Net wor k Wor ki ng Group F. Brockners

I nternet-Draft S. Bhandari
I ntended status: Experinental S. Dara
Expi res: January 9, 2017 C. Pignataro
Ci sco

July 8, 2016

Proof of Transit
draft-brockners-proof-of-transit-00

Abst ract

Several technol ogies such as traffic engineering, service function
chaining, or policy based routing, are used to steer traffic through
a specific, user-defined path. This docunent defines nechanisns to
securely prove that traffic transited the defined path. The

mechani snms all ow to securely verify whether all packets traversed all
those nodes of a given path that they are supposed to visit.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (1ETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on January 9, 2017
Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust

Brockners, et al. Expi res January 9, 2017 [Page 1]

Internet-Draft

Proof of Transit

July 2016

include Sinplified BSD Li cense text as described in Section 4.e of

the Trust Legal

Tabl e of Contents

1.
2
3

3.
3

N

9.

(2]

10.
Aut hors’ Addr esses

Brockners, et al

G0 G0 o co o o Co
NoUohwNE

I ntroduction
Conventi ons
Proof of Transit

1. Basic |ldea .

2. Solution Approach .

3.2.1. Setup .

3.2. 2. In Transit

3.2.3. Verification

3. Exanple for IIIustratlon

3.3.1. Basic Version . .
3.3.1.1. Secret Shares
3.3.1.2 Lagr ange Polynonlals
3.3.1.3 LPC Conput ation .
3.3.1. 4. Reconstructi on
3.3.1.5. Verification

3.3.2. Enhanced Version
3.3.2.1 Random Pol ynoni a
3.3.2.2 Reconstruction
3.3.2.3. Verification

.4. QOperational Aspects . . .
Sizing the Data for Proof of Tran3|t

Node Configuration

.1. Procedure
. 2. YANG Model

| ANA Consi derations . .
Manageabi lity Cbn5|derat|ons
Security Considerations
Proof of Transit

Anti Replay .

Anti Tanpering

Recycl i ng

Control |l er Operation
Verification Scope
8 7.1. Node Ordering
8.7.2. Stealth Nodes
Acknow edgenent s

Nor mati ve References

Redundant hbdeé and Fallover.

Expi res January 9, 2017

Provi sions and are provided wi thout warranty as
described in the Sinplified BSD License.

QOO NNNOOOODOOOOUIR”DMDMW

[Page 2]

Internet-Draft Proof of Transit July 2016

1.

I nt roducti on

Several deploynments use traffic engineering, policy routing, segnent
routing or Service Function Chaining (SFC) [RFC7665] to steer packets
through a specific set of nodes. |In certain cases regulatory
obligations or a conpliance policy require operators to prove that

al | packets that are supposed to follow a specific path are indeed
bei ng forwarded across and exact set of pre-deterni ned nodes.

If a packet flow is supposed to go through a series of service
functions or network nodes, it has to be proven that indeed all
packets of the flow followed the path or service chain or collection
of nodes specified by the policy. In case sone packets of a flow
weren't appropriately processed, a verification device should
determne the policy violation and take correspondi ng actions
corresponding to the policy (e.g., drop or redirect the packet, send
an alert etc.). In today’'s deploynents, the proof that a packet
traversed a particular path or service chain is typically delivered
in an indirect way: Service appliances and network forwarding are in
different trust domains. Physical hand-off-points are defined

bet ween these trust domains (i.e. physical interfaces). O in other
terns, in the "network forwardi ng donain" things are wired up in a
way that traffic is delivered to the ingress interface of a service
appl i ance and received back froman egress interface of a service
appliance. This "wiring" is verified and then trusted upon. The
evolution to Network Function Virtualization (NFV) and nodern service
chai ni ng concepts (using technol ogi es such as LI SP, NSH, Segmnent
Routing (SR), etc.) blurs the line between the different trust

domai ns, because the hand-of f-points are no | onger clearly defined
physical interfaces, but are virtual interfaces. As a consequence,
different trust layers should not to be nixed in the same device.

