Draft Specification
for DTN TCPCLv4

n Sipo
RKF En glneering Solutions




Overview

* Motivations and goals for change

* Individual protocol changes

* Status of proposed changes

* Path forward for TCPCL




Motivations for Updates to TCPCL

1. During implementation of TCPCLv3, Scott Burleigh found
an ambiguity in bundle acknowledgment and refusal.

2. For use in a terrestrial WAN, | have a need for TLS-based
authentication and integrity. TCPCLv3 mentions TLS but
does not specify its use.

3. Contact negotiation in TCPCLv3 is limited and relatively
hard-coded.

4. Allow an endpoint to positively reject a message (rather
than simply ignoring it).



Goals for TCPCLV4

* Do not change scope or workflow of TCPCL!

> As much as possible, keep existing requirements and
behaviors. The baseline spec was a copy-paste of TCPCLv3.

o Still using single-phase contact negotiation, re-using existing
headers and message type codes.

> Allow existing implementations to be adapted for TCPCLv4.

* Re-use existing encoding, type and reason codes.
> Avoid duplication of IANA assignments.

> Since workflow is preserved, majority of message types are
retained.

° This inherits limitations from TCPCLv3 for the sake simpler
implementation changes.



Bundle Identification Problem

*In TCPCLv3 there is strict ordering of bundles (no
interleaving of segments from different bundles)
but there is no identification of individual bundles.

* |t is possible for a TCPCL transmitter to send 2+
bundles before receiving any ACK/REFUSE, and it is
also possible for a receiver to send multiple
REFUSE messages for the same bundle.

* The transmitter has no way to correlate refusals to
particular bundles.



Bundle Identi’

‘ication Solution

°In TCPCLv4 each bund

e-related message (LENGTH,

DATA SEGMENT, ACK_SEGMENT,
REFUSE_BUNDLE) now includes a 'unique' Bundle

ldentifier SDNV.

* This allows exact correlation of all messages
related to the 'same’ bundle transfer, and avoids
the problem ambiguity.

* Bit-length and reuse of bundle IDs is left to

implementation. Spec

provides some guidance.

* Goal of TCPCLv4 is to avoid overhead while still
disambiguating bundles.



Transport Security Problem

*In TCPCLv3 spec, there is only one statement
regarding transport security:

Nothing in TCPCL prevents the use of the Transport Layer
Security (TLS) protocol [RFC5246] to secure a connection.

* Possible interpretations of this statement:

> Use same TCP port number — have interoperability
problems

> Use different port number — either non-standard port or
have “duplicate” port assignments for one protocol



Transport Security Solution

* Same issue has come up for HTTP, FTP, LDAP, SMTP, POP3,
IMAP, etc. in the past.

* RFC 7605 Recommendations on Using Assigned Transport
Port Numbers, Section 7.4 states “The overall preference is
for use of a single port..”

* TCPCLv4 takes same method as LDAP, SMTP, IMAP via in-
band “STARTTLS” upgrade message.

* This behavior allows transport security to be negotiated
within a TCPCL contact.

* Each TCPCL endpoint can appIY its own security policies to
the contact (e.g. allow or disallow insecure use).

* Goal of TCPCLv4 is to avoid reliance on TLS, allow endpoints
to ignore or negotiate its use.



Secured Negotiation

* Use of STARTTLS in TCLCLv4 follows existing best
practices; contact header negotiation is repeated
after connection is secured.

* This adds some connection establishment
overhead, but no differently than other widely
deployed and well-used protocols.

* This avoids the statement in TCPCLv3 that the
contact header Endpoint ID is not to be trusted.



Parameter Negotiation Problem

* In TCPCLv3, there is a fixed-width bit field for
negotiation of contact parameters.

* This mechanism must be extended for TCPCLv4 needs,
and is not extensible for future or network-specific
needs.

* Negotiation in TCPCLv3 sets parameters for both
directions of the connection, but some really apply to
receiver-side only. TCPCLv4 will clarify the scope of
each parameter.

* Goal of TCPCLv4 is to provide no loss of fidelity when
negotiating connection parameters.




Parameter Negotiation Solution

* Follow established behavior of PPP negotiation, using
type-length-value (TLV) parameters.

o TCPCLv4 still uses single-phase negotiation, does not use
multiple-phase negotiation of PPP. Only one contact header
message is sent.

* This has several benefits:

> More refined negotiation options than Boolean
“enable/disable”. Current spec has IGNORE/ALLOW/REQUIRE
for message handling negotiation.

o Each parameter is optional. If all parameters of an endpoint are
non-negotiable then TCPCLv4 contact header is actually
shorter than TCPCLv3 header.

> Allows network-specific parameters to be added with no
change to TCPCL proper. Extensibility!



Parameters to Negotiate

*Same as TCPCLv3:
> Provide EID
o Keepalive time interval

* Changed in TCPCLvA4:

> Determine use of LENGTH, ACK_SEGMENT, and
REFUSE_BUNDLE messages (now uni-directional)

*New in TCPCLv4:
> Supported Bundle Protocol versions
> Maximum RX segment size
o TLS support




Message Rejection Problem

*In TCPCLv3 if an endpoint receives an unknown or
unexpected message, the only recourse is to
ignore it.

* This has some implications for interoperability and
troubleshooting:

> A transmitting endpoint has no way to determine
whether or not a sent message



Message Rejection Solution

* TCPCLv4 adds a new “REJECT” message to allow an
endpoint to signal an invalid message reception.
° Important point: this is not required behavior.

> A minimal implementation on closed network can avoid this
messaging.

* Includes reason code for rejection

o Can be either: not understood or not expected (in workflow)

* Current motivation is to allow rejection of STARTTLS
messages.

o Rather than having a distinct “TLS reject”, this is simply a
generic “message reject”.



TCPCL Protocol Versioning

* There is a worrisome TCPCLv3 requirement, from RFC 7242

If a node receives a contact header containing a version that is greater
than the current version of the protocol that the node implements, then
the node SHOULD interpret all fields and messages as it would
normally.

* This “forward compatibility” effectively disallows changes
to message formats.

> There is some benefit to this behavior, but the message type is only
four-bits (16 types) so new message types are expensive.

* This requirement was removed from TCPCLv4, but remains
in TCPCLv3.

o This proposed draft supersedes RFC 7242 anyway.
o TCPCLv4 could change header “magic” string if deemed necessary.

* Thoughts from WG members?



Bundle Protocol Versioning

* The current draft TCPCLv4 allows endpoints to
negotiate use of specific BP versions.

* BPbis adds additional wrinkle of different BPv6
encoding formats.

* How should TCPCL (or any other CL) handle this?

* BBbis can add an IANA registry of enumerated
encoding formats.
> CBOR would be first entry in registry.

* |s encoding negotiated per-connection or per-
bundle?



Protocol Status

* Current draft spec should be complete enough to
review for content and editorial changes

> May need to remove more vestigial statements, especially
in Section 7 “Security Considerations”.

o URL: https://tools.ietf.org/html/draft-sipos-dtn-tcpclv4-01

* A rough but usable implementation is being
worked on GitHub

o Currently used for prototyping new behaviors, not one-
for-one with draft specification.

o URL: https://github.com/BSipos-RKF/dtn-bpbis-tcpcl



https://tools.ietf.org/html/draft-sipos-dtn-tcpclv4-01
https://github.com/BSipos-RKF/dtn-bpbis-tcpcl

Working Group Adoption

* Current spec truly intended as a rough draft to
allow implementing and bashing on actual
requirements.

* Any objections to proposed changes?

* Any usefulness to BPbis approval by IESG?




