert any arbitrary value for CML.
 This would subsequently fail the reconstruction of the POLY-3. Also
 an attacker could not update the CML with a previously observed
 value. This could subsequently be detected by using timestamps
 within the RND value as discussed above.

8.4. Recycling

 The solution approach is flexible for recycling long term secrets
 like POLY-1. All the nodes could be periodically updated with shares
 of new SECRET as best practice. The table above could be consulted
 for refresh cycles (see Section 4).

8.5. Redundant Nodes and Failover

 A "node" or "service" in terms of POT can be implemented by one or
 multiple physical entities. In case of multiple physical entities
 (e.g., for load-balancing, or business continuity situations -
 consider for example a set of firewalls), all physical entities which
 are implementing the same POT node are given that same share of the
 secret. This makes multiple physical entities represent the same POT
 node from an algorithm perspective.

Brockners, et al. Expires January 9, 2017 [Page 16]

Internet-Draft Proof of Transit July 2016

8.6. Controller Operation

 The Controller needs to be secured given that it creates and holds
 the secrets, as need to be the nodes. The communication between
 Controller and the nodes also needs to be secured. As secure
 communication protocol such as for example Netconf over SSH should be
 chosen for Controller to node communication.

 The Controller only interacts with the nodes during the initial
 configuration and thereafter at regular intervals at which the
 operator chooses to switch to a new set of secrets. In case 64 bits
 are used for the data-records "CML" and "RND" which are carried
 within the data packet, the regular intervals are expected to be
 quite long (e.g., at 100 Gbps, a profile would only be used up after
 3100 years) - see Section 4 above, thus even a "headless" operation
 without a Controller can be considered feasible. In such a case, the
 Controller would only be used for the initial configuration of the
 POT-profiles.

8.7. Verification Scope

 The POT solution defined in this document verifies that a data-packet
 traversed or transited a specific set of nodes. From an algorithm
 perspective, a "node" is an abstract entity. It could be represented
 by one or multiple physical or virtual network devices, or is could
 be a component within a networking device or system. The latter
 would be the case if a forwarding path within a device would need to
 be securely verified.

8.7.1. Node Ordering

 POT using Shamir’s secret sharing scheme as discussed in this
 document provides for a means to verify that a set of nodes has been
 visited by a data packet. It does not verify the order in which the
 data packet visited the nodes. In case the order in which a data
 packet traversed a particular set of nodes needs to be verified as
 well, alternate schemes that e.g., rely on nested encryption could to
 be considered.

8.7.2. Stealth Nodes

 The POT approach discussed in this document is to prove that a data
 packet traversed a specific set of "nodes". This set could be all
 nodes within a path, but could also be a subset of nodes in a path.
 Consequently, the POT approach isn’t suited to detect whether
 "stealth" nodes which do not participate in proof-of-transit have
 been inserted into a path.

Brockners, et al. Expires January 9, 2017 [Page 17]

Internet-Draft Proof of Transit July 2016

9. Acknowledgements

 The authors would like to thank Steve Youell, Eric Vyncke, Nalini
 Elkins, Srihari Raghavan, Ranganathan T S, Karthik Babu Harichandra
 Babu, Akshaya Nadahalli, and Andrew Yourtchenko for the comments and
 advice.

10. Normative References

 [RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665,
 DOI 10.17487/RFC7665, October 2015,
 <http://www.rfc-editor.org/info/rfc7665>.

 [SSS] "Shamir’s Secret Sharing", <https://en.wikipedia.org/wiki/
 Shamir%27s_Secret_Sharing>.

Authors’ Addresses

 Frank Brockners
 Cisco Systems, Inc.
 Hansaallee 249, 3rd Floor
 DUESSELDORF, NORDRHEIN-WESTFALEN 40549
 Germany

 Email: fbrockne@cisco.com

 Shwetha Bhandari
 Cisco Systems, Inc.
 Cessna Business Park, Sarjapura Marathalli Outer Ring Road
 Bangalore, KARNATAKA 560 087
 India

 Email: shwethab@cisco.com

 Sashank Dara
 Cisco Systems, Inc.
 Cessna Business Park, Sarjapura Marathalli Outer Ring Road
 BANGALORE, Bangalore, KARNATAKA 560 087
 INDIA

 Email: sadara@cisco.com

Brockners, et al. Expires January 9, 2017 [Page 18]

Internet-Draft Proof of Transit July 2016

 Carlos Pignataro
 Cisco Systems, Inc.
 7200-11 Kit Creek Road
 Research Triangle Park, NC 27709
 United States

 Email: cpignata@cisco.com

Brockners, et al. Expires January 9, 2017 [Page 19]

