
Inter-domain cooperative DDoS
protection mechanism

draft-nishizuka-dots-inter-domain-
mechanism-01

 Kaname Nishizuka NTT
 Liang Xia Huawei
 Jinwei Xia Huawei
 DaCheng Zhang Alibaba

 Luyuan Fang Microsoft
 Christopher Gray Comcast

 Rich Compton Charter

July 2016 Berlin

From -00 to -01

1. Add contents to explain the protocol and signaling
messages specification applies both intra-domain and
inter-domain situations;

2. Restructuring the contents of Cooperative DDoS Protection
Requirements
– Provisioning Requirements: registering messages for Automatic

Provisioning;
– Coordination Requirements: mitigation request, status exchange,

near source mitigation for inter-domain attacks;
– Returning Path Requirements: routing loops prevention.

3. Redesign DOTS signaling messages and their detailed
attributes, as well as the protocol operations;

4. A lot of editorial text changes;
5. New co-authors from Comcast and Charter.

2

Distributed Architecture

3

ISP1

ISP2

ISP3

Mitigator Customer A

Customer B

Flow Analysis

Controller

Controller

Flow Analysis

DOTS
Client

DOTS
Server

DOTS
Client

DOTS
Server

DOTS
Client

DOTS
Client

DOTS
Client

DOTS
Server

DOTS
Client

ISP ISP

Controller

DOTS
Client

DOTS
Server

DOTS
Client

ISP

• Peer-to-peer coordination；
• customer<->DOTS client, ISP controller<->DOTS server + DOTS client;
• The inter-domain coordination can be a repeated process;
• A straightforward and simple solution for the DDoS protection cooperation among small number of ISPs:

 The incomplete information may not lead to the most optimized operation;
 Configurations become more complex and error prone as the number of ISPs increases;
 By repeated coordination among multiple ISPs, It may take a long time to enforce the mitigation.

Centralized Architecture

4

• the centralized orchestrator is the core component to the inter-domain system;
• customer<->DOTS client, ISP controller<->DOTS server + DOTS client, orchestrator<->DOTS server + DOTS client;
• The inter-domain coordination is bridged by the orchestrator;
• Comparing to distributed architecture:

 The orchestrator has the HA problem;
 Centralized way facilitates the automatic provisioning of DDoS protection resource and comprehensive

information for overall optimized mitigation;
 Direct communication with orchestrator guarantees quick and fixed DDoS response time.

SOC

ISP1

ISP2

ISP3

Mitigator Customer A

Customer B

Orchestrator

Flow Analysis

Controller

Controller

Flow Analysis

DOTS
Client

DOTS
Server

DOTS
Client

DOTS
Server

DOTS
Client

DOTS
Client

DOTS
Client

DOTS
Server

DOTS
Client

ISP ISP

DOTS
Server

DOTS
Client

Orchestrator

Inter-domain DDoS Protocol

5

• Secure channel (signaling, data):
– Requirements: confidentiality, integrity and replay attack

protection;
– Mutual authentication: bidirectional certificate authentication

([ITU-T X.509]), unidirectional certificate authentication on the
DOTS server, bidirectional digital signature authentication;

– Solution in this draft: https + JSON;

• Specification for protocol and messages (no difference for

all architectures):
– Provisioning stage
– Signaling stage
– heartbeat message:

Provisioning Stage Protocol

6

• Registration process: facilitate the auto-discovery and capacity negotiation between
the DOTS client and server;
– Messages over DOTS data channel (TLS transport is recommended): registration, registration

response, registration cancelling, registration cancelling response;
– Operations: The DOTS client registers (or cancels registration) to the DOTS

registration body:
 {
 "customer_name": string;
 "ip_version": string;
 "protected_zone": {
 "index": number;
 "need_alias": string;
 "ipv4_CIDR": string;
 "ipv6_address": string;
 "BGP_route": string;
 "SIP_URI": string;
 "E164_number": string;
 "DNS_name": string;
 }
 "protected_port": string;
 "protected_protocol": string;
 "countermeasures": string;
 "tunnel_information": string;
 "next_hop": string;
 "security_profile": {
 "TLS": string;
 "DTLS": string;
 "CoAP": string;
 }
 "white_list": {
 "name": string;
 "sequence_number": string;
 "source_ip": string;
 "destination_ip": string;
 "source_port": string;
 "destination_port": string;
 "protocol": string;
 "length": string;
 "TTL": string;
 "DSCP": number;
 "ip_flags": number;
 "tcp_flags": number;
 }

 registration response body:
 {
 "customer_name": string;
 "customer_id": string;
 "alias_of_mitigation_address": {
 "index": number;
 "alias": string;
 }
 "security_profile": string;
 "access_token": string;
 "thresholds_bps": number;
 "thresholds_pps": number;
 "duration": number;
 "capable_attack_type": string;
 "registration_time": string;
 "mitigation_status": string;
 }

