
spring R. Leipnitz, Ed.
Internet-Draft R. Geib
Intended status: Informational Deutsche Telekom
Expires: December 24, 2016 June 22, 2016

 A scalable and topology aware MPLS data plane monitoring system
 draft-leipnitz-spring-pms-implementation-report-00

Abstract

 This document reports round-trip delay measurements captured by a
 single MPLS Path Monitoring System (PMS) compared with results of an
 IPPM conformant measurement system, consisting of three different
 Measurement Agents. The measurements were made in a research
 backbone with an LDP control plane. The packets of the MPLS PMS use
 label stacks similar to those to be used by a segment routing MPLS
 PMS. The measurement packets of the MPLS PMS remained in the network
 data plane.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 24, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Leipnitz & Geib Expires December 24, 2016 [Page 1]

Internet-Draft MPLS PMS implementation report June 2016

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Measurement system implementation 3
 2.1. A PMS based round-trip delay measurement system 3
 2.2. Perfas+ IPPM measurement system 4
 3. Test set up . 4
 4. Measurement Result Evaluation 6
 5. Measurement results . 6
 5.1. Round-trip delay measurement and ADK test results 6
 5.2. PMS delay measurements with IP-address variation 9
 6. Error Calibration . 10
 7. Summary . 11
 8. Acknowledgements . 12
 9. IANA Considerations . 12
 10. Security Considerations 12
 11. References . 12
 11.1. Normative References 12
 11.2. Informative References 13
 Appendix A. ADK2 Test Source Code 13
 Authors’ Addresses . 22

1. Introduction

 Deutsche Telekom has implemented an MPLS Path Monitoring System
 (PMS). The PMS operates on MPLS networks with LDP control plane.
 Forwarding follows the principles of Segment Routing, i.e. the
 packets sent by the PMS use stacked transport labels to execute a
 combination of MPLS paths and finally return to the PMS. The PMS is
 connected to a research backbone of Deutsche Telekom spanning parts
 of Germany. One of the new network monitoring features enabled by
 Segment Routing are round-trip delay measurements purely executed in
 data plane. Deutsche Telekom captured delays between three IPPM
 standard conformant Measurement Agents and compared these with delays
 measured along identical backbone paths by a single PMS. To prove
 that the same delays were measured the IPPM results were then
 compared with the PMS results by applying IPPM methodology as
 specified by [RFC6576]. Some results passed this test, while others
 did not. The results of both systems seemed to differ by very small
 and relatively stable latencies. As the research network only
 offered single paths between the involved routers, processing of
 different flows in parallel forwarding instances of the routers along
 the paths offered an explanation. The PMS was used to execute some

Leipnitz & Geib Expires December 24, 2016 [Page 2]

Internet-Draft MPLS PMS implementation report June 2016

 measurements whose results at least are not contradicting that
 assumption.

 The results reported here show that a PMS
 [I-D.ietf-spring-oam-usecase] can be built and operated (also as part
 of an LDP based MPLS network). To set up packets with proper label
 stacks, the PMS needs to be aware of the MPLS topology of the
 network. MPLS topology awareness within an LDP based network
 requires reasonable effort. Segment Routing will significantly
 simplify detection of the MPLS topology. Delay measurements where
 picked here to give an example of a feature which can be supported by
 a PMS. Others are possible, like checking continuity of arbitrary
 segmented routed MPLS paths [I-D.ietf-spring-oam-usecase].

 The remaining document is organized as follows: Section 2 briefly
 informs about the PMS and IPPM measurement system implementation.
 Section 3 introduces the measurement set up within the research
 network. Section 4 briefly discusses the test by which the
 measurements were compared. Section 5 informs about the test results
 and Section 6 about an IPPM error calibration. Section 7 sums up the
 document.

2. Measurement system implementation

 Deutsche Telekom operates an IPPM standard conformant performance
 measurement system called Perfas+. Deutsche Telekom intends
 deployment of an MPLS PMS to monitor the IP performance in network
 segments connecting roughly 1000 edge routers to the IP-backbone. 11
 MPLS PMS are supposed to execute backbone to edge performance
 monitoring. Had the monitoring system been based on IPPM, one IPPM
 system had been required per edge router.

2.1. A PMS based round-trip delay measurement system

 Deutsche Telekom has implemented an MPLS PMS. The PMS is part of an
 MPLS research and development backbone of Deutsche Telekom. This
 backbone only supports LDP routing. The PMS works with an LDP
 control plane. Detecting the MPLS topology of an LDP based MPLS
 network is more complex, than doing this by Segment Routing. The PMS
 consists of the following logical components:

 o An MPLS Label detection system. It is collecting MPLS routing
 information from all MPLS routers of the MPLS network by
 management plane access (see e.g. [LDP-TE], [BCP-TX])

 o An MPLS topology database.