For an NFV scenario a different type of proof is required. Ofering
a proof that a packet indeed traversed a specific set of service
functions or nodes allows operators to evolve fromthe above
described indirect nethods of proving that packets visit a
predeternined set of nodes.

The sol ution approach presented in this document is based on a small
portion of operational data added to every packet. This "in-band"
operational data is also referred to as "proof of transit data", or
POT data. The POT data is updated at every required node and is used
to verify whether a packet traversed all required nodes. A
particul ar set of nodes "to be verified" is either described by a set
of secret keys, or a set of shares of a single secret. Nodes on the
path retrieve their individual keys or shares of a key (using for
e.g., Shamir’'s Secret Sharing schene) froma central controller. The
conpl ete key set is only known to the controller and a verifier node,
which is typically the ultinmate node on a path that perforns

Brockners, et al. Expi res January 9, 2017 [Page 3]

Internet-Draft Proof of Transit July 2016

verification. Each node in the path uses its secret or share of the
secret to update the POT data of the packets as the packets pass
through the node. When the verifier receives a packet, it uses its
key(s) along with data found in the packet to validate whether the
packet traversed the path correctly.

2. Conventions

Abbrevi ations used in this docunent:

MTU: Maxi mum Transmit Unit
SR: Segnment Routi ng

NSH: Net wor k Servi ce Header
SFC: Servi ce Function Chain
POT: Proof of Transit

POT-profile: Proof of Transit Profile that has the necessary data
for nodes to participate in proof of transit

3. Proof of Transit

This section discusses nmethods and algorithms to provide for a "proof
of transit"” for packets traversing a specific path. A path which is
to be verified consists of a set of nodes. Transit of the data
packets through those nodes is to be proven. Besides the nodes, the
setup also includes a Controller that creates secrets and secrets
shares and configures the nodes for POT operations.

The met hods how traffic is identified and associated to a specific
path is outside the scope of this docunent. Identification could be
done using a filter (e.g., 5-tupel classifier), or an identifier
which is already present in the packet (e.g., path or service
identifier, flowlabel, etc.).

The solution approach is detailed in two steps. Initially the
concept of the approach is explained. This concept is then further
refined to nake it operationally feasible.

3.1. Basic ldea
The method relies on adding POT data to all packets that traverse a
path. The added POT data allows a verifying node (egress node) to

check whet her a packet traversed the identified set of nodes on a
path correctly or not. Security nechanisns are natively built into

Brockners, et al. Expi res January 9, 2017 [Page 4]

Internet-Draft Proof of Transit July 2016

the generation of the POT data to protect against nisuse (i.e.
configuration m stakes, malicious admnistrators playing tricks with
routing, capturing, spoofing and replaying packets). The mechani sm
for POT | everages "Shamr’'s secret sharing schene" [SSS].

Shanmir’s secret sharing base idea: A polynomial (represented by its
co-efficients) is chosen as a secret by the controller. A polynona
represents a curve. A set of well defined points on the curve are
needed to construct the polynom al. Each point of the polynomal is
called "share" of the secret. A single secret is associated with a
particul ar set of nodes, which typically represent the path, to be
verified. Shares of the single secret (i.e., points on the curve)
are securely distributed froma Controller to the network nodes.
Nodes use their respective share to update a cunul ative value in the
POT data of each packet. Only a verifying node has access to the
conpl ete secret. The verifying node validates the correctness of the
recei ved POT data by reconstructing the curve.

The pol ynoni al cannot be constructed if any of the points are nissed
or tanpered. Per Shamir’s Secret Sharing Schenme, any | esser points
means one or nore nodes are m ssed. Details of the precise
configuration needed for achieving security are discussed further

bel ow.

Whil e applicable in theory, a vanilla approach based on Shanmir’s
secret sharing could be easily attacked. |If the sanme polynomal is
reused for every packet for a path a passive attacker could reuse the
value. As a consequence, one could consider creating a different

pol ynom al per packet. Such an approach woul d be operationally
complex. It would be conplex to configure and recycle so many curves
and their respective points for each node. Rather than using a
singl e polynomi al, two polynom als are used for the solution
approach: A secret polynonial which is kept constant, and a per-
packet pol ynom al which is public. Operations are perfornmed on the
sum of those two polynomials - creating a third pol ynom al which is
secret and per packet.

