
Flow Cost Service
draft-gao-alto-fcs-00

Kai Gao 1 J. Jensen Zhang 2 H. May Wang 2

Y. Richard Yang 3

1 Tsinghua University 2 Tongji University 3 Yale University

July 21@IETF 96

Motivation: Fine-grained Routing

Network routing trends to be fine-
grained

2

H1 H3SW1

SW2

SW3

O Expressive

O Accurate

H2

Motivation: Fine-grained Routing

Network routing trends to be fine-
grained

3

H1 H3SW1

SW2

SW3

O Expressive

O Accurate

H2

Motivation: Fine-grained Routing

Network routing trends to be fine-
grained

4

H1 H3SW1

SW2

SW3

O Expressive

O Accurate

H2

Motivation: Fine-grained Routing

Network routing trends to be fine-
grained

5

H1 H3SW1

SW2

SW3

Flow1 (tcp:dest==21)

Flow2 (tcp:dest==22)

O Expressive

O Accurate

H2

Motivation: Flow correlation

Flow correlation: the costs of
different flows are related

6

H1 H3SW1 SW3

Flow1

Flow2

O Side-effect

O Non-peer

H2 SW2 SW4 H4

SW5 SW6
Flow3

Flow4

Flow Expression Encoding

● Flow ID

○ Same format as a PIDName

[RFC7285#Section 10.1]

Flow expression:

“ssh-flow”: {

 “ipv4:source”: “192.168.1.2”,

 “ipv4:destination”: “192.168.1.3”,

 “tcp:destination”: 22,

 “ethernet:vlan-id”: 20

}

7

● Typed header field
○ <protocol-name>:<field-name>

(Subset of OpenFlow match fields)

Flow-based vs. Endpoint-based
Object {

 FlowFilterMap flows;

} FlowCostRequest : MultiCostRequestBase;

Object {

 [CostType cost-type;]

 [CostType multi-cost-types<1..*>;]

 [CostType testable-cost-types<1..*>;]

 [JSONString constraints<0..*>;]

 [JSONString or-constraints<0..*><0..*>;]

} MultiCostRequestBase;

Object-map {

 FlowId -> FlowFilter;

} FlowFilterMap;

Object-map {

 TypedHeaderField -> JSONValue;

} FlowFilter;

Object {

 CostType cost-type;

 [JSONString constraints<0..*>;]

 EndpointFilter endpoints;

} ReqEndpointCostMap;

Object {

 [EndpointDescriptor srcs<0..*>;]

 [EndpointDescriptor dsts<0..*>;]

} EndpointFilter;

EndpointDescriptor :=

 protocol:address:port |

 protocol:address

8

Flow-based vs. Endpoint-based (Cont.)
{

 “cost-type”: {

 “cost-mode”: “numerical”,

 “cost-metric”: “routingcost”

 },

 “flows”: {

 “l3-flow”: {

 “ipv4:source”: “192.168.1.1”,

 “ipv4:DESTination”: “192.168.1.2”

 },

 “optional-l3-flow”: {

 “ipv4:sourcE”: “192.168.1.1”,

 “Ipv4:destination”: “192.168.1.2”,

 “ethernet:sOuRce”: “12:34:56:78:00:01”,

 “ethernet:destination”: “12:34:56:78:00:02”

 }

 }

}

{

 “cost-type”: {

 “cost-mode”: “ordinal”,

 “cost-metric”: “routingcost”

 },

 “endpoints”: {

 “srcs”: [“ipv4:192.168.1.1”],

 “dsts”: [

 “ssh:192.168.1.2”,

 “http:192.168.1.2”,

 “tcp:192.168.1.3:6655”

]

 }

}

9

Flow-based vs. Endpoint-based (Cont.)

● Filter encoding: EndpointFilter -> FlowFilterMap
● Response encoding: EndpointCostMap -> FlowCostMap
● Capability: No special capabilities -> FlowCostCapabilities

10

Cost Confidence for Ambiguous Paths
● The problem of ambiguous paths exists for

both FCS/ECS
● Cost confidence: indicate the ambiguity of a

query
● Examples:

○ Combine the results of all paths and use standard

deviation:

1 - | deviation / mean |

○ Select only one path and use the probability:

P(|selected path|)/P(all possible path)

11

{"meta": {"cost-type": {

 "cost-mode": "numerical",

 "cost-metric": "routingcost"

 },},

 "flow-cost-map": {

 "l3-flow": 10,

 "l3-flow-aggr": 50,

 "optional-l3-flow": 5,

 },

 "flow-cost-confidences": {

 "l3-flow": 70,

 "l3-flow-aggr": 40,

 "optional-l3-flow": 90

 }

}

Error and Warning
● Three kinds of errors:

Conflict/Missing/Unsupported
● Allow accurate location of errors
● Can be extended to allow partial

failures and partial recoveries
(useful when combined with
incremental updates)

12

object-map {

 FlowId -> FlowCostError;

} FlowCostErrorMap;

object {

 [TypedHeaderField conflicts<2..*>;]

 [TypedHeadreField missing<2..*>;]

 [TypedHeaderField unsupported<1..*>;]

} FlowFilterError;

Compatibility
● Support all cost types and possible extensions

○ Multi-cost

○ Calendar

○ Path vector

● Support incremental updates
● Have no side-effect on legacy clients/servers

13

Summary
● Expand the ID space for endpoints (support fine-grained routing)

○ Original (ECS): IP addresses/prefixes

○ draft-wang-alto-ecs-flow: Tuples encoded as URI

○ FCS: Tuples similar to OpenFlow match

● Introduce the flow-based filter
○ Use case: flow scheduling

○ ECS may not be efficient

● Response and errors
○ Flow-based cost map

○ Cost confidence: evaluating the effects of ambiguous paths

○ Flow-based error map

14

Future work
Design related:

● How can clients give accurate queries?
● How about if the client cannot decide the flow configuration?

○ For example, a client must query a flow with tcp:source port for fine-grained result. But the

client cannot decide which tcp:source port will be used when the application executed.

Implementation related:

● How to explore ambiguous paths efficiently to compute cost confidence

15

Thank you!

16

Backup Slides

17

Motivation: Fine-grained Routing

Network routing trends to be fine-
grained

18

H1 H3SW1

SW2

SW3

Flow1 (tcp:dest==21)

Flow2 (tcp:dest==22)

O Expressive

O Accurate

H2 Flow3 (tcp:dest==443)