Leipnitz & Geib Expires December 24, 2016 [Page 3]

Internet-Draft MPLS PMS implementation report June 2016

 o A measurement system able to compose packets executing any
 combination MPLS Label Switched Paths (MPLS LSP) which are part of
 the MPLS topology database. The measurement system further is
 able to measure delays, if the final address information of the
 measurement packet directs the packet back to the PMS after the
 MPLS LSPs to be measured have been passed.

 o An IGP topology detection system. It is passively listening to
 IGP routing.

 o A measurement system which is complying to [RFC4379].

 Note that the final two MPLS PMS functionalities are required if ECMP
 routed paths should be detected and addressed by [RFC4379] functions.
 No ECMP routed paths are present between the sites involved in the
 measurement set up. The role of these components is reduced to
 detection of operational issues, should the measurement not work as
 expected.

 While the control plane of the network monitored by the PMS is LDP
 based, the measurement packets used to execute MPLS LSPs apply the
 forwarding mechanisms as within a Segment Routing network.

2.2. Perfas+ IPPM measurement system

 IPPM conformant one-way delay measurements were performed by Perfas+
 Measurement Agents. Three Perfas+ Measurement Agents are connected
 to edge routers at three different sites of the research network.
 Perfas+ is one of the few IPPM implementations with proven
 conformance to some standard IPPM metrics, like one-way delay
 [RFC6808]. Two of the Perfas+ Measurement Agents were synchronized
 by NTP only. Due to this restriction, the comparison with the PMS
 measurements are limited to round-trip times (round-trip delays,
 RTD). As no ECMP routed paths are active between the sites used for
 test execution, two back and forth Perfas+ one-way delay measurements
 between two sites were added to result in an RTD value.

3. Test set up

 The test set up is shown in the figure below. The PMS and Perfas+
 Measurement Agent 1 (PerfMA 1) are connected to the same LER.

Leipnitz & Geib Expires December 24, 2016 [Page 4]

Internet-Draft MPLS PMS implementation report June 2016

 +--------+
 |PerfMA 1|
 +--------+
 |
 +---+ +-----+
 |PMS|---|LER 1|
 +---+ +-----+
 |
 ˜˜˜˜˜˜˜
 / \ +-----+ +--------+
 (MPLS)--|LER 2|--|PerfMA 2|
 (Network) +-----+ +--------+
 \ /
 ˜˜˜˜˜˜˜
 |
 +-----+ +--------+
 |LER 3|--|PerfMA 3|
 +-----+ +--------+

 Figure 1: Test set up

 The Perfas+ Measurement Agents (MAs) measure the one-way delay to
 each of the remote Perfas+ MAs. The PMS measures the round-trip
 delay from LER 1 to LER 2 and back as well the round-trip delay from
 LER 1 to LER 3 and back. The measurements start and terminate at the
 PMS, but this segment is omitted here. The round-trip delay from LER
 2 to LER 3 is measured along two path combinations by the PMS. The
 first measurement path is LER 1 to LER 2 to LER 3 and back exactly
 that way. The round-trip delay LER 1 to LER 2 captured earlier by
 the PMS is subtracted from the result. The other measurement is LER
 1 to LER 3 to LER 2 and back exactly that way. Here, the PMS round-
 trip delay LER 1 to LER 3 is subtracted to receive the round-trip
 delay LER 2 to LER 3.

 There is a small LAN section causing limited additional latencies for
 the IPPM measurement. The measurements were executed with an IP
 packet size of 64 Byte. Perfas is attached by an IP-VPN. The PMS
 label stack is differing slightly. The assumption is that both
 differences have minor impact. Note that IPPM metrics expect similar
 results if differences in measurement set up can be neglected. The
 sending interval is 10 seconds periodic. A measurement mean is
 calculated from 10 consecutive measurement packets. The measurements
 were repeated for 8 hours, resulting in 288 mean values collected per
 round-trip delay measurement path and measurement system.

 The resulting round-trip delays are divided by two and indicate the
 one-way delay. This seems sound, as there is no path diversity in

Leipnitz & Geib Expires December 24, 2016 [Page 5]

Internet-Draft MPLS PMS implementation report June 2016

 the research network and the low standard deviation of the results
 (single digit [us] figures in all cases, see test results below)
 indicate that no link was congested.

4. Measurement Result Evaluation

 IPPM WG applies the Anderson-Darling-K-Sample (ADK) test to compare
 up to which temporal resolution the results of two measurements share
 the same statistical distribution [RFC6576]. To decide, whether
 Perfas+ and the PMS were measuring identical data, the round-trip
 delays captured along identical measurement paths were compared by an
 ADK test. (The ADK test source code is given at Appendix A). Note
 that the ADK test does not judge accuracy (i.e. it does not test
 whether the result is close to the true value?), ADK rather judges
 precision (that the test estimates whether the same value was
 measured by repeated measurements). As applied here, an RTD sample
 of Perfas+ was compared with one of the PMS captured along the same
 path.