3.2. Solution Approach

Sol uti on approach: The overall algorithmuses two polynom als: POLY-1
and POLY-2. POLY-1 is secret and constant. Each node gets a point
on POLY-1 at setup-tinme and keeps it secret. POLY-2 is public,
random and per packet. Each node generates a point on POLY-2 each
time a packet crosses it. Each node then cal culates (point on POLY-1
+ point on POLY-2) to get a (point on PCOLY-3) and passes it to
verifier by adding it to each packet. The verifier constructs POLY-3
fromthe points given by all the nodes and cross checks whet her
POLY-3 = POLY-1 + PCLY-2. Only the verifier knows POLY-1. The

Brockners, et al. Expi res January 9, 2017 [Page 5]

Internet-Draft Proof of Transit July 2016

solution leverages finite field arithmetic in a field of size "prine
nunber".

Detailed algorithns are discussed next. A sinple exanple is
di scussed in Section 3.3.

3.2.1. Setup

A controller generates a first polynom al (PCLY-1) of degree k and
k+1 points on the polynonmal. The constant coefficient of POLY-1 is
consi dered the SECRET. The non-constant coefficients are used to
generate the Lagrange Pol ynom al Constants (LPC). Each of the k
nodes (including verifier) are assigned a point on the polynon a
i.e., shares of the SECRET. The verifier is configured with the
SECRET. The Controller also generates coefficients (except the
constant coefficient, called "RND', which is changed on a per packet
basis) of a second polynom al POLY-2 of the sane degree. Each node
is configured with the LPC of POLY-2. Note that POLY-2 is public.

3.2.2. In Transit

For each packet, the source node generates a random nunber (RND). It
is considered as the constant coefficient for POLY-2. A cunul ative
value (CM.) is initialized to 0. Both RND, CM. are carried as within
the packet POT data. As the packet visits each node, the RND is
retrieved fromthe packet and the respective share of POLY-2 is

cal cul ated. Each node cal cul ates (Share(POLY-1)+Share(POLY-2)) and
CML is updated with this sum This step is perfornmed by each node
until the packet conpletes the path. The verifier also perforns the
step with its respective share

3.2.3. Verification
The verifier cross checks whether CM. = SECRET + R\ND. If this
mat ches then the packet traversed the specified set of nodes in the
path. This is due to the additive honmonorphic property of Shamir’s
Secret Sharing schene.

3.3. Exanple for Illustration

This section shows a sinple exanple to illustrate step by step the
approach descri bed above.

3.3.1. Basi ¢ Version

Assunption: We like to verify that packets pass through 3 nodes.
Consequently we need a pol ynom al of degree 2

Brockners, et al. Expi res January 9, 2017 [Page 6]

Internet-Draft Proof of Transit July 2016

Choices: Prime = 53. POLY-1(x) = (3x"2 + 3x + 10) nod 53. The
secret to be re-constructed is the constant coefficient of POLY-1
i.e., SECRET=10. It is inportant to note that all operations are
done over a finite field (i.e., nmodulo prine).

3.3.1.1. Secret Shares

The shares of the secret are the points on POLY-1 chosen for the 3
nodes. Here we use x0=2, x1=4, x2=5.

POLY-1(2) = 28 => (x0,y0) = (2, 28)
POLY-1(4) = 17 => (x1,yl) = (4, 17)
POLY-1(5) = 47 => (x2,y2) = (5, 47)

The three points above are the points on the curve which are
considered the shares of the secret. They are assigned to three
nodes respectively and are kept secret.

3.3.1.2. Lagrange Polynom al s

Lagrange basis polynonmials (or Lagrange polynomials) are used for
pol ynom al interpolation. For a given set of points on the curve
Lagrange pol ynomi als (as defined below) are used to reconstruct the
curve and thus reconstruct the conplete secret.

