
Deployment experiences with HNCP
(the feel good talk)

Juliusz Chroboczek, joint work with Dorine Chagnon
IRIF

Université Paris-Diderot (Paris 7)

16 July 2016

1/17



Background 1: HNCP

HNCP is the address configuration protocol of the
Homenet protocol suite.

HNCP is designed to configure unmanaged, small,
stable, prefix-based networks.

Thesis:
– HNCP (the protocol) supports use cases beyond

Homenet;
– HNCP must eventually support use cases beyond

Homenet (or be extended to do so).

2/17



Important note

This talk is about pushing HNCP beyond what it was
designed to do.

I will speak about limitations of hnetd. These limitations
do not apply to the Homenet use case.

3/17



Use case 1: partially managed networks

HNCP was designed for unmanaged networks.

Networks configured by HNCP may turn out to be
partially managed :

– a given link must have a specific prefix
(think DMZ);

– a given host must have a specific address
(think web server);

– a given link must be used for last-resort only
(think monetary cost).

While this is out of scope for Homenet, it will be
requested.

4/17



Use case 2: mesh networks

HNCP was designed for networks composed of stable
links that are assigned prefixes (Internet-style).

Parts of networks configured by HNCP may turn out to
be wireless meshes:

– flat routing (/128);
– persistently lossy links.

While this is out of scope for Homenet, it will be
requested.

5/17



Let’s try it out

HNCP most probably supports use cases beyond
Homenet.

What about the implementations?

Ideas are tested by experiment. That is the core of
science. Everything else is bookkeeping.
— Zombie Feynman

Let’s build a partially managed wireless mesh network
configured by HNCP.

6/17



Background 2: the Babel Towers mesh network

We have a permanent testbed:
a mesh network composed of 6 to
15 routers:

– double-stack;
– links of varying quality (some very lossy);
– routing uses Babel;
– address configuration done by AHCP (don’t ask);
– IPv4 edge router uses DHCPv4 + NAT;
– IPv6 edge router uses RIPng.

Plan: retire AHCP, replace it with HNCP. See what
breaks.

7/17



The good (1)

Dorine Chagnon volunteered to
spend a month of her summer
holidays upgrading all of our
routers and deploying HNCP.

Conclusions:

– give a first year student a router, tell them to install
a tftp client on their laptop, and three days later it
runs OpenWRT trunk, Babel and hnetd;

– at that point, you see the student running three
instances of tcpdump; onlookers are impressed;

– two weeks later, the whole network is running
Babel+HNCP.

Note: this study was done with a sample of size 1.
We’re computer scientists after all, not real scientists.

8/17



The good (2)

Hnetd works.

It has no right to:
– we have some persistently lossy links

– HNCP is not designed to work over those;
– HNCP synchronises a lot of state;

– and there is no fragmentation mechanism;
– we only have a single /62 to play with

– hnetd assigns /80, uses stateful DHCPv6;
– Android and Blackberry fall back to IPv4

(please implement DHCPv6, or SLAAC in /80).

9/17



The good (2)

Hnetd works.

It has no right to:
– we have some persistently lossy links

– HNCP is not designed to work over those;
– HNCP synchronises a lot of state;

– and there is no fragmentation mechanism;
– we only have a single /62 to play with

– hnetd assigns /80, uses stateful DHCPv6;
– Android and Blackberry fall back to IPv4

(please implement DHCPv6, or SLAAC in /80).

9/17



A lot of state
22:22:07.040949 IP6 (hlim 64, next-header UDP (17) payload length: 1388)

fe80::e046:9aff:fe4e:912e.8231 > fe80::6123:e33b:1dd3:c0be.8231:
[udp sum ok] hncp (1380)

Node endpoint (12) NID: 4a:bd:6f:79 EPID: 00000001
Network state (12) hash: 7ef5adad143cf6fe
Node state (24) NID: 02:ff:1e:ce seqno: 1844 563.77s hash: 1c9133a594b19865
Node state (24) NID: 4a:bd:6f:79 seqno: 425 268.65s hash: 0fc682d83bf6c9a1
Node state (24) NID: 75:05:c4:15 seqno: 67022 8.32s hash: e55b1a59267c9a28
Node state (24) NID: 7b:ac:d0:4c seqno: 3 168.60s hash: 122f0256087259cf
Node state (24) NID: 90:d1:74:28 seqno: 5716 575.60s hash: ff114b3525db5096
Node state (24) NID: 9b:18:b7:26 seqno: 16670 251.40s hash: 33905a9c7c773c8b
Node state (24) NID: ef:36:04:89 seqno: 34959 169.66s hash: b752659da2bb9ef5
Node state (1188) NID: 75:05:c4:15 seqno: 67022 8.32s hash: e55b1a59267c9a28

Peer (x6), HNCP-Version, Assigned-Prefix (x7), Node-Address (x12),
DNS-Delegated-Zone (x11), Node-Name

– This is a unicast exchange;
– there are 7 short node state TLVs,

one for each router in the network;
– a single long node state TLV has been piggybacked

onto the same packet (1188 octets!).

(Tcpdump support by Antonin Décimo and Jean-Raphaël
Gaglione.)

