#### IPv6 over MS/TP Networks

draft-ietf-6lo-6lobac-05

Kerry Lynn, Editor <kerlyn@ieee.org>
Jerry Martocci <jerald.p.martocci@jci.com>
Carl Neilson <cneilson@deltacontrols.com>
Stuart Donaldson <stuart.donaldson@honeywell.com>
6lo WG, IETF 96, Berlin, 18 Jul 2016

#### Motivation

Develop a low-cost wired IPv6 solution for commercial building control applications

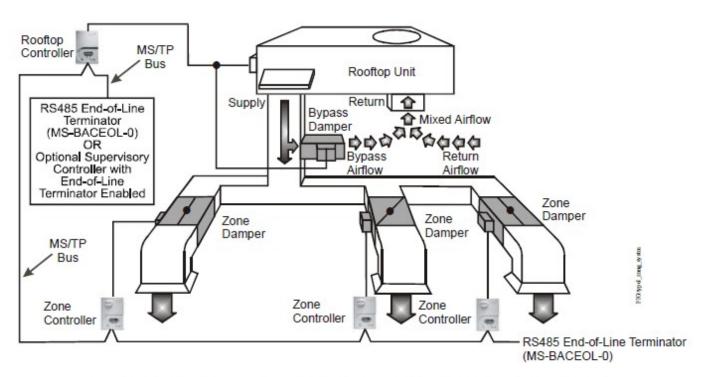



Figure 1: Typical Zoning Control System Installed on a Single MS/TP Bus

### Background

- BACnet is the ISO/ANSI/ASHRAE [Standard 135-2012] data communication protocol for Building Automation and Control networks
- MS/TP (Master-Slave/Token-Passing) is a widely used data link defined in BACnet
  - Based on RS-485 single twisted pair PHY; supports data rates up to 115.2 kbps over 1 km distance
  - Contention-less MAC (token passing bus)
  - Consider it a wired alternative to IEEE 802.15.4

#### **Technical Approach**

- Leverage 6Lo specs [RFCs 4944, 6282, 6775]
- Minimize changes to existing MS/TP specification [BACnet Clause 9]
- Goal: co-existence with legacy MS/TP nodes
  - No changes to frame header format, control frames, or MS/TP
     Master Node state machine
- MS/TP Extended Frames proposal includes:
  - New frame type for IPv6 (LoBAC) Encapsulation
  - Larger MSDU (1500+ octets)
  - 32-bit FCS (CRC-32K)
  - COBS (Consistent Overhead Byte Stuffing) encoding

#### **Status**

- Proposal has passed WGLC
  - First presented to 6man in July '11
  - Two interoperable implementations, Contiki and RIOT (tested at ETSI 6lo PlugTest in Yokohama)
  - No external dependencies; BACnet has assigned a FrameType and draft of new Clause 9 is available for reviewers
  - Three detailed reviews
     Thank you Peter, James, and Carsten

### Changes since -05

Primarily editorial, following Carsten's review

A MAC-derived IID is recommended for on-link and 64-bit privacy IID for off-link traffic

# **Backup Slides**

#### MS/TP Control Frame Format

0 | |

| 0x55    | OxFF       | FrameType | DestAddr  |
|---------|------------|-----------|-----------|
| SrcAddr | Length = 0 |           | HeaderCRC |

Optional 0xFF

Frame Type: 0 = Token

1 = Poll for Master

2 = Reply to Poll for Master

Destination Address: 0 – 127

Source Address: 0 – 127

#### MS/TP Encoded Data Frame Format

0 | |

| 0x55    | 0xFF                    | FrameType | DestAddr  |
|---------|-------------------------|-----------|-----------|
| SrcAddr | Length (MS octet first) |           | HeaderCRC |

COBS Encoded Data (1 – 1500 octets before encoding)

Data CRC (CRC-32K, LS octet first, COBS Encoded)

Optional 0xFF

Frame Type: 34 = IPv6 (LoBAC) Encapsulation

Destination Address: 0 - 127 or 255 (all nodes)