(x) = (((x-x1)/(x0-x1))*((x-x2)/x0-x2))) nod 53
(x-4)/(2-4))*((x-5)/2-5))) nmod 53 =
0/3 - 3x/2 + (1/6)x*2) nod 53

10
((
(1

I 1(x) = (((x-x0)/(x1-x0))*((x-x2)/x1-x2))) nod 53
(-5 + 7x/2 - (1/2)x"2) nod 53

I 2(x) = (((x-x0)/(x2-x0))*((x-x1)/x2-x1))) nod 53
(8/3 - 2+ (1/3)x*2) nod 53

3.3.1.3. LPC Conputation

Since x0=2, x1=4, x2=5 are chosen points. G ven that conputations
are done over a finite arithmetic field ("nodulo a prine nunber"),

t he Lagrange basis pol ynoni al constants (LPC) are conputed nodul o 53.
The Lagrange pol ynoni al constant (LPC) would be 10/3 , -5, 8/3.

LPC(x0)

(10/3) mod 53 = 21

LPC(x1) = (-5) nod 53 = 48

Brockners, et al. Expi res January 9, 2017 [Page 7]

Internet-Draft Proof of Transit July 2016

LPC(x2) = (8/3) mod 53 = 38

For a general way to conpute the nmodular multiplicative inverse, see
e.g., the Euclidean algorithm

3.3.1.4. Reconstruction
Reconstruction of the polynomial is well defined as
POLY1(x) = 10(x)*y0 + I 1(x)*yl + |2(x)*y2

Subsequently, the SECRET, which is the constant coefficient of
POLY1(x) can be conputed as bel ow

SECRET = (yO0*LPC(I 0) +y1*LPC(| 1) +y2*LPC(12)) mod 53.

The secret can be easily reconstructed using the y-values and the
LPC.

SECRET = (y0*LPC(10) + y1*LPC(I1) + y2*LPC(I12)) nod 53 = nod (28 * 21
+ 17 * 48 + 47 * 38) nod 53 = 3190 nod 53 = 10.

One observes that the secret reconstruction can easily be perforned
curul atively hop by hop. CM represents the cunulative value. It is
the POT data in the packet that is updated at each hop with the
node’ s respective (yi*LPC(i)), where i is their respective val ue.

3.3.1.5. Verification

Upon conpletion of the path, the resulting CM. is retrieved by the
verifier fromthe packet POl data. Recall that verifier is
preconfigured with the original SECRET. It is cross checked with the
CML by the verifier. Subsequent actions based on the verification
failing or succeeding could be taken as per the configured policies.

3.3.2. Enhanced Version

As observed previously, the vanilla algorithmthat involves a single
secret polynomal is not secure. W enhance the solution with usage
of a random second pol ynoni al chosen per packet.

3.3.2.1. Random Pol ynoni a

Let the second polynonmial POLY-2 be (RND + 7x + 10 x*2). RNDis a
random nunber and is generated for each packet. Note that POLY-2 is
public and need not be kept secret. The nodes can be pre-configured
with the non-constant coefficients (for exanple, 7 and 10 in this
case could be configured through the Controller on each node).

Brockners, et al. Expi res January 9, 2017 [Page 8]

Internet-Draft Proof of Transit July 2016

3.3.2.2. Reconstruction
Recal | that each node is preconfigured with their respective
Share(POLY-1). Each node calculates its respective Share(POLY-2)
using the RND value retrieved fromthe packet. The CM
reconstruction is enhanced as below. At every node, CM. is updated
as
CML = CML+(((Share(POLY-1)+ Share(POLY-2)) * LPC) nod Prine.
Lets observe the packet |evel transformations in detail. For the
exanpl e packet here, let the value RND be 45. Thus POLY-2 woul d be
(45 + 7x + 10x"2).
The shares that could be generated are (2,46), (4,21), (5,12).

At source: The fields RND = 45. CWM. = 0.

At node-1 (x0): Respective share of POLY-2 is generated i.e (2,46)
because share index of node-1is 2

CM. = 0 + ((28 + 46)* 21) nod 53 = 17.

