
Draft Specification
for DTN TCPCLv4
Brian Sipos

RKF Engineering Solutions

Overview
•Motivations and goals for change

• Individual protocol changes

• Status of proposed changes

•Path forward for TCPCL

Motivations for Updates to TCPCL
1. During implementation of TCPCLv3, Scott Burleigh found

an ambiguity in bundle acknowledgment and refusal.

2. For use in a terrestrial WAN, I have a need for TLS-based
authentication and integrity. TCPCLv3 mentions TLS but
does not specify its use.

3. Contact negotiation in TCPCLv3 is limited and relatively
hard-coded.

4. Allow an endpoint to positively reject a message (rather
than simply ignoring it).

Goals for TCPCLv4
• Do not change scope or workflow of TCPCL!

◦ As much as possible, keep existing requirements and
behaviors. The baseline spec was a copy-paste of TCPCLv3.

◦ Still using single-phase contact negotiation, re-using existing
headers and message type codes.

◦ Allow existing implementations to be adapted for TCPCLv4.

• Re-use existing encoding, type and reason codes.
◦ Avoid duplication of IANA assignments.
◦ Since workflow is preserved, majority of message types are

retained.
◦ This inherits limitations from TCPCLv3 for the sake simpler

implementation changes.

Bundle Identification Problem
• In TCPCLv3 there is strict ordering of bundles (no

interleaving of segments from different bundles)
but there is no identification of individual bundles.

• It is possible for a TCPCL transmitter to send 2+
bundles before receiving any ACK/REFUSE, and it is
also possible for a receiver to send multiple
REFUSE messages for the same bundle.

• The transmitter has no way to correlate refusals to
particular bundles.

Bundle Identification Solution
• In TCPCLv4 each bundle-related message (LENGTH,

DATA_SEGMENT, ACK_SEGMENT,
REFUSE_BUNDLE) now includes a 'unique' Bundle
Identifier SDNV.

• This allows exact correlation of all messages
related to the 'same' bundle transfer, and avoids
the problem ambiguity.

•Bit-length and reuse of bundle IDs is left to
implementation. Spec provides some guidance.

•Goal of TCPCLv4 is to avoid overhead while still
disambiguating bundles.

Transport Security Problem
• In TCPCLv3 spec, there is only one statement

regarding transport security:
Nothing in TCPCL prevents the use of the Transport Layer
Security (TLS) protocol [RFC5246] to secure a connection.

•Possible interpretations of this statement:
◦ Use same TCP port number – have interoperability

problems

◦ Use different port number – either non-standard port or
have “duplicate” port assignments for one protocol

Transport Security Solution
• Same issue has come up for HTTP, FTP, LDAP, SMTP, POP3,

IMAP, etc. in the past.

• RFC 7605 Recommendations on Using Assigned Transport
Port Numbers, Section 7.4 states “The overall preference is
for use of a single port...”

• TCPCLv4 takes same method as LDAP, SMTP, IMAP via in-
band “STARTTLS” upgrade message.

• This behavior allows transport security to be negotiated
within a TCPCL contact.

• Each TCPCL endpoint can apply its own security policies to
the contact (e.g. allow or disallow insecure use).

• Goal of TCPCLv4 is to avoid reliance on TLS, allow endpoints
to ignore or negotiate its use.

Secured Negotiation
•Use of STARTTLS in TCLCLv4 follows existing best

practices; contact header negotiation is repeated
after connection is secured.

• This adds some connection establishment
overhead, but no differently than other widely
deployed and well-used protocols.

• This avoids the statement in TCPCLv3 that the
contact header Endpoint ID is not to be trusted.

Parameter Negotiation Problem
• In TCPCLv3, there is a fixed-width bit field for

negotiation of contact parameters.

• This mechanism must be extended for TCPCLv4 needs,
and is not extensible for future or network-specific
needs.