Source Address: 0 – 127

### LoBAC Encapsulation

Uses 6LoWPAN Dispatch Header [RFC 4944]:

| Pattern   | Header Type                          |  |
|-----------|--------------------------------------|--|
| 01 1XXXXX | LOWPAN_IPHC - Compressed IPv6 header |  |

### LoBAC Encapsulation (cont.)

- No mesh, broadcast, or fragmentation headers
  - One option remains:

| IPHC Dispatch | IPHC Header | Payload |
|---------------|-------------|---------|
|---------------|-------------|---------|

A LoBAC encapsulated LOWPAN\_IPHC [RFC 6282] compressed datagram

## **IPHC Compression [RFC 6282]**

- Assumes some 6LBR-like behavior, e.g. 6LoWPAN Context Option (6CO, [RFC 6775])
- Uses 6LoWPAN short address format, formed by appending 8-bit MS/TP address to the octet 0x00
  - For example, an MS/TP node with a MAC address of 0x4F results in the following IPHC short address:

#### Stateless Address Auto-Configuration

- Typically, 8-bit MAC address is appended to the seven octets 0x00, 0x00, 0x00, 0xFF, 0xFE, 0x00
  - For example, an MS/TP node with a MAC address of 0x4F results in the following Interface ID:

- A privacy address may be used for the Interface Identifier (SHOULD be for ULA/Global addresses)
  - In this case there must be a way to map the address to an 8-bit MAC address (e.g. ARO in NS [RFC 6775])

#### **IPv6 Link Local Address**

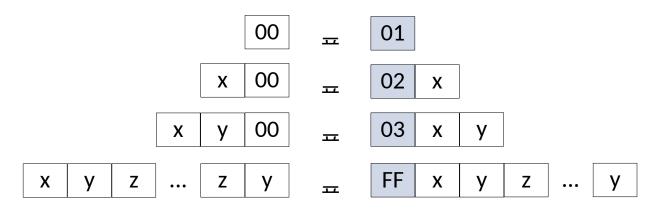
 The IPv6 link-local address [RFC 4291] for an MS/TP interface is formed by appending the Interface Identifier (defined in previous slide) to the prefix FE80::/64:

| 10 bits    | 54 bits |   | 64 bits              |   |
|------------|---------|---|----------------------|---|
| +          |         |   |                      | + |
| 1111111010 | ·       | ' | Interface Identifier |   |
| +          |         | + |                      | + |

## **Unicast Address Mapping**

 The Source/Target Link-Layer Address option has the following form when the link layer is MS/TP and the addresses are 8-bit MS/TP MAC addresses:

```
Option fields:
  1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                               Type:
           Length=1
                                 1 = Source Link-layer address
                                 2 = Target Link-layer address
     0x00 | MS/TP Address |
Length:
                                  The value of this field is
           Padding
                                  1 for 8-bit MS/TP addresses
         (all zeros)
       +-+-+-+-+-+-+-+-+-+-+
                                MS/TP Address:
                                  The 8-bit MAC address in
```


canonical bit order

### Multicast Address Mapping

- MS/TP only supports link-local broadcast
- Uses 6LoWPAN short address format, formed by appending 0xFF to the octet 0x00
  - All IPv6 multicasts on the MS/TP link map to the following IPHC short destination address:

## **COBS Encoding Basics**

| Code | Followed By        | Meaning                                                |
|------|--------------------|--------------------------------------------------------|
| 0x00 | (not applicable)   | (not allowed)                                          |
| 0x01 | nothing            | A single zero byte                                     |
| 0x02 | one data byte      | The single data byte, followed by a zero byte          |
| n    | (n - 1) data bytes | The $(n - 1)$ data bytes, followed by a zero byte      |
| OxFE | 253 data bytes     | The 253 data bytes, followed by a zero byte            |
| OxFF | 254 data bytes     | The 254 data bytes, <b>not</b> followed by a zero byte |



## **COBS Encoding in Detail**

• "Phantom zero" is appended to input to resolve ambiguity in final code block:



- An arbitrary octet (e.g. 0x55) may be removed by XOR-ing it over the COBS encoder output stream
- COBS overhead:
  - At least one octet per encoded field
  - At most one octet in 255 (6 octets in 1501; ≈ 0.4%)