At node-2 (x1): Respective share of POLY-2 is generated i.e (4,21)
because share index of node-2 is 4.

CM. = 17 + ((17 + 21)*48) nod 53 = 17 + 22 = 39.
At node-3 (x2), which is also the verifier: The respective share
of POLY-2 is generated i.e (5,12) because the share index of the
verifier is 12.
CM. = 39 + ((47 + 12)*38) nod 53 = 39 + 16 = 55 nbd 53 = 2

The verification using CM. is discussed in next section

3.3.2.3. Verification

As shown in the above exanmple, for final verification, the verifier
conpares:

VERI FY

(SECRET + RND) nod Prinme, with Prime = 53 here

VERI FY

(RND-1 + RND-2) nod Prime = (10 + 45) nod 53 = 2.

Since VERIFY = CML the packet is proven to have gone through nodes 1,
2, and 3.

Brockners, et al. Expi res January 9, 2017 [Page 9]

Internet-Draft Proof of Transit July 2016

3.4. Operational Aspects

To operationalize this schene, a central controller is used to
generate the necessary polynom als, the secret share per node, the
prime nunber, etc. and distributing the data to the nodes
participating in proof of transit. The identified node that perforns
the verification is provided with the verification key. The

i nformati on provided fromthe Controller to each of the nodes
participating in proof of transit is referred to as a proof of
transit profile (POT-profile).

To optinize the overall data amount of exchanged and the processing
at the nodes the follow ng optinizations are perforned:

1. The points (x,y) for each of the nodes on the public and private
pol ynom al s are picked such that the x conponent of the points
match. This lends to the LPC val ues which are used to cal cul ate
the cunul ative value CML to be constant. Note that the LPC are
only dependi ng on the x conponents. The can be conputed at the
controller and communicated to the nodes. O herw se, one would
need to distributed the x conponents to all the nodes.

2. A pre-evaluated portion of the public polynom al for each of the
nodes is cal culated and added to the POT-profile. Wthout this
all the coefficients of the public polynom al had to be added to
the POT profile and each node had to eval uate them

3. To provide flexibility on the size of the cunulative and random
nunmbers carried in the POT data a field to indicate this is
shared and interpreted at the nodes.

4. Sizing the Data for Proof of Transit

Proof of transit requires transport of two data records in every
packet that should be verified:

1. RND: Random nunber (the constant coefficient of public
pol ynomi al)

2. CM.: Cunul ative

The size of the data records deternines how often a new set of

pol ynomi al s woul d need to be created. At maxinum the |argest RND
nunber that can be represented with a given nunber of bits determ nes
the nunber of uni que polynomals POLY-2 that can be created. The
tabl e bel ow shows the maxi muminterval for how long a single set of
pol ynomi als could last for a variety of bit rates and RND sizes: Wen
choosing 64 bits for RND and CM. data records, the tine between a

Brockners, et al. Expi res January 9, 2017 [Page 10]

Internet-Draft Proof of Transit July 2016

renewal of secrets could be as long as 3,100 years, even when runni ng
at 100 Ghps.

e e e - S e e e e oo oo S +
| Transfer | Secret/RND | Max # of packets | Time RND | asts |
| rate | si ze | | |
o m e oo o e e o - Fom e e e e oo +
| 1 Gbps | 64 | 2764 = approx. | approx. 310,000 |
| | | 2*10M19 | years |
[10 Gbps [64 | 2764 = approx. | approx. 31,000

| | | 2*10M19 | years |
[100 Gops | 64 | 2764 = approx. | approx. 3,100

| | | 2*10"M19 | years [
| 1 Gbhps | 32 | 2732 = approx. | 2,200 seconds |
I I I 4*10"9 I I
[10 Gbps [32 | 2732 = approx. | 220 seconds [
I I I 4*10"9 I I
[100 Gops | 32 | 2732 = approx. | 22 seconds [
I I I 4*10"9 I I
o m e e oo o - B s) +

Tabl e assunes 64 octet packets
Table 1: Proof of transit data sizing
5. Node Configuration