 To illustrate, how sensible the ADK test is to changes in a
 measurement environment, a PMS round-trip delay test was set up where
 all configurations were identical and only packet size was variable.
 Obviously all paths are identical, so any difference in results is
 caused by the packet size only (64, 128 and 256 Byte were picked).
 The ADK test indicated a reasonably high probability that results do
 not follow the same distribution in roughly half of the cases (i.e.
 ADK test said that the distribution of round-trip delays captured
 with packet size of 64 bytes follows a different distribution than
 the round-trip delays captured with a packet size of 128 Byte).

5. Measurement results

5.1. Round-trip delay measurement and ADK test results

 The one-way delays between Perfas MA 1 and Perfas MA 2 calculated on
 basis of the round-trip Delay and the ADK test results comparing them
 to the measurement results captured by the PMS are shown in Table 1.

Leipnitz & Geib Expires December 24, 2016 [Page 6]

Internet-Draft MPLS PMS implementation report June 2016

 +-------------------------------------+---------+---------+
 | Test metric | PERFAS+ | PMS |
 +-------------------------------------+---------+---------+
 | minimum [us] | 691.5 | 695.5 |
 | maximum [us] | 701 | 704.5 |
 | mean [us] | 695.4 | 699.6 |
 | median [us] | 695.5 | 699.5 |
 | standard deviation [us] | 1.4 | 1.7 |
 | ADK value | | 278.445 |
 | ADK value with adjustment of mean | | 1.701 |
 | ADK value with adjustment of median | | 1.982 |
 +-------------------------------------+---------+---------+

 Perfas+ and PMS OWD measurement results for path LER 1 to LER 2 and
 ADK test results

 Table 1: Perfas+ and PMS OWD measurement results for path LER 1 to
 LER 2 and ADK test results

 The ADK test result is surprisingly good and was not expected a
 priori. As mentioned, ADK is a very sensible test. When IPPM WG
 worked on [RFC6808], the packets used by two different IPPM
 implementation only passed ADK after a network emulator was inserted
 into the measurement path. As IPPM puts more emphasis on precision
 than on accuracy, correcting tests samples to result by the same mean
 for small and constant differences is plausible. Still, the smallest
 temporal resolution of the standard deviation by which ADK was passed
 when used to compare two IPPM implementations for [RFC6808] was
 single digit milliseconds. No network emulator has been used when
 comparing Perfas+ and the PMS. After adjusting the means, ADK is
 passed by a temporal resolution of the standard deviation of single
 digit microseconds!

 The one-way delays between Perfas MA 1 and Perfas MA 3 calculated on
 basis of the round-trip Delay and the ADK test results comparing them
 to the measurement results as captured by the PMS are shown in
 Table 2.

Leipnitz & Geib Expires December 24, 2016 [Page 7]

Internet-Draft MPLS PMS implementation report June 2016

 +-------------------------------------+---------+---------+
 | Test metric | PERFAS+ | PMS |
 +-------------------------------------+---------+---------+
 | minimum [us] | 2991.5 | 2983 |
 | maximum [us] | 3008.5 | 2994.5 |
 | mean [us] | 2995.7 | 2988.1 |
 | median [us] | 2995.5 | 2988 |
 | standard deviation [us] | 1.9 | 2.1 |
 | ADK value | | 231.638 |
 | ADK value with adjustment of mean | | 1.886 |
 | ADK value with adjustment of median | | 2.026 |
 +-------------------------------------+---------+---------+

 Perfas+ and PMS OWD measurement results for path LER 1 to LER 3 and
 ADK test results

 Table 2: Perfas+ and PMS OWD measurement results for path LER 1 to
 LER 3 and ADK test results

 After adjustment of the means values, also here the ADK test is
 passed. Comparing Table 1 with Table 2 readers figure can see, that
 once mean the one-way delay measured by Perfas+ is lower, while in
 the other case the mean one-way delay captured by the PMS is lower.
 This behavior was visible in all our measurements. The delays
 measured per path by one system were always bigger than that of the
 other along the same path (for all single 10 sample mean values of
 the time series).

 We now compare the one-way delays between Perfas MA 2 and Perfas MA 3
 calculated on basis of the round-trip delay and the ADK test results
 comparing them to the measurement results as captured by the PMS are
 shown in Table 3.

