
Secondary

Certificates

1

Server Certificate

C S
C S

CERTIFICATE_REQUEST

CERTIFICATE

CERTIFICATE_PROOF

Request (HEADERS…)

CERTIFICATE_NEEDED

USE_CERTIFICATE

Stream N Stream 0

2

Client Certificate

C S
C S

CERTIFICATE_REQUEST

CERTIFICATE

CERTIFICATE_PROOF

Request (HEADERS…)

CERTIFICATE_NEEDED

USE_CERTIFICATE

Response (HEADERS…)

Stream N Stream 0

3

Why do certs in HTTP?

 Multiplexing and TLS

 TLS: One server identity, one client identity

 Unless this changes…?

 HTTP: Many requests, possibly distinct identities

 Multiplexing and client certs

 HTTP/2 prohibits renegotiation

 Even if it didn’t, most TLS 1.2 implementations can’t do

renegotiation while application data flows

 TLS 1.3 might improve this

 Still have to bind HTTP requests and TLS CertificateRequests

 Multiplexing and server certs

 HTTP/2 connection coalescing only works if the server cert

has all possible names

 Forces servers to use mega-certs 4

Changes since Buenos Aires

 Merged client and server drafts, per WG feedback

 Permit unsolicited offers of certificates

 Helps the AUTOMATIC_USE case substantially

 Requires declaring acceptable signature methods in
SETTINGS

 Certificates can include “supporting data”

 OCSP

 Signed Certificate Timestamp

 Possible future application: DNSSec for TLSA, A, AAAA,
etc. records

 Call for Adoption

5

Key critiques

 Memory explosion – have to persist certificates forever!

 Might be good to allow a peer to indicate it has

“forgotten” a certificate

 Not everything is a cert!

 PSK, etc.

 Can be made to look cert-like, or could add a credential-

type field

 Client/server symmetry is overkill!

 Insufficient binding of proof to certificate!

 Defer to our crypto brethren to make this better

 Clients shouldn’t have to pick between AUTOMATIC_USE

and losing 1 RTT!

 Allow unsolicited USE_CERTIFICATE?

 Departs further from the TLS semantics 6

Biggest Critique

 Currently uses a 32-bit HTTP/2 SETTINGS value to

convey signature methods and supplemental data types

 16-bit bitmask for each

 Missing way to convey other properties, like supported

certificate types

 Severely constrains future expansion and

experimentation

 Requires re-defining all currently-interesting values into

a new registry

 Why can’t we just use the values TLS has

already defined for such things?

7

Because RFC 7540 said so!

8

EXTENDED_SETTINGS

9

Enough for everyone?

 Some uses need much more than 32 bits

 Certificates would ideally use an array of

HashAndSignatureAlgorithm values from the TLS registry

 Also should convey acceptable certificate types

 Some uses need fewer than 32 bits, or none:

 Is anyone actually using a 4GB HPACK header table?

 SETTINGS_ENABLE_PUSH: “Any value other than 0 or 1

MUST be treated as a connection error of type

PROTOCOL_ERROR.”

 draft-kerwin-http2-encoded-data: “Any value other than 0

or 1 MUST be treated as a connection error of type

PROTOCOL_ERROR.”

 Others?

 Exactly 32 bits is too constrained
10

Payload layout

SETTINGS EXTENDED_SETTINGS

11

Identifier (16)

Value (32)

Identifier (16)

Contents (?) …

Length (16)

EXTENDED_SETTINGS vs.

vanilla SETTINGS
 Borrows heavily from RFC7540 SETTINGS text

 Values are length-prefixed blobs

 Currently static 16-bit length; could do something variable if
desired

 ACK works differently:

 Sender of EXTENDED_SETTINGS sets flag if ACK is desired

 Recipient sends back EXTENDED_SETTINGS_ACK listing the
values which it understood from the EXTENDED_SETTINGS
frame

 If it received the frame, but didn’t understand any of the values,
the ACK is sent but empty

 Never-seen is a different value than zero

 Implicitly true in SETTINGS as well; RFC 7540 defines some
initial values which can’t be expressed on the wire.

 Possible future optimization for Boolean values

 Reserve a bit somewhere, use if length=0
12

Should we do this?

 Subjectively better than using the current bitmask

approach

 Strictly better than defining a CERT_SETTINGS frame

purely for the certificates draft

 Negligible improvement in chattiness for small things to

migrate

 Even worse if only 1-2 things ever use it and you’re

sending EXTENDED_SETTINGS only for one flag

13