A POT system consists of a nunber of nodes that participate in POT
and a Controller, which serves as a control and configuration entity.
The Controller is to create the required paraneters (pol ynonials,
prinme nunber, etc.) and comunicate those to the nodes. The sum of
all paraneters for a specific node is referred to as "POT-profile".
Thi s docunent does not define a specific protocol to be used between
Controller and nodes. It only defines the procedures and the
associ at ed YANG dat a nodel

5.1. Procedure

The Controller creates new POT-profiles at a constant rate and
communi cates the POT-profile to the nodes. The controller |abels a
POT-profile "even" or "odd" and the Controller cycles between "even"
and "odd" |abeled profiles. The rate at which the POT-profiles are
conmuni cated to the nodes is configurable and is nore frequent than
the speed at which a POT-profile is "used up" (see table above).

Once the POT-profile has been successfully communicated to all nodes
(e.g., all Netconf transactions conpleted, in case Netconf is used as
a protocol), the controller sends an "enable POT-profile" request to
t he i ngress node.

Brockners, et al. Expi res January 9, 2017 [Page 11]

Internet-Draft Proof of Transit July 2016

Al'l nodes maintain two POT-profiles (an even and an odd POT-profile):
One POT-profile is currently active and in use; one profile is
standby and about to get used. A flag in the packet is indicating
whet her the odd or even POT-profile is to be used by a node. This is
to ensure that during profile change the service is not disrupted.

If the "odd" profile is active, the Controller can conmunicate the
"even" profile to all nodes. Only if all the nodes have received the
POT-profile, the Controller will tell the ingress node to switch to
the "even" profile. Gven that the indicator travels within the
packet, all nodes will switch to the "even" profile. The "even"
profile gets active on all nodes and nodes are ready to receive a new
"odd" profile.

Unl ess the ingress node receives a request to switch profiles, it’ll
continue to use the active profile. |If a profile is "used up" the
ingress node will recycle the active profile and start over (this
could give rise to replay attacks in theory - but with 2732 or 2764
packets this isn't really likely in reality).

5.2. YANG Model

This section defines that YANG data nodel for the information
exchange between the Controller and the nodes.

modul e ietf-pot-profile {
yang-version 1,
nanespace "urn:ietf:parans:xm:ns:yang:ietf-pot-profile";
prefix ietf-pot-profile;
organi zation "I ETF xxx Wrki ng G oup”
contact "";

description "This nodul e contains a collection of YANG
definitions for proof of transit configuration
paraneters. The nodel is neant for proof of
transit and is targeted for conmunicating the
POT-profile between a controller and nodes
participating in proof of transit.";

revision 2016-06-15 {
description
"Initial revision.";
ref erence

Brockners, et al. Expi res January 9, 2017 [Page 12]

Internet-Draft Proof of Transit July 2016

}

typedef profile-index-range {
type int32 {
range "0 .. 1";
}

description
"Range used for the profile index. Currently restricted to
Oor 1toidentify the odd or even profiles.”

groupi ng pot-profile {
description "A grouping for proof of transit profiles.";
list pot-profile-list {
key "pot-profile-index";
order ed- by user;
description "A set of pot profiles.";

| eaf pot-profile-index {
type profile-index-range;
mandat ory true
description
"Proof of transit profile index.";
}

| eaf prime-nunber {
type uint 64;
mandat ory true
description
"Prinme nunber used for nmodul e nmath conputation”
}

| eaf secret-share {
type uint 64;
mandat ory true
description
"Share of the secret of polynonmial 1 used in conputation”
}

| eaf public-polynomal {
type uint 64;
mandat ory true
description
"Pre eval uated Public pol ynom al";
}

| eaf |pc {

Brockners, et al. Expi res January 9, 2017 [Page 13]