10/17



A lot of state: long node state TLV
Node state (1204) NID: ef:36:04:89 seqno: 34955 6.46s hash: a94bfa15b478c76d

Peer (16) Peer-NID: 02:ff:1e:ce Peer-EPID: 00000005 Local-EPID: 00000003
Peer (16) Peer-NID: 02:ff:1e:ce Peer-EPID: 00000006 Local-EPID: 00000004
Peer (16) Peer-NID: 75:05:c4:15 Peer-EPID: 00000002 Local-EPID: 00000003
Peer (16) Peer-NID: 90:d1:74:28 Peer-EPID: 00000003 Local-EPID: 00000004
Peer (16) Peer-NID: 90:d1:74:28 Peer-EPID: 00000004 Local-EPID: 00000003
Peer (16) Peer-NID: 9b:18:b7:26 Peer-EPID: 00000002 Local-EPID: 00000004
Peer (16) Peer-NID: 9b:18:b7:26 Peer-EPID: 00000003 Local-EPID: 00000003
HNCP-Version (22) M: 0 P: 4 H: 4 L: 4 User-agent: hnetd/cda52dc
Assigned-Prefix (18) EPID: 00000001 Rsv: 0 Prty: 2 Prefix: t\0x05
Assigned-Prefix (18) EPID: 00000002 Rsv: 0 Prty: 2 Prefix: t\0x05
Assigned-Prefix (18) EPID: 00000004 Rsv: 0 Prty: 2 Prefix: t\0x05
Assigned-Prefix (20) EPID: 00000001 Rsv: 0 Prty: 2 Prefix: t\0x05
Assigned-Prefix (20) EPID: 00000002 Rsv: 0 Prty: 3 Prefix: t\0x05
Assigned-Prefix (25) EPID: 00000001 Rsv: 0 Prty: 2 Prefix: ::/0
Assigned-Prefix (25) EPID: 00000002 Rsv: 0 Prty: 2 Prefix: ::/0
Node-Address (24) EPID: 00000001 IP Address: 10.219.152.5
Node-Address (24) EPID: 00000001 IP Address: 2001:660:3301:9209:1e::5
Node-Address (24) EPID: 00000001 IP Address: fd1f:f88c:e207:65::5
Node-Address (24) EPID: 00000002 IP Address: 10.191.218.61
Node-Address (24) EPID: 00000002 IP Address: 2001:660:3301:920b:9::3d
Node-Address (24) EPID: 00000002 IP Address: fd1f:f88c:e207:47::3d
Node-Address (24) EPID: 00000003 IP Address: 10.0.116.30
Node-Address (24) EPID: 00000003 IP Address: 2001:660:3301:9209:9::1e
Node-Address (24) EPID: 00000003 IP Address: fd1f:f88c:e207:dba3::1e
Node-Address (24) EPID: 00000004 IP Address: 10.0.96.5
Node-Address (24) EPID: 00000004 IP Address: 2001:660:3301:9208:79::5
Node-Address (24) EPID: 00000004 IP Address: fd1f:f88c:e207:78::5
DNS-Delegated-Zone (33) IP-Address: 2001:660:3301:9209:1e::5 lb- lan.r.home
DNS-Delegated-Zone (35) IP-Address: 2001:660:3301:9208:79::5 lb- wlan1.r.home
DNS-Delegated-Zone (35) IP-Address: 2001:660:3301:920b:9::3d lb- wlan0.r.home
DNS-Delegated-Zone (36) IP-Address: 2001:660:3301:9209:9::1e --- wlan01.r.home
DNS-Delegated-Zone (46) IP-Address: 2001:660:3301:9209:1e::5 --- 152.219.10.in-addr.arpa
...

11/17



The bad (1)

Although we’re pushing HNCP way beyond what it was
designed to do,
I have almost nothing bad to say about HNCP.

We witness refloodings of node state every few dozen
seconds. They do not cause renumbering.

Persistently lossy links cause yo-yo neighbour
associations (up-down-up-down).

A B C

We probably need hysteresis in link sensing.

12/17



The bad (1)

Although we’re pushing HNCP way beyond what it was
designed to do,
I have almost nothing bad to say about HNCP.

We witness refloodings of node state every few dozen
seconds. They do not cause renumbering.

Persistently lossy links cause yo-yo neighbour
associations (up-down-up-down).

A B C

We probably need hysteresis in link sensing.

12/17



The bad (2)

Although we’re pushing HNCP way beyond what it was
designed to do, I have almost nothing bad to say about
HNCP.

But hnetd (the implementation) has some limitations:
– bugs;
– undocumented but necessary features;
– missing features.

13/17



Bugs

We found a number of minor bugs in hnetd.
The developers are responsive, even when on vacation.

Bugs are a fact of life, but at least under OpenWRT,
hnetd is difficult to debug:

– incomprehensible logging;
– scripts fail silently;
– undocumented tools;
– OpenWRT is not friendly to debugging.

We need better tools.

(We’re working on it.)

14/17



Undocumented features

Our IPv6 edge router speaks RIPng to the outside world.

In order to announce the prefix into HNCP, we had to
set up a static route in OpenWRT:

config interface ’wan6’
option ifname ’eth1’
option proto ’static’
option ip6addr ’2001:660:3301:9202::ac17:248b/64’
option ip6gw ’2001:660:3301:9202::ac17:2ffe’
option ip6prefix ’2001:660:3301:9208::/62’
option delegate 0

Option delegate is completely undocumented
(and we don’t know what it means).

15/17



Missing features

Hnetd is missing some important features:
– no way to announce a prefix without setting up a

static route with hard-wired gateway address;
– no way to make a static prefix assignment

(DMZ link);
– no way to make a static address assignment

(for servers).
Supported by HNCP.
These are limitations of hnetd or the way it is
integrated into OpenWRT.

16/17



Conclusion

HNCP works surprisingly well:
– in lossy mesh networks (but harmless reflooding);
– in partially managed networks.

Hnetd has some limitations, let’s fix them.

Further work:
– add Bird to the network (Bird speaks Babel);
– add shncpd to the network;
– build debugging tools:

– tcpdump (done);
– wireshark (partly done);
– visualisation à la Babelweb (in progress).

17/17