 "black_list": {
 "name": string;
 "sequence_number": string;
 "source_ip": string;
 "destination_ip": string;
 "source_port": string;
 "destination_port": string;
 "protocol": string;
 "length": string;
 "TTL": string;
 "DSCP": number;
 "ip_flags": number;
 "tcp_flags": number;
 }
 }

 registration cancelling body:
 {
 "customer_id": string;
 "reasons": string;
 }
 registration cancelling response body:
 {
 "customer_id": string;
 "result": string;
 }

 The DOTS server indicates the result of processing the POST request
 using HTTP response codes:
• Success: Response code 200 (OK) ;
• Fail: Response code 400 (Bad Request) or Response code 500 (Invalid query) with:
 "error_reason": number;
 0: Bad Request;
 1: Invalid Query;
 2: Server Error;
 3: Protected Zone Confliction;
 4: Countermeasure Not Supported;
 5: Security Profile Not Supported;
 6: Confliction Exists for White-list or Black-list;
 255: Others;

Signaling Stage Protocol

7

• During DDoS attack: mitigation service request and status exchange over DOTS
signaling channel under link saturation;

– Messages (asynchronous):

• DOTS client to server: mitigation initiation request, mitigation efficacy updates, mitigation
termination request, mitigation termination status acknowledgement, heartbeat;

• DOTS server to client: mitigation status updates, heartbeat.

– Operations:

DOTS client DOTS server
mitigation initiation request

mitigation status updates

mitigation efficacy updates

.........................
mitigation initiation request (mitigation scope updates)

mitigation status updates

mitigation efficacy updates

.........................
mitigation status updates (mitigation termination notification)

mitigation termination request

mitigation status updates (server termination acknowledgement)

heartbeat

heartbeat

mitigation termination status acknowledgement

Signaling Stage Protocol

8

mitigation request body:
 {
 "version": string;
 "type": string;
 "alert_id": string;
 "sender_id": string;
 "sender_asn": string;
 "mitigation_action":
number;
 "lifetime": number;
 "max_bandwidth": number;
 "packet_header": {
 "dst_ip": string;
 "alias": string;
 "dst_ports": string;
 "src_ips": string;
 "src_ports": string;
 "protocols": string;
 "tcp_flags": string;
 "fragment": string;
 "pkt_len": string;
 "icmp_type": string;
 "icmp_code": string;
 "DSCP": string;
 "TTL": string;
 }
 "current_throughputs": {
 "bps": string;
 "pps": string;
 }
 "peak_throughputs": {
 "bps": string;
 "pps": string;
 }
 "average_throughputs": {
 "bps": string;
 "pps": string;
 }
 "info": {
 "attack_types": string;
 "started": number;
 "ongoing": number;
 "severity": number;
 "direction": number;
 "health": number;
 }

 "vendor": {
 "name": string;
 "version": string;
 "payload": {
 "offset": number;
 "content": string;
 "hash": string;
 }
 }
 }

mitigation efficacy updates body:
 {
 "version": string;
 "alert_id": string;
 "sender_id": string;
 "sender_asn": string;
 "attack_status": string;
 "health": number;
 }

mitigation status updates body:
 {
 "version": string;
 "alert_id": string;
 "sender_id": string;
 "sender_asn": string;
 "status": number;
 "error_reason": number;
 "lifetime": number;
 "source_ports": string;
 "destination_ports": string;
 "source_ips": string;
 "destination_ip": string;
 "TCP_flags": string;
 "start_time": number;
 "end_time": number;
 "forwarded_total_packets": number;
 "forwarded_total_bits": number;
 "forwarded_peak_pps": number;
 "forwarded_peak_bps": number;
 "forwarded_average_pps": number;
 "forwarded_average_bps": number;
 "malicious_total_packets": number;
 "malicious_total_bits": number;
 "malicious_peak_pps": number;
 "malicious_peak_bps": number;
 "malicious_average_pps": number;
 "malicious_average_bps": number;
 "record_time": string;
 }

DOTS client to server DOTS server to client

mitigation termination request
body:
 {
 "version": string;
 "alert_id": string;
 "sender_id": string;
 "sender_asn": string;
 }

 mitigation termination status
 acknowledgement body:
 {
 "version": string;
 "alert_id": string;
 "sender_id": string;
 "sender_asn": string;
 }

heartbeat body
 {
 "version": string;
 "sender_id": string;
 "sender_asn": string;
 }

heartbeat body ...

Next Steps

• Comments are welcome

• Keep on improving, including:

– More details about DOTS messages specification,
and the protocol operation process;

– More descriptions about secure channel
(authentication, authorization, privacy), transport
mechanism.

9

Thanks!

Liang Xia (Frank)

10