Internet-Draft Proof of Transit July 2016

type uint 64;
mandat ory true;
description
"Lagrange Pol ynom al Coefficient";
}

| eaf validator {
type bool ean;
default "fal se"
description
"True if the node is a verifier node"
}

| eaf validator-key {
type uint 64;
description
"Secret key for validating the path, constant of poly 1";
}

| eaf bitmask {
type uint 64;
defaul t 4294967295;
description

"Nunber of bits as mask used in controlling the size of the
random val ue generation. 32-bits of nmask is default.";
}
}
}

contai ner pot-profiles {
description "A group of proof of transit profiles.";

list pot-profile-set {
key "pot-profile-nane";
order ed- by user;
description
"Set of proof of transit profiles that group paraneters
required to classify and conpute proof of transit
nmet adata at a node”

| eaf pot-profile-nanme {
type string;
mandat ory true
description
"Unique identifier for each proof of transit profile"
}

| eaf active-profile-index {

Brockners, et al. Expi res January 9, 2017 [Page 14]

Internet-Draft Proof of Transit July 2016

8.

1.

type profile-index-range;

description
"Proof of transit profile index that is currently active.
WIl be set in the first hop of the path or chain.
O her nodes will not use this field.";

}
uses pot-profile;
[*** Container: end ***/

[*** podul e: end ***/

}
| ANA Consi der ations

| ANA considerations will be added in a future version of this
docunent .

Manageabi |l ity Consi derations

Manageabi lity considerations will be addressed in a |ater version of
t hi s docunent.

Security Considerations

Different security requirenents achi eved by the solution approach are
di scussed here.

Proof of Transit

Proof of correctness and security of the solution approach is per
Shamir’s Secret Sharing Schene [SSS]. Cryptographically speaking it
achi eves information-theoretic security i.e., it cannot be broken by
an attacker even with unlinmited conputing power. As |long as the

bel ow conditions are nmet it is inpossible for an attacker to bypass
one or nultiple nodes without getting caught.

o If there are k+1 nodes in the path, the polynomals (POLY-1, PCLY-
2) should be of degree k. Also k+1 points of POLY-1 are chosen
and assigned to each node respectively. The verifier can re-
construct the k degree pol ynom al (POLY-3) only when all the
points are correctly retrieved.

0 The Shares of the SECRET (i.e., points on POLY-1) are kept secret
by indivi dual nodes.

Brockners, et al. Expi res January 9, 2017 [Page 15]

Internet-Draft Proof of Transit July 2016

An attacker bypassing a few nodes will mnmiss adding a respective point
on POLY-1 to correspondi ng point on POLY-2 , thus the verifier cannot
construct POLY-3 for cross verification

8.2. Anti Replay

A passive attacker observing CM. val ues across nodes (i.e., as the
packets entering and | eaving), cannot performdifferential analysis
to construct the points on POLY-1 as the operations are done nodul o
prinme. The solution approach is flexible, one could use different
points on POLY-1 or different polynonials as POLY-1 across different
paths, traffic profiles or service chains.

Doing differential analysis across packets could be nmtigated with
POLY-2 being be random Further an attacker could reuse a set of RND
and all the internediate CML values to bypass certain nodes in |ater
packets. Such attacks could be avoi ded by carefully choosing POLY-2
as a timestanp concatenated with a randomstring. The verifier could
use the tinestanp to nmitigate reuse within a tinme w ndow.

8.3. Anti Tanpering

An active attacker could not insert any arbitrary value for CM.
Thi s woul d subsequently fail the reconstruction of the PCLY-3. Also
an attacker could not update the CM. with a previously observed
value. This could subsequently be detected by using tinestanps
within the RND val ue as di scussed above.

8.4. Recycling

The solution approach is flexible for recycling long termsecrets
like POLY-1. Al the nodes could be periodically updated with shares
of new SECRET as best practice. The table above could be consulted
for refresh cycles (see Section 4).

8.5. Redundant Nodes and Fail over

A "node" or "service" in ternms of POT can be inplenented by one or
mul ti pl e physical entities. 1n case of nmultiple physical entities
(e.g., for load-bal ancing, or business continuity situations -
consider for exanple a set of firewalls), all physical entities which
are inplementing the same POT node are given that same share of the
secret. This nakes nultiple physical entities represent the same POT
node from an al gorithm perspective.

