Diameter Policy Grouping and Membership

draft-bertz-dime-policygroups-00

L. Bertz

IETF 96, Berlin
Agenda

- Purpose
- Provisioning Patterns
- Why Support Patterns?
- Concepts
- Policy Membership Matching
- Examples
- Next Steps
Purpose

- Provide ability to Group Policy Rules into a common name
 - Already have some Identifiers
 - Filter-Ids (UTF-8 Strings) in RFC 7155,
 - It is a list of Filter-Identifiers
 - if RADIUS support is NOT required IPFilterRule is recommended
 - Classifier-ID (OctetString) in RFC 5777
 - No consistent Rule-Id support (some in 3GPP but not all Rule Types get Rule-Ids)
 - Grouping is supported by hierarchy in 3GPP through use of Base-Name < Adopted in this proposal

- Provide an efficient mechanism for applying groups of Policy Rules that appear in multiple hierarchies
 - Akin to Charging-Characteristics used in 3GPP
 - Generalized
 - Meant to be leveraged for provisioning patterns
Provisioning Patterns

• Quite often a common grouping of Rules applies to an Authorized User based upon their
 – Domains they are subscribed to
 – Service they are being provided
 – State, paid, needs top-up, etc. with respect to the Service
• Base-Name is insufficient in such cases
 – It is top-down hierarchy
 – If a Rule appears in more than one group it must be copied and set to distinct base names
• Solutions such as arbitrary depth of hierarchy are not ideal
Why support Patterns?

- Speed in provisioning
- Reduced OTW representation
- Ability for Diameter Clients to capitalize on common filters and Rules
 - Reduction in redundant TFTs a rules
- For example, an Operator with 60M users and 3 default rules for users in post-paid, pre-paid and hotlined (un-paid bill) can signal the 3 rules then
 - Refer to them as a single bit (provisioning pattern) for all users
 - Re-arrange the rules as 3 common TFTs with the same filter (any / any) but entirely different outcomes based upon the user's 'bit' (state) set
- In today's designs the ability to capitalize on common provisioning patterns is not obvious
Policy Grouping Concepts

• Base-Name
 - known and straight forward
 - Single Tier Grouping

• Membership
 - Consists of
 • Optional Domain
 • Value
 • Optional Base-Name
 - Users are assigned a Policy-Membership
 - Policy Entities are given 1 or more Membership-Assignments
 • Includes a Match-Type
Policy Membership (Matching)

- To determine if a Rule is assigned to the User the following conditions MUST be true:
 - At least one Membership-Assignments must exist where
 - Policy-Membership's Membership-Domain = Membership-Assignments Membership-Domain
 - Policy-Membership's Membership-Value MUST satisfy the Match-Type for the Membership-Assignments' Membership-Value

- Match-Type represents all set relationships and only one is permitted per Membership-Assignments Membership-Domain/Base-Name pair. It reflects all Set relationships:
 - Equals
 - Subset
 - Proper Subset
 - Superset
 - Proper Superset
 - Overlapping
 - No intersection
Examples

• Rule applies to any user who has a bit set in position 3 or 5 (of 8) '00101000' – use ANDNZ Match-Type to look for non-zero value
 - e.g. User with pattern '00110111' and '00101000'

• Rule applies to only user who has a bit set in position 3 or 5 (of 8) '00101000' – use INVANDNZ Match-Type
 - This process inverts the Rule's Membership-Value '00101000', binary 'AND' with the inverted value and the User's Membership-Value, then tests to see if the result is non-zero.
 - e.g. User with pattern '00100000' and '00101000' but not '00110111'
Next Steps

• Read the draft please & comment
• Will ask for WG adoption once sufficient folks have read it
Diameter Policy Grouping and Membership

draft-bertz-dime-policygroups-00

L. Bertz

IETF 96, Berlin
Agenda

- Purpose
- Provisioning Patterns
- Why Support Patterns?
- Concepts
- Policy Membership Matching
- Examples
- Next Steps
Purpose

• Provide ability to Group Policy Rules into a common name
 – Already have some Identifiers
 • Filter-Ids (UTF-8 Strings) in RFC 7155,
 – It is a list of Filter-Identifiers
 – If RADIUS support is NOT required IPFilterRule is recommended
 • Classifier-ID (OctetString) in RFC 5777
 • No consistent Rule-Id support (some in 3GPP but not all Rule Types get Rule-Ids)
 – Grouping is supported by hierarchy in 3GPP through use of Base-Name < Adopted in this proposal

• Provide an efficient mechanism for applying groups of Policy Rules that appear in multiple hierarchies
 – Akin to Charging-Characteristics used in 3GPP
 – Generalized
 – Meant to be leveraged for provisioning patterns
Provisioning Patterns

- Quite often a common grouping of Rules applies to an Authorized User based upon their
 - Domains they are subscribed to
 - Service they are being provided
 - State, paid, needs top-up, etc. with respect to the Service
- Base-Name is insufficient in such cases
 - It is top-down hierarchy
 - If a Rule appears in more than one group it must be copied and set to distinct base names
- Solutions such as arbitrary depth of hierarchy are not ideal
Why support Patterns?

• Speed in provisioning
• Reduced OTW representation
• Ability for Diameter Clients to capitalize on common filters and Rules
 – Reduction in redundant TFTs a rules
• For example, an Operator with 60M users and 3 default rules for users in post-paid, pre-paid and hotlined (un-paid bill) can signal the 3 rules then
 – Refer to them as a single bit (provisioning pattern) for all users
 – Re-arrange the rules as 3 common TFTs with the same filter (any / any) but entirely different outcomes based upon the user's 'bit' (state) set
• In today’s designs the ability to capitalize on common provisioning patterns is not obvious
Policy Grouping Concepts

- Base-Name
 - known and straightforward
 - Single Tier Grouping
- Membership
 - Consists of
 - Optional Domain
 - Value
 - Optional Base-Name
 - Users are assigned a Policy-Membership
 - Policy Entities are given 1 or more Membership-Assignments
 - Includes a Match-Type
Policy Membership (Matching)

- To determine if a Rule is assigned to the User the following conditions MUST be true at least one Membership-Assignments must exist where
 - Policy-Membership's Membership-Domain = Membership-Assignments Membership-Domain
 - Policy-Membership's Membership-Value MUST satisfy the Match-Type for the Membership-Assignments' Membership-Value

- Match-Type represents all set relationships and only one is permitted per Membership-Assignments Membership-Domain/Base-Name pair. It reflects all Set relationships
 - Equals
 - Subset
 - Proper Subset
 - Superset
 - Proper Superset
 - Overlapping
 - No intersection
Examples

• Rule applies to any user who has a bit set in position 3 or 5 (of 8) '00101000' – use ANDNZ Match-Type to look for non-zero value
 - e.g. User with pattern '00110111' and '00101000'

• Rule applies to only user who has a bit set in position 3 or 5 (of 8) '00101000' – use INVANDZ Match-Type
 - This process inverts the Rule's Membership-Value '00101000', binary 'AND' with the inverted value and the User's Membership-Value, then tests to see if the result is non-zero.
 - e.g. User with pattern '00100000' and '00101000' but not '00110111'
Next Steps

- Read the draft please & comment
- Will ask for WG adoption once sufficient folks have read it