• Negotiation in TCPCLv3 sets parameters for both
directions of the connection, but some really apply to
receiver-side only. TCPCLv4 will clarify the scope of
each parameter.

• Goal of TCPCLv4 is to provide no loss of fidelity when
negotiating connection parameters.

Parameter Negotiation Solution
• Follow established behavior of PPP negotiation, using

type-length-value (TLV) parameters.
◦ TCPCLv4 still uses single-phase negotiation, does not use

multiple-phase negotiation of PPP. Only one contact header
message is sent.

• This has several benefits:
◦ More refined negotiation options than Boolean

“enable/disable”. Current spec has IGNORE/ALLOW/REQUIRE
for message handling negotiation.

◦ Each parameter is optional. If all parameters of an endpoint are
non-negotiable then TCPCLv4 contact header is actually
shorter than TCPCLv3 header.

◦ Allows network-specific parameters to be added with no
change to TCPCL proper. Extensibility!

Parameters to Negotiate
• Same as TCPCLv3:

◦ Provide EID

◦ Keepalive time interval

•Changed in TCPCLv4:
◦ Determine use of LENGTH, ACK_SEGMENT, and

REFUSE_BUNDLE messages (now uni-directional)

•New in TCPCLv4:
◦ Supported Bundle Protocol versions

◦ Maximum RX segment size

◦ TLS support

Message Rejection Problem
• In TCPCLv3 if an endpoint receives an unknown or

unexpected message, the only recourse is to
ignore it.

• This has some implications for interoperability and
troubleshooting:
◦ A transmitting endpoint has no way to determine

whether or not a sent message

Message Rejection Solution
• TCPCLv4 adds a new “REJECT” message to allow an

endpoint to signal an invalid message reception.
◦ Important point: this is not required behavior.

◦ A minimal implementation on closed network can avoid this
messaging.

• Includes reason code for rejection
◦ Can be either: not understood or not expected (in workflow)

• Current motivation is to allow rejection of STARTTLS
messages.
◦ Rather than having a distinct “TLS reject”, this is simply a

generic “message reject”.

TCPCL Protocol Versioning
• There is a worrisome TCPCLv3 requirement, from RFC 7242:

If a node receives a contact header containing a version that is greater
than the current version of the protocol that the node implements, then
the node SHOULD interpret all fields and messages as it would
normally.

• This “forward compatibility” effectively disallows changes
to message formats.
◦ There is some benefit to this behavior, but the message type is only

four-bits (16 types) so new message types are expensive.

• This requirement was removed from TCPCLv4, but remains
in TCPCLv3.
◦ This proposed draft supersedes RFC 7242 anyway.
◦ TCPCLv4 could change header “magic” string if deemed necessary.

• Thoughts from WG members?

Bundle Protocol Versioning
• The current draft TCPCLv4 allows endpoints to

negotiate use of specific BP versions.

•BPbis adds additional wrinkle of different BPv6
encoding formats.

•How should TCPCL (or any other CL) handle this?

•BBbis can add an IANA registry of enumerated
encoding formats.
◦ CBOR would be first entry in registry.

• Is encoding negotiated per-connection or per-
bundle?

Protocol Status
•Current draft spec should be complete enough to

review for content and editorial changes
◦ May need to remove more vestigial statements, especially

in Section 7 “Security Considerations”.

◦ URL: https://tools.ietf.org/html/draft-sipos-dtn-tcpclv4-01

•A rough but usable implementation is being
worked on GitHub
◦ Currently used for prototyping new behaviors, not one-

for-one with draft specification.

◦ URL: https://github.com/BSipos-RKF/dtn-bpbis-tcpcl

https://tools.ietf.org/html/draft-sipos-dtn-tcpclv4-01
https://github.com/BSipos-RKF/dtn-bpbis-tcpcl

Working Group Adoption
•Current spec truly intended as a rough draft to

allow implementing and bashing on actual
requirements.

•Any objections to proposed changes?

•Any usefulness to BPbis approval by IESG?

