Recap and updates since v06

July 21st, 2016 @ IETF 96 - Berlin

Sabine Randriamasy
Y. Richard Yang
Qin Wu
Lingli Deng
Nico Schwan
Updates since v05

- IPv6 examples for the Endpoint Cost Map service
- Author affiliation
ALTO Cost Calendar in a nutshell

- ALTO Calendar: allows deciding where to connect *and when*
 - Array of time-dependent cost values for a given metric,
 - Set of attributes describing time scope of the calendar
- Allows Delay tolerant applications to schedule their connections
 - Optimal time for data transfers
- Allows ALTO Clients to schedule their Calendar requests
 - ALTO servers may save transactions on repeated value arrays
- Applicable to
 - time-sensitive ALTO metrics
 - Filtered Cost Map (FCM)
 - *for full Cost Map: use empty SRC & DEST*
 - Endpoint Cost Map (ECM)
- Addresses target WG item: cost extensions (May 2014)
ALTO Calendar design

- Backwards compatibility with legacy Clients and Multi-Cost Map
 - Calendars associated to ALTO information resources
 - Calendar attributes specified in
 - IRD information resources of IRD
 - "meta" member of ALTO Server responses
- Does not introduce a new mode
- Does not introduce new media types
- Compatible with all cost-modes
 - numerical, string, ...
Simple extension design

• IRD for calendared resources
 – Exposes attributes allowing to understand the calendar
 • "cost-type-names“, "time-interval-size“, "number-of-intervals"

• ALTO request for FCM and ECM
 – 1 member added: "calendared" : [true]

• ALTO Server responses for FCM and ECM
 – Add calendar attributes and their value
 – May OPTIONALLY use attribute "repeated"
 • When ALTO value arrays are repeated for N periods
 • To avoid useless processing of requests for unchanged values

• 3 RULES to be included in draft on Calendar information updates
 – RULE 1: Calendar start and duration VS request date
 – RULE 2: “HTTP Last-Modified” VS Calendar start and duration
 – RULE 3: “HTTP Last-Modified” VS Calendar start and duration for repeated values
"endpoint-cost-calendar-map": {
 "uri": "http://custom.alto.example.com/calendar/endpointcost/calendar/lookup",
 "media-types": ["application/alto-endpointcost+json"],
 "accepts": ["application/alto-endpointcostparams+json"],
 "capabilities": {
 "cost-constraints": true,
 "cost-type-names": ["num-routingcost", "num-latency",
 "num-pathbandwidth", "string-service-status"],
 "calendar-attributes": [
 {"cost-type-names": "num-routingcost",
 "time-interval-size": "1 hour",
 "number-of-intervals": 24
 },
 {"cost-type-names": "string-service-status",
 "time-interval-size": "2 minute",
 "number-of-intervals": 30
 }
],
 "uses": ["my-default-network-map"]
 } // ECM capab
"
ALTO Calendar v05- example ECM - § 4.2.3

POST /calendar/endpointcost/lookup HTTP/1.1
Host: alto.example.com Content-Length: [TODO]
Content-Type: application/alto-endpointcostparams+json
Accept: application/alto-endpointcost+json,application/alto-error+json

{ "cost-type" : {"cost-mode" : "numerical", "cost-metric" : "routingcost"},
 "calendared" : [true],
 "endpoints" : {
 "srcs": ["ipv4:192.0.2.2"],
 "dsts": [
 "ipv4:192.0.2.89",
 "ipv4:198.51.100.34",
 "ipv4:203.0.113.45"
]
 }
}
HTTP/1.1 200 OK
Content-Length: [TODO]
Content-Type: application/alto-endpointcost+json

{
 "meta": {
 "cost-type": {
 "cost-mode": "numerical", "cost-metric": "routingcost"},
 "calendar-response-attributes": [
 {
 "calendar-start-time": "Mon, 30 Jun 2014 00:00:00 GMT",
 "time-interval-size": "1 hour",
 "numb-intervals": 24,
 "repeated": 4
 }
], // means: same value array for Monday, Tuesday, Wednesday, Thursday
 } // end meta

 "endpoint-cost-map": {
 "ipv4:192.0.2.2": {
 "ipv4:192.0.2.89": [v1, v2, ... v24],
 "ipv4:198.51.100.34": [v1, v2, ... v24],
 "ipv4:203.0.113.45": [v1, v2, ... v24]
 }
 }
}
Next steps

- Draft is at the ALTO WG Item document adoption stage
- Additional comments and suggestions are welcome
Thank you

Back-up follows
Calendar rules

- **RULE 1: Calendar start and duration VS request date**
 an ALTO Server indicating Calendars for a given cost-type in its IRD resources MUST provide one
 - That begins at $TS = \text{"calendar-start-time"}$ and
 - with values for a duration $DU = (\text{"time-interval-size"} \times \text{"number-of-intervals"})$
 - Such that: if TR is the date of the client request, TR lies in the interval $[TS, TS+DU]$

- **RULE 2: “HTTP Last-Modified” VS Calendar start and duration**
 we should not have values HL of “HTTP Last-Modified” such that $HL < TS-DU$ since the design assumes that the Calendar values are updated periodically at intervals equal to DU.
 - If the Server does not provide a Calendar on the next period for a cost-type, it MUST NOT list this Cost-Type in the “cost-type-names” member of calendared IRD resources.

- **RULE 3: “HTTP Last-Modified” VS Calendar start and duration for repeated values**
 IF THE SERVER USES MEMBER “repeated” in its responses and if “repeated” has a value $n>1$ then we can have $HL < TS-DU$ and RULES 1 and 2 are replaced by RULE 3, see examples of section 4.2.3
 - we MUST have TR is the date of the client request, TR lies in the interval $[TS, TS+n\times DU]$
FCM and ECS specifications in v05

- FCM and ECS request must add 1 input parameter
 - JSONBoolean calendared<1..*>
 - //list size = number of requested cost types

- FCM and ECS responses have 1 additional field in « meta »
 - CalendarResponseAttributes calendar-response-attributes <1..*>;
 object{
 JSONString calendar-start-time;
 JSONString time-interval-size;
 JSONNumber number-of-intervals;
 [JSONNumber repeated;] [OPTIONAL]
 // for «periodic» calendar-start-time: number of calendar iterations with same values
 }CalendarResponseAttributes;

- Calendared Cost values are JSONArrays of time-dependent JSONValues