Leipnitz & Geib Expires December 24, 2016 [Page 8]

Internet-Draft MPLS PMS implementation report June 2016

 +-----------------------------+---------+-------------+-------------+
 | Test metric | PERFAS+ | PMS over | PMS over |
 | | | LER 2 | LER 3 |
 +-----------------------------+---------+-------------+-------------+
minimum [us]	3606.5	3551	3542.5
maximum [us]	3659	3568	3558
mean [us]	3611.9	3560.1	3549,8
median [us]	3609	3560	3549,5
standard deviation [us]	8.3	2.9	2.9
ADK value		231.144	231.094
ADK value with adjustment		54.591	56.589
of mean			
ADK value with adjustment		8.915	10.054
of median			
 +-----------------------------+---------+-------------+-------------+

 Perfas+ and PMS OWD measurement results for path LER 2 to LER 3 and
 ADK test results

 Table 3: Perfas+ and PMS OWD measurement results for path LER 2 to
 LER 3 and ADK test results

 In this case, the ADK test fails (the cause is the difference of the
 standard deviation, not the mean or median difference). Note that in
 terms of mean values the difference is around 50 us between Perfas
 and PMS. The relative error is 1,75%. While ADK indicates that both
 distributions deviate, human perception may confirm that both results
 capture delays along the same path.

 It is interesting however, that the two PMS measurements deviate in
 the mean values. And again, the one showing the lower delay does so
 sample mean measurements. A brief test investigating this symptom
 was performed. Test and results follow in the next section.

5.2. PMS delay measurements with IP-address variation

 The PMS allows to send measurement packets with different destination
 IP-addresses (routing based on IP-addresses only occurs from LER 1 to
 PMS and only in this direction). While the IP-address varied, the
 MPLS Label stack and thus the MPLS path was kept identical. This
 measurement can only be configured by CLI configuration. Per IP
 destination address, the mean-value of 10 round-trip delay times was
 captured. After some measurements the IP-addresses showing the
 biggest round-trip delay difference were selected for further
 testing. With these IP-addresses, the test was repeated at different
 days and daytimes. Overall we had at least 10 more measurement
 values of every of these IP-addresses. The PMS is connected with two
 interfaces to two different LERs of the same site. Both interfaces

Leipnitz & Geib Expires December 24, 2016 [Page 9]

Internet-Draft MPLS PMS implementation report June 2016

 and LERs respectively were used to perform the measurements. As has
 been mentioned already, the network does not have ECMP-paths.
 Table 4 shows the results of the two measurements with the biggest
 difference in results. The mean delays measured with IP-address
 a.b.c.0 were the smallest. They were always smaller than those
 delays captured with IP-address a.b.c.32, which were the biggest.
 The difference of the mean values from the measurement over the first
 interface was 19.5 us and 14.4 us over the second interface.

 +------------------------+-----------+-------------+
 | Interface / IP-address | mean [us] | median [us] |
 +------------------------+-----------+-------------+
 | one / a.b.c.0 | 1413.2 | 1412 |
 | one / a.b.c.32 | 1432.7 | 1433 |
 | two / a.b.c.0 | 1446.4 | 1446 |
 | two / a.b.c.32 | 1460.8 | 1460.5 |
 +------------------------+-----------+-------------+

 Table 4: Destination-IP-address variation

 Parallel hardware processing within some or all of the routers passed
 on the measurement paths may be a plausible explanation.
 Investigating the cause for this behavior was however not the main
 aim of the test activities documented here. Further activities
 related to this issue are left to interested research.

6. Error Calibration

 Section 3.7. and following of [RFC2679] recommend an error
 calibration of the (IPPM) measurement clients. The one-way delay of
 a back-to-back connection of two PERFAS+ clients is measured.
 Table 5 shows the characteristics of this calibration measurement.
 The negative values for the one-way delay shown in the table, are
 physically impossible. The standard deviation is very high. It was
 decided to calibrate with the round-trip delay which is shown in
 Table 6. Referring to section 3.7.3 of [RFC2679] there is a
 systematic error and a random error. The systematic error is the
 median of the measurement with 49.5 us. The random error is the
 difference between the median and the 2.5% percentile, which is 17
 us. (The random error is the larger absolute value between the
 median and the 2.5% percentile and the 97.5% percentile; the
 calculation is |49.5 - 32.5| > |49.5 - 59.5|). The resolution of the
 PERFAS+ Measurement Agents is 1 us, so the absolute random error is
 19 us. So measurement error is 49.5 +/- 19 us. (The synchronization
 error is 0, as two one-way delays are added, making this error
 disappear). There was no possibility to calibrate the PMS. The
 error is assumed to be the same like that of PERAS+, because the PMS
 is based on the same hardware (and possibly the same host-system).

