Considerations for Benchmarking Virtual Networks draft-bmwg-nvp-00

Jacob Rapp, <u>jrapp@vmware.com</u>
Ben Basler, <u>bbasler@vmware.com</u>

July 2016 IETF 96 - Berlin

Considerations for Benchmarking Network Virtualization Platforms - Overview

draft-bmwg-nvp-00

Why: Physical vs Virtual Network Platforms - Differences

MTU limited packets vs Higher Level Segments

Scope

Hypervisor Based Network Virtualization Platforms only - Not NFV

Considerations

Application Layer Benchmarks

Working closer to application layer segments and not low level packets

Server Hardware

Support for HW offloads (TSO / LRO / RSS)

Other Hardware offload benefits – Performance Related Tuning

Frame format sizes within Hypervisor

Scale Testing for New Application Architectures

New micro-Service type architectures

Documentation

System Under Test vs Device Under Test
Intra-Host (Source and destination on the same host)
Inter-Host (Source and Destination on different hosts – Physical Infra providing connectivity is part of SUT)

Hardware Switch vs Software Switch

Hardware Switching Logical Switch/Logical Router etc.,

Works at lower layer packets Works closer to application layer segments

Limited by ASIC/SoC Limited mostly by CPU and Memory (only LB)

• which is not really a limit with today's processor capabilities and memory capacity/speeds

Packet size limited by supported MTU

• General Max supported is 9K

Multiport - often 48 or more

Extending functionality through additional ASIC / FPGAs and Hardware

Packet size a function of RSS, TSO & LRO etc.,

• By default 65K

Generally 2 Ports/Server

NIC Offloads Intel DPDK / Latest Drivers etc., SSL Offload with AES-NI (Intel and AMD)

TSO for VXLAN Traffic

July 2016 IETF 96 – BMWG

Receive Side Scaling (RSS)

- With Receive Side Scaling Enabled
 - Network adapter has multiple queues to handle receive traffic
 - 5 tuple based hash (Src/Dest IP, Src/Dest MAC and Src Port) for optimal distribution to queues
 - Kernel thread per receive queue helps leverage multiple CPU cores

July 2016 IETF 96 - BMWG

Page Size and Response Times

July 2016 IETF 96 – BMWG

Example Test Methodology

- Application level throughput using Apache Benchmark
 - ~2m file sizes based on http://httparchive.org/trends.php
 - Images tend to be larger
 - Page content tends to be smaller
- Application latency with Memslap
 - Standard settings
- iPerf
- Avalanche