ALTO Extension: Path Vector

draft-yang-alto-path-vector-03
draft-gao-alto-routing-state-abstraction-03

Presenter: Y. Richard Yang

July 21, 2016
IETF96

Overview

* Going beyond “single-switch”
topology abstraction is largely agreed

upon in the WG with a charter item _

* WG has multiple designs related on ﬁ
network graph, e.g.,

— [NL] node/link graphs Abstract State |

— [NLP] node/link graph + path vector ﬁ

— [AP] Path vector w/ abstract network _
elements ﬁ

— ECMP complexity Raw State I

e Proposal: First finish the AP design as
a delivery

Application-Layer Traffic Optimization (TO)
Framework
* App has a set of K flows f[i] = si -> di
e Path f[i].path for flow f[i] is computed by network

 App TO can do is to control traffic volume (f[i].x) for
flow f[i]

- x = [f[1].x, f[2].x, ..., f[K].x]

— App needs path properties (e.g., cost) of f[i] when
computing f[i].x

Value of ALTO is to provide hard-to-obtain,
easy to use network information to
applications.

s1

S2

Main Use Case of Network Graph is Capacity Region

d1

d2

e App requests available bandwidth for two flows
(s1->d1; s2->d2)

e Cost map returns f[1].bw = 100 Mbps; f[2].bw = 100 Mbps
e But the result can be ambiguous

Main Use Case of Network Graph is Capacity Region

Each core link: 100 Mbps; edge 1G

sw1 sw3
sSW6
k1 ' v 2 1, % X6
s 1 . {45 A0 oF : d1
sSwW5 7 b . sw8
e k9) Q4.
0 0
S24 ;. 19 e 7 1ink1$d2
sSwW2 sw/ sw4
X2
100
Capacity region

100 X1

Main Use Case of Network Graph is Capacity Region

Each core link: 100 Mbps; edge 1G

sw1 sw3
SWO -\ .
el ' 3 2 1, % S
s1 /[J%g L oF d1
sSWH5 b b SW
w0 k9,)Y
0 0
S2 > 12202
SwW2 sw7’ sw4a
X2
100

Capacity region

Main Use Case of Network Graph is Capacity Region

Each core link: 100 Mbps; edge 1G

k1 < 2 3 m 6in ko)
n 10&9 llﬁK kg yﬁ% d1
\/0\& m 047

linkl
‘Eii') -

d2

100

Capacity region

Designh Choice

* [NL] node/link graphs:
— Not enough information
e [NLP] node/link graph + path

]

vector Abstract State |
— No need for all the information ﬁ
» [AP] Path vector w/ abstract
network elements]
Raw State

— Sweet spot

Path Vector Design Issue 1: Encode PV in Cost Maps

* Cost Map w/ PV:

HTTP/1.1 200 OK

application/alto-costmap+json

{
"meta" : {
"dependent-vtags" : [...],
"cost-type" : {“cost-metric”: ?, "cost-mode" : ? }

}

’ ost-map" : {
"PID1": { "PID1™], "PID2":["ne56", "ne67"], "PID3":[], "PID4":["ne57"]},
"PID2": { "PID1":["ne75"], "PID2":[], "PID3":["ne75"], "PID4"[]}, ...

}
}

e Key Issue: What is the cost-metric and cost mode

AP Design Issue 1: Encode PV in Cost Maps

object { object {

CostMapData cost-map; EndpointCostMapData endpoint-cost-map;

} InfoResourceCostMap } InfoResourceEndpointCostMap
: ResponseEntityBase; : ResponseEntityBase;

object-map { object-map {

PIDName -> DstCosts; TypedEndpointAddr -> EndpointDstCosts;
} CostMapData; } EndpointCostMapData;
object-map { object-map {

PIDName -> JSONValue; TypedEndpointAddr -> JSONValue;
} DstCosts; } EndpointDstCosts;

* Authors of [RFC7285] anticipated that elements of a CostMap
may need to be generic and hence used JSONValue
=>
CostMap and EndpointCostMap are polymorphic (generic) types
that need type indicator, to indicate syntax and semantics
— CostMap<T>
— EndpointCostMap<T>

10

Issue 1: Design Choices

* |1-choice 1

— Introduce specific cost-mode and cost-metric to indicate
a PV Cost Map

e |1-Choice 2

— A unifying cost-type scheme also handling multi-cost,
cost calendar

1

Path Vector Design Issue 2: Query Precision

e |ssue:

— Current CostMap and EndpointCostMap are
designed for cross-product queries
{s1,s2,,sn}->{d1, d2, ..., dm}

s1->d1, s1->d2, ..., s1->dm, s2->d1, ..., sn->dm

— but such queries can involve a large number of
paths, which may not be necessary but limit the
opportunity for computing compact, abstract

topology

12

Path Vector Design Issue 2: Query Precision

e Possibility: Make PV query to be non-cross product, e.g., a
guery enumerates the set of flows