Leipnitz & Geib Expires December 24, 2016 [Page 10]

Internet-Draft MPLS PMS implementation report June 2016

 +-------------------------+---------+
 | Test metric | PERFAS+ |
 +-------------------------+---------+
 | minimum [us] | -55 |
 | maximum [us] | 39 |
 | mean [us] | -38 |
 | median [us] | -23.1 |
 | standard deviation [us] | 29.4 |
 +-------------------------+---------+

 Table 5: measurement results of one-way delay of back-to-back
 connection from two PERFAS+ clients at 64 Bytes

 +-------------------------+---------+
 | Test metric | PERFAS+ |
 +-------------------------+---------+
 | minimum [us] | 26 |
 | maximum [us] | 205 |
 | mean [us] | 49.1 |
 | median [us] | 49.5 |
 | standard deviation [us] | 7.6 |
 | 2.5% percentile [us] | 32.5 |
 | 97.5% percentile [us] | 59.5 |
 +-------------------------+---------+

 Table 6: measurement results of both one-way delays of back-to-back
 connection between two PERFAS+ clients at 64 Bytes

7. Summary

 By an IPPM measurement system like PERFAS+ three physical measurement
 clients are needed to measure the round-trip delay between all sites.
 With the PMS the same measurements can be performed with only one
 client. In theory one PMS could monitor a whole MPLS-enabled
 backbone. The GPS receivers of two IPPM measurement agents were not
 available, hence the one-way delay could not be captured with the
 IPPM system PERFAS+. Otherwise a direct comparison with calculated
 one-way delay values based on the PMS measured values would have been
 possible. This could be done in future. The results shown in
 Section 4 indicate, that the PMS measurements equal those captured by
 an IPPM conformant measurement system. The ADK test is successful by
 comparing the measurement values of the round-trip delays for packets
 with a size of 64 bytes. The network does not include an impairment
 generator (which was required within a test set up to compare
 independent IPPM implementations, see [RFC6808]). An impairment
 generator as part of the test set up will have a positive effect on
 the measurements and the measurements with bigger packet size will
 also succeed at a temporal resolution above [us] level.

Leipnitz & Geib Expires December 24, 2016 [Page 11]

Internet-Draft MPLS PMS implementation report June 2016

8. Acknowledgements

 Joachim Mende, Marc Wieland, Ralf Widera and Jens Wyduba helped to
 implement and operate the LDP PMS in our research network. In
 memoriam of Holger Zarwel, who gave our project unconditional
 support.

9. IANA Considerations

 This memo includes no request to IANA.

10. Security Considerations

 A PMS monitoring packet should never leave the domain where it
 originated. It therefore should never use stale MPLS or IGP routing
 information. If the Label Switch Path is broken, a packet with the
 destination address 127.0.0.0/26 should not be routed, it should be
 discarded. The PMS must be configured with a measurement interval
 (or sum of all measurement stream intervals) that does not overload
 the network. Too many measurement streams with a big packet size
 could overload a link.

11. References

11.1. Normative References

 [RFC2679] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way
 Delay Metric for IPPM", RFC 2679, DOI 10.17487/RFC2679,
 September 1999, <http://www.rfc-editor.org/info/rfc2679>.

 [RFC4379] Kompella, K. and G. Swallow, "Detecting Multi-Protocol
 Label Switched (MPLS) Data Plane Failures", RFC 4379,
 DOI 10.17487/RFC4379, February 2006,
 <http://www.rfc-editor.org/info/rfc4379>.

 [RFC6576] Geib, R., Ed., Morton, A., Fardid, R., and A. Steinmitz,
 "IP Performance Metrics (IPPM) Standard Advancement
 Testing", BCP 176, RFC 6576, DOI 10.17487/RFC6576, March
 2012, <http://www.rfc-editor.org/info/rfc6576>.

 [RFC6808] Ciavattone, L., Geib, R., Morton, A., and M. Wieser, "Test
 Plan and Results Supporting Advancement of RFC 2679 on the
 Standards Track", RFC 6808, DOI 10.17487/RFC6808, December
 2012, <http://www.rfc-editor.org/info/rfc6808>.

Leipnitz & Geib Expires December 24, 2016 [Page 12]

Internet-Draft MPLS PMS implementation report June 2016

11.2. Informative References

 [BCP-TX] NANOG, "Best Practices for Determining Traffic Matrices in
 IP Networks V 4.0", 2008.

 [I-D.ietf-spring-oam-usecase]
 Geib, R., Filsfils, C., Pignataro, C., and N. Kumar, "A
 Scalable and Topology-Aware MPLS Dataplane Monitoring
 System", draft-ietf-spring-oam-usecase-03 (work in
 progress), April 2016.

 [LDP-TE] VDE-Verlag, "Traffic Matrices for MPLS Networks with LDP
 Traffic Statistics", 2004.

