DetNet Flow Information Model

draft-zha-detnet-flow-info-model-00

Yiyong Zha, Yuanlong Jiang, Liang Geng
Agenda

- DetNet Flow
- DetNet Flow Information Model
- How to Use Flow Model
- Status and Next Step
DetNet Flow

- **DetNet Flow**
 - “A DetNet flow is a sequence of packets to which the DetNet service is to be applied.”
 - Do not rapidly change
 - Limited traffic from source
 - Synchronous or asynchronous

- **How to describe a DetNet flow**
 - DetNet flow model
 - Scalable and reusable
Agenda

- DetNet Flow
- DetNet Flow Information Model
- How to Use Flow Model
- Status and Next Step
Information Model

- **Information model (RFC 3444)**
 - Information Models are used to model managed objects at a conceptual level, independent of any specific protocols used to transport the data (protocol agnostic).
 - Information models focus on relationships between managed objects.

- **Data model (RFC 3444)**
 - Data Models are defined at a lower level of abstraction and include many details (compared to information models).
 - They are intended for implementers and include implementation- and protocol-specific constructs.
 - Data models are often represented in formal data definition languages that are specific to the management protocol being used.
Flow Information

- Depends on how to describe a flow
 - Define common concepts of a DetNet flow

- Used by different network functions or entities
 - Flow indentifying and filtering
 - Data plane configuration
 - Resource reservation
 - Control protocols
 - YANG models
Flow Identifier

- First step for DetNet service provisioning
 - Differentiates user
 - Differentiates user + application
Traffic Description

- To reserve proper amount of resource
- Is bandwidth reservation enough?
- More description, more constraint on traffic, more determinism on service

<table>
<thead>
<tr>
<th>Name</th>
<th>Elements</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BurstList-Periodic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PeriodValue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BurstList-Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BurstListID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BurstLenngth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BurstList</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StartTime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxFrameSize</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxFrames</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BurstID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EndTime</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Flow Statistics

- Delay and loss information are important
 - OAM fault management of flow delay
 - Control plane
Agenda

- DetNet Flow
- DetNet Flow Information Model
- How to Use Flow Model
- Status and Next Step
Service Model

- Service needs DetNet flow information
- Mapping from flow attributes from up layer to lower layer

Figure 2: DetNet aware/unaware End-systems
Control Plane

- Flow information is needed for PCE, NBI, and SBI

![Flow Management Entity Diagram]
Data Plane

- Mapping from DetNet flow to data plane configuration
 - Traffic description
 - TAS control list

Figure 2. Mapping of Flow Model into TAS Configuration
Agenda

- DetNet Flow
- DetNet Flow Information Model
- How to Use Flow Model
- Status and Next Step
Status and Next

- Current status
 - Initial version, has some comments
 - Focus on traffic description, need more information

- Next step
 - More participants
 - More information
 - How to use the information model
Questions?