Brockners, et al. Expi res January 9, 2017 [Page 16]

Internet-Draft Proof of Transit July 2016

8.6. Controller Operation

The Controller needs to be secured given that it creates and hol ds
the secrets, as need to be the nodes. The conmuni cati on between
Controller and the nodes al so needs to be secured. As secure

communi cati on protocol such as for exanpl e Netconf over SSH shoul d be
chosen for Controller to node conmuni cation

The Controller only interacts with the nodes during the initial
configuration and thereafter at regular intervals at which the
operator chooses to switch to a new set of secrets. |In case 64 bits
are used for the data-records "CM." and "RND' which are carried
within the data packet, the regular intervals are expected to be
quite long (e.g., at 100 Gbps, a profile would only be used up after
3100 years) - see Section 4 above, thus even a "headl ess" operation
without a Controller can be considered feasible. |In such a case, the
Controller would only be used for the initial configuration of the
POT- profiles.

8.7. Verification Scope

The POT solution defined in this docunent verifies that a data-packet
traversed or transited a specific set of nodes. Froman algorithm
perspective, a "node" is an abstract entity. It could be represented
by one or nultiple physical or virtual network devices, or is could
be a conponent within a networking device or system The latter
woul d be the case if a forwarding path within a device would need to
be securely verified.

8.7.1. Node Ordering

POT using Shamir’s secret sharing schenme as discussed in this
docunent provides for a neans to verify that a set of nodes has been
visited by a data packet. It does not verify the order in which the
data packet visited the nodes. In case the order in which a data
packet traversed a particular set of nodes needs to be verified as
well, alternate schenmes that e.g., rely on nested encryption could to
be consi der ed.

8.7.2. Stealth Nodes

The POT approach discussed in this docunent is to prove that a data
packet traversed a specific set of "nodes". This set could be all
nodes within a path, but could al so be a subset of nodes in a path.
Consequently, the POT approach isn’'t suited to detect whether
"stealth" nodes which do not participate in proof-of-transit have
been inserted into a path.

Brockners, et al. Expi res January 9, 2017 [Page 17]

Internet-Draft Proof of Transit July 2016

9. Acknow edgenent s

The authors would like to thank Steve Youell, Eric Vyncke, Nalini

El ki ns, Srihari Raghavan, Ranganathan T S, Karthi k Babu Hari chandra
Babu, Akshaya Nadahal |i, and Andrew Yourtchenko for the comments and
advi ce.

10. Nor mat i ve Ref erences

[RFC7665] Hal pern, J., Ed. and C. Pignataro, Ed., "Service Function
Chai ning (SFC) Architecture", RFC 7665,
DO 10.17487/ RFC7665, Cctober 2015,
<http://wwmv rfc-editor.org/info/rfc7665>.

[SSS] "Shamir’s Secret Sharing", <https://en.w ki pedia.org/w ki/
Shami r %27s_Secret _Shari ng>.

Aut hors’ Addr esses

Frank Brockners

Ci sco Systens, Inc.

Hansaal | ee 249, 3rd Fl oor

DUESSELDORF, NORDRHEI N- WESTFALEN 40549
Ger many

Emai |l : fbrockne@i sco. com

Shwet ha Bhandar i

Cisco Systens, Inc.

Cessna Business Park, Sarjapura Marathalli Quter Ri ng Road
Bangal ore, KARNATAKA 560 087

I ndi a

Emai | : shwet hab@i sco. com

Sashank Dara

Ci sco Systens, Inc.

Cessna Busi ness Park, Sarjapura Marathalli Quter Ring Road
BANGALORE, Bangal ore, KARNATAKA 560 087

I NDI A

Emni | : sadara@i sco. com

Brockners, et al. Expi res January 9, 2017 [Page 18]

Internet-Draft Proof of Transit July 2016

Carl os Pignataro

Ci sco Systens, Inc.

7200- 11 Kit Creek Road

Research Triangle Park, NC 27709
United States

Emai | : cpi gnat a@i sco. com

Brockners, et al. Expi res January 9, 2017 [Page 19]