Appendix A. ADK2 Test Source Code

 The following C++ source code is a modified version of the Code at
 [RFC6576]. This version allows to test two files containing values
 with the ADK2. It is not necessary that the values are sorted,
 because in the first step the values get sorted.

 /*
 Copyright (c) 2012 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents (http://trustee.ietf.org/license-info).
 */

 /* Routines for computing the Anderson-Darling 2 sample
 * test statistic.
 *
 * Implemented based on the description in
 * "Anderson-Darling K Sample Test" Heckert, Alan and
 * Filliben, James, editors, Dataplot Reference Manual,
 * Chapter 15 Auxiliary, NIST, 2004.
 * Official Reference by 2010
 * Heckert, N. A. (2001). Dataplot website at the
 * National Institute of Standards and Technology:
 * http://www.itl.nist.gov/div898/software/dataplot.html/
 * June 2001.
 */

 // this code is a modified version of the code in RFC6576

Leipnitz & Geib Expires December 24, 2016 [Page 13]

Internet-Draft MPLS PMS implementation report June 2016

 // use ’-std=c++11’ for compiling

 #include <iostream>
 #include <fstream>
 #include <vector>
 #include <sstream>
 #include <iterator>

 #include <algorithm>

 using namespace std;

 /* This function reads the values and sorts this in an ascending
 * order.
 * The format is: one value per line followed by a line break.
 * A blank line at the end of the file will crash the program.
 */
 vector<double> read_file_sort (string filename) {
 vector<double> vec;
 // variable for one line of the file and the value
 string line;
 double tmp;

 ifstream file;
 file.open(filename, ios::in);
 if (!file) {
 cout << "Error in file " << filename << endl;
 }
 else {
 // read file in a vector
 while(!file.eof()) {
 getline (file, line);
 tmp = stod (line);
 vec.push_back(tmp);
 }
 // sort the vector ascending
 sort(vec.begin(), vec.end());
 }
 file.close();
 return vec;
 }

 int main(int argn, char *argv[]) {

 if (argn != 1 && argn != 3) {
 cout << "wrong invocation" << endl;
 cout << "start with " << argv[0] << " file1 file2" << endl;

Leipnitz & Geib Expires December 24, 2016 [Page 14]

Internet-Draft MPLS PMS implementation report June 2016

 cout << "start with " << argv[0] << " without parameter, if \
 the files are named file1.csv and file2.csv" << endl;
 return 1;
 }

 vector<double> vec1, vec2;
 double adk_result;
 static int k, val_st_z_samp1, val_st_z_samp2,
 val_eq_z_samp1, val_eq_z_samp2,
 j, n_total, n_sample1, n_sample2, L,
 max_number_samples, line, maxnumber_z;
 static int column_1, column_2;
 static double adk, n_value, z, sum_adk_samp1,
 sum_adk_samp2, z_aux;
 static double H_j, F1j, hj, F2j, denom_1_aux, denom_2_aux;
 static bool next_z_sample2, equal_z_both_samples;
 static int stop_loop1, stop_loop2, stop_loop3,old_eq_line2,
 old_eq_line1;

 static double adk_criterium = 1.993;

 string filename1 = "file1.csv";
 string filename2 = "file2.csv";

 // if called with filenames
 if (argn == 3) {
 filename1 = argv[1];
 filename2 = argv[2];
 }

 // sort the two files i a vector
 vec1 = read_file_sort(filename1);
 vec2 = read_file_sort(filename2);

 k = 2;
 n_sample1 = vec1.size() - 1;
 n_sample2 = vec2.size() - 1;

 // -1 because vec[0] is a dummy value
 n_total = n_sample1 + n_sample2;

 /* value equal to the line with a value = zj in sample 1.
 * Here j=1, so the line is 1.
 */
 val_eq_z_samp1 = 1;

 /* value equal to the line with a value = zj in sample 2.
 * Here j=1, so the line is 1.

Leipnitz & Geib Expires December 24, 2016 [Page 15]

Internet-Draft MPLS PMS implementation report June 2016

 */
 val_eq_z_samp2 = 1;

 /* value equal to the last line with a value < zj
 * in sample 1. Here j=1, so the line is 0.
 */
 val_st_z_samp1 = 0;

 /* value equal to the last line with a value < zj
 * in sample 1. Here j=1, so the line is 0.
 */
 val_st_z_samp2 = 0;

 sum_adk_samp1 = 0;
 sum_adk_samp2 = 0;
 j = 1;

 // as mentioned above, j=1
 equal_z_both_samples = false;

 next_z_sample2 = false;

 // assuming the next z to be of sample 1
 stop_loop1 = n_sample1 + 1;