POST /capacityregion/lookup HTTP/1.1

Host: alto.example.com

Content-Length: TBD

Content-Type: application/alto-flowparams+json

Accept: application/alto-costmap+json,application/alto-error+json

{

"flows" : [
{"src": "ipv4:192.0.1.1", "dst": "ipv4:192.0.1.2"},
{"src": "ipv4:192.0.1.3", "dst": "ipv4:192.0.1.4"},
{"src": "ipv4:192.0.1.1", "dst": "ipv4:192.0.1.4"}

]

)

e Proposal:

— Coordinate with flow cost service or more generally, do we proceed w/
Routing State Abstraction w/ Declared Equivalence

13

Issue 2: Design Choices

e |2-choice 1

— Use native Cost Map for PIDs and Endpoint Cost Map
queries

e |2-Choice 2

— Introduce flows, and more general, introduce routing state
abstraction query language as a general query mechanism

14

Path Vector Design Issue 3: Provide PV Elem. Properties

* Designh choices
1. Inline: Embed in the same cost map

2. Reference: Use dependent-vtag to refer to a
separate map (e.g., unified element properties)

15

Path Vector Design Issue 3: Inline

HTTP/1.1 200 OK

application/alto-costmap+json

{
"meta" : {
"dependent-vtags" : [...],
"cost-type" : {*cost-metric”: “ane”, "cost-mode"” : ”path-vector” }
2
"cost-map" : {
"PID1": { "PID1"], "PID2":["ne56", "ne67"], "PID3":[], "PID4":["ne57"]},
"PID2": { "PID1":["ne75"], "PID2":[], "PID3":["'ne75"], "PID4"[]}, ...
}
“nep-map” : {
“ne56”: {“bw”: 10, ... }
}
}

e Key remaining issue:
— How to indicate the properties/values specified in the nep-map?
— Need to indicate multi-cost map for the nep-map in meta

16

Path Vector Design Issue 3: Reference

HTTP/1.1 200 OK

application/alto-costmap+json

{

"meta" : {
"dependent-vtags" : [...
refer to an nep map

]

cost-type" : {“cost-metric”: “ane”, "cost-mode" : ”path-vector” }

"’cost-map" |
"PID1": { "PID1™], "PID2":["ne56", "ne67"], "PID3":[], "PID4":["ne57"]},
"PID2": { "PID1":["ne75"], "PID2":[], "PID3":["ne75"], "PID4"[]}, ...

}
}

17

Road Map: Decision Points

NL Graph
NLGraph+PV
APV

Specific Cost Type Native Cost Map Query Inline

Scheme together w/ Flow Query+RSA Reference
MC, CC

Backup Slides

et |—

PID1

PID2

Q: How to Support ECMP Path

PID3

P1D4

e ECMP for eh1 -> eh3, single path through sw6 for eh2 -> eh4

— PID1 -> PID3:

— PID2 -> PID4: :

[{“ne”: “sw5-6", “w”: 0.5},
{“ne”: “sw6-8”, “w”: 0.5},
{“ne”: “sw5-7", “w”: 0.5},
{“ne”: “sw7-8”, “w”: 0.5}]
[{“ne”: “sw5-6", “w”: 1},
{“ne”: “sw6-8", “w”: 1}]

object {
JSONNumber w;
JSONString ne;

} FlowElement;

/Il flow weight
/I network element

object {
cost-map.DstCosts.JSONValue
-> FlowElement<0,*>;
meta.cost-mode = "flow”;

} InfoResourcePVCostMap : InfoResourceCostMap;

20

One More Ex

* How do we allow statistics on a cost metric (e.g., routingcost)

ample

HTTP/1.1 200 OK
application/alto-costmap+json
{
"meta" : {
"dependent-vtags" : [...],
"cost-type" : {“cost-metric”: “latency-stat”, "
2
"cost-map" : {
"PID1": {
"PID1”:{"min”; 1, “max”: 2, “avg”: 1.5},
"PID2”:{"min”; 2, “max”: 5, “avg”: 2.5},
}
}

cost-mode" : ”basic-stat-object” }

21

Path Vector Design Issue 1: Encode PV in Cost Maps

* The “cost-mode” field of the | opject ¢
Hcost_type” fleld Of ”meta” CostMetric cost-metric;
. CostMode cost-mode;
of each CostMap is the [JSONString description;]
type indicator } CostType;

— CostMap<cost-mode>, i.e., CostMap<numerical> and
CostMap<ordinal>

e “numerical” indicates floating point numbers {6.1.2.1}
e “ordinal” indicates “non-negative” integers {6.1.2.2}

— “cost-metric”: indicates the semantics (routingcost, bw, ...)
e CostMap<numerical> routingcost, bw
e CostMap<ordinal> routingcost, bw
e EndpointCostMap<numerical> routingcost, bw
e EndpointCostMap<ordinal> routingcost, bw