 // + 1 because vec[0] is a dummy, see n_sample1 declaration
 stop_loop2 = n_sample2 + 1;
 stop_loop3 = n_total + 1;

 /* The required z values are calculated until all values
 * of both samples have been taken into account. See the
 * lines above for the stoploop values. Construct required
 * to avoid a mathematical operation in the while condition.
 */
 while (((stop_loop1 > val_eq_z_samp1)

 || (stop_loop2 > val_eq_z_samp2)) && stop_loop3 > j) {
 if (val_eq_z_samp1 < n_sample1+1) {
 /* here, a preliminary zj value is set.
 * See below how to calculate the actual zj.
 */
 z = vec1[val_eq_z_samp1];

 /* this while sequence calculates the number of values
 * equal to z.
 */
 while ((val_eq_z_samp1+1 < n_sample1)
 && z == vec1[val_eq_z_samp1+1]) {

Leipnitz & Geib Expires December 24, 2016 [Page 16]

Internet-Draft MPLS PMS implementation report June 2016

 val_eq_z_samp1++;
 }
 }
 else {
 val_eq_z_samp1 = 0;
 val_st_z_samp1 = n_sample1;

 // this should be val_eq_z_samp1 - 1 = n_sample1
 }

 if (val_eq_z_samp2 < n_sample2+1) {
 z_aux = vec2[val_eq_z_samp2];

 /* this while sequence calculates the number of values
 * equal to z_aux
 */

 while ((val_eq_z_samp2+1 < n_sample2)
 && z_aux == vec2[val_eq_z_samp2+1]) {
 val_eq_z_samp2++;
 }

 /* the smaller of the two actual data values is picked
 * as the next zj.
 */

 if(z > z_aux) {
 z = z_aux;
 next_z_sample2 = true;
 }
 else {
 if (z == z_aux) {
 equal_z_both_samples = true;
 }

 /* This is the case if the last value of column1 is
 * smaller than the remaining values of column2.
 */
 if (val_eq_z_samp1 == 0) {
 z = z_aux;
 next_z_sample2 = true;
 }
 }
 }
 else {
 val_eq_z_samp2 = 0;
 val_st_z_samp2 = n_sample2;

Leipnitz & Geib Expires December 24, 2016 [Page 17]

Internet-Draft MPLS PMS implementation report June 2016

 // this should be val_eq_z_samp2 - 1 = n_sample2
 }

 /* in the following, sum j = 1 to L is calculated for
 * sample 1 and sample 2.
 */
 if (equal_z_both_samples) {

 /* hj is the number of values in the combined sample
 * equal to zj
 */
 hj = val_eq_z_samp1 - val_st_z_samp1
 + val_eq_z_samp2 - val_st_z_samp2;

 /* H_j is the number of values in the combined sample
 * smaller than zj plus one half the number of
 * values in the combined sample equal to zj
 * (that’s hj/2).
 */
 H_j = val_st_z_samp1 + val_st_z_samp2 + hj / 2;

 /* F1j is the number of values in the 1st sample
 * that are less than zj plus one half the number
 * of values in this sample that are equal to zj.
 */

 F1j = val_st_z_samp1 + (double)
 (val_eq_z_samp1 - val_st_z_samp1) / 2;

 /* F2j is the number of values in the 1st sample
 * that are less than zj plus one half the number
 * of values in this sample that are equal to zj.
 */
 F2j = val_st_z_samp2 + (double)
 (val_eq_z_samp2 - val_st_z_samp2) / 2;

 /* set the line of values equal to zj to the
 * actual line of the last value picked for zj.
 */
 val_st_z_samp1 = val_eq_z_samp1;

 /* Set the line of values equal to zj to the actual
 * line of the last value picked for zj of each
 * sample. This is required as data smaller than zj
 * is accounted differently than values equal to zj.
 */
 val_st_z_samp2 = val_eq_z_samp2;

Leipnitz & Geib Expires December 24, 2016 [Page 18]

Internet-Draft MPLS PMS implementation report June 2016

 /* next the lines of the next values z, i.e., zj+1
 * are addressed.
 */
 val_eq_z_samp1++;

 /* next the lines of the next values z, i.e.,
 * zj+1 are addressed
 */
 val_eq_z_samp2++;
 }
 else {

 /* the smaller z value was contained in sample 2;
 * hence, this value is the zj to base the following
 * calculations on.
 */
 if (next_z_sample2){
 /* hj is the number of values in the combined
 * sample equal to zj; in this case, these are
 * within sample 2 only.
 */
 hj = val_eq_z_samp2 - val_st_z_samp2;

 /* H_j is the number of values in the combined sample
 * smaller than zj plus one half the number of
 * values in the combined sample equal to zj
 * (that’s hj/2).
 */
 H_j = val_st_z_samp1 + val_st_z_samp2 + hj / 2;

 /* F1j is the number of values in the 1st sample that
 * are less than zj plus one half the number of values in
 * this sample that are equal to zj.
 * As val_eq_z_samp2 < val_eq_z_samp1, these are the
 * val_st_z_samp1 only.
 */
 F1j = val_st_z_samp1;

 /* F2j is the number of values in the 1st sample that
 * are less than zj plus one half the number of values in
 * this sample that are equal to zj. The latter are from
 * sample 2 only in this case.
 */

 F2j = val_st_z_samp2 + (double)
 (val_eq_z_samp2 - val_st_z_samp2) / 2;

 /* Set the line of values equal to zj to the actual line

Leipnitz & Geib Expires December 24, 2016 [Page 19]

Internet-Draft MPLS PMS implementation report June 2016

 * of the last value picked for zj of sample 2 only in
 * this case.
 */
 val_st_z_samp2 = val_eq_z_samp2;

 /* next the line of the next value z, i.e., zj+1 is
 * addressed. Here, only sample 2 must be addressed.
 */

 val_eq_z_samp2++;
 if (val_eq_z_samp1 == 0) {
 val_eq_z_samp1 = stop_loop1;
 }
 }
 /* the smaller z value was contained in sample 2;
 * hence, this value is the zj to base the following
 * calculations on.
 */

 else {

 /* hj is the number of values in the combined
 * sample equal to zj; in this case, these are
 * within sample 1 only.
 */
 hj = val_eq_z_samp1 - val_st_z_samp1;

 /* H_j is the number of values in the combined
 * sample smaller than zj plus one half the number
 * of values in the combined sample equal to zj
 * (that’s hj/2).
 */

 H_j = val_st_z_samp1 + val_st_z_samp2 + hj / 2;

 /* F1j is the number of values in the 1st sample that
 * are less than zj plus; in this case, these are within
 * sample 1 only one half the number of values in this
 * sample that are equal to zj. The latter are from
 * sample 1 only in this case.
 */

 F1j = val_st_z_samp1 + (double)
 (val_eq_z_samp1 - val_st_z_samp1) / 2;

 /* F2j is the number of values in the 1st sample that
 * are less than zj plus one half the number of values
 * in this sample that are equal to zj. As

Leipnitz & Geib Expires December 24, 2016 [Page 20]

Internet-Draft MPLS PMS implementation report June 2016

 * val_eq_z_samp1 < val_eq_z_samp2, these are the
 * val_st_z_samp2 only.
 */

 F2j = val_st_z_samp2;

 /* Set the line of values equal to zj to the actual line
 * of the last value picked for zj of sample 1 only in
 * this case.
 */

 val_st_z_samp1 = val_eq_z_samp1;
 /* next the line of the next value z, i.e., zj+1 is
 * addressed. Here, only sample 1 must be addressed.
 */
 val_eq_z_samp1++;

 if (val_eq_z_samp2 == 0) {
 val_eq_z_samp2 = stop_loop2;
 }
 }
 }

 denom_1_aux = n_total * F1j - n_sample1 * H_j;
 denom_2_aux = n_total * F2j - n_sample2 * H_j;

 sum_adk_samp1 = sum_adk_samp1 + hj
 * (denom_1_aux * denom_1_aux) /
 (H_j * (n_total - H_j)
 - n_total * hj / 4);
 sum_adk_samp2 = sum_adk_samp2 + hj
 * (denom_2_aux * denom_2_aux) /
 (H_j * (n_total - H_j)
 - n_total * hj / 4);

 next_z_sample2 = false;
 equal_z_both_samples = false;

 /* index to count the z. It is only required to prevent
 * the while slope to execute endless
 */
 j++;
 }

 // calculating the adk value is the final step.
 adk_result = (double) (n_total - 1) / (n_total
 * n_total * (k - 1))
 * (sum_adk_samp1 / n_sample1

Leipnitz & Geib Expires December 24, 2016 [Page 21]

Internet-Draft MPLS PMS implementation report June 2016

 + sum_adk_samp2 / n_sample2);

 /* if(adk_result <= adk_criterium)
 * adk_2_sample test is passed
 */
 //return adk_result <= adk_criterium;
 cout << "Result: " << adk_result << endl;
 }

Authors’ Addresses

 Raik Leipnitz (editor)
 Deutsche Telekom
 Olgastr. 67
 Ulm 89073
 Germany

 Email: r.leipnitz@telekom.de

 Ruediger Geib
 Deutsche Telekom
 Heinrich Hertz Str. 3-7
 Darmstadt 64295
 Germany

 Phone: +49 6151 5812747
 Email: Ruediger.Geib@telekom.de

Leipnitz & Geib Expires December 24, 2016 [Page 22]

