SFC-enabled I2NSF Architecture
(draft-hyun-i2nsf-sfc-enabled-i2nsf-00)

'llfnhﬂlh ¥

| A A ‘“Eu.“‘ E lelulﬁii‘l et M

IETF 96, Berlin, Germany
ol
e O July 21, 2016

6 SUNG KYUN KWAN S. Hyun, S. Woo, Y. Yeo, E T I
=) UNIVERSITY(SKKU) J. Jeong and J. Park I {

Contents

Il Introduction

|

Introduction ® -

v

* This document describes an architecture of the I2ZNSF
framework using security function chaining for the traffic
steering.

= Service Functions (i.e., Network Security Functions)
determine down-stream paths.

= What information is going from Security Controller to
Service Function and vice versa?

Motivation W

New Information Model
& New Data Model _

We need to STEER the
acket/flow to the subs
module(function)

Leveraging SFC to
STEER the packet/fld

We focused on
HOW TO REALIZE?S

}

It usually runs as the first step to handle traffic. According to
the results of network security function, the content security
and attack mitigation sub-models can be enforced

O

Content Call Network Call Attack
Security - Security Mitigation
Sub-Model Sub-Model Sub-Model

<Information model for I2NSF capability interface>
Reference: draft-xia-i2Znsf-capability-interface-im-05

Security
Client

SFC Policy Manager

|
|
I2NSF Client I
|
|

* Interpreting a high-
level SFC policy (or
| configuration) into a
low-level SFC policy
(or configuration)

I Security Client Facing Interface
| Management

Security
Controller

» Delivering the
interpreted policy to
Classifiers.

SFC SFC
Policy Catalog
Manager Manager

Mgnt System

[

[

I

I

Registration Interface Developer’s I
|

|

Instance Layer Interface Ji

|

* Generating and

il il el il i il distributing an SF
I Security NSF Facing Interface forwarding table

I Network R A

Exchanged Information

1. Policy

Conditionl Condition 2 Path ID

2. Forwarding table

Path ID Path Index

5

Security

SFC Catalog Manager
Client

|
. 1| © Maintaining the
I2NSF Client | information of every
|
|

available SF instance.

B urity - SR Cliont Fae e, 1| *+ Helping to generate a
| Y et racijgunierace forwarding table entry

| Management :
relevant to a given
SFP.

Security
Controller

* Requesting
Developer's
Management System
for the dynamic

_____________________________________ instantiation or
I Security NSF Facing Interface elimination.

I Network R A

SFC SFC
Policy Catalog
Manager Manager

Mgnt System

[

[

I

I

Registration Interface Developer’s I
|

|

Instance Layer Interface fi

|

Exchanged Information

1. Reporting from SFs
SF ID Load Status Inspection
Result

2. Instantiation or Elimination

Necessary

6

: Security I
I Client I
1 I2NSF Client I
[I
[[
el e e e e e e
| Security Client Facing Interface

| Management

Security
Controller
Registration Interface Developer’s

Mgnt System

SFC SFC
Policy Catalog

Manager Manager Instance Layer Interface

I Security
I Network

Developer’s
Management System

This component could
exist on third party area
(e.g., SF vendors’ cloud)

» Creating additional SF
instances when the
existing instances
(called SF) of an NSF
are congested

« Eliminating some of
the SF instances
which are unused

SFC Catalog Manager
will request SF
instantiation or
elimination based on SFs’
current status.

Use Case of VoIP/VoLTE (1/6, :

[New Client Policy }

(e.g., VoIP/VOLTE)

SF Client

Client Facing Interface

ity Controller

SFC
Policy
Manager

SFC
Catalog
Manager

T ReYeloREns
. . Mgnt System
Registration

Interface
Instance Layer

Interface
Interface

pd \

Classifier ¢eesssssssss———) SF Forwarderl 'ﬁ'; SF Forwarder2

Firewall \\\"*‘\I DPI
(e.g., VoIP)

10

Use Case of VolP/\VoLTE (2/6’ Co

I2NSF Client

Client Facing Interface

Security Controller

SFC SFC

- Developer’s
Policy Catalog _ Mgnt Sypstem
Manager Manager Registration

Interface

Instance Layer
Ingress Packet Interface
4 I NSF Facing Interface

Classifier ¢eesssssssss———) SF Forwarderl _’1 SF Forwarder2

’\\

1~

Ingress Packet arrives at
ifi Firewall " DP
Classifier (e.g., VoIP)

11

Use Case of VOIPVOLTE (3/6) . -

I2NSF Client

Client Facing Interface

Security Controller

SFC SFC

- Developer’s
Policy Catalog _ Mgnt Sypstem
Manager Manager Registration

Interface

Instance Layer
Interface

NSF Facing Interface

Classifier ¢eesssssssss———) SF Forwarderl 'ﬁ'; SF Forwarder2 “

_ DPI
Attach NSH to Ingress Firewall (e.g., VoIP)

Packet according to
Classification Policy

*NSH: Network Service Header 12

Use Case of VOIPVOLTE (4/6) .~ -

I2NSF Client

I Client Facing Interface

- Developer’s
Policy Catalog _ Mgnt Sypstem
Manager Manager Registration

Interface

Security Controller

SFC SFC

Instance Layer
Interface

NSF Facing Interface

Classifier ¢eesssssssss———) SF Forwarderl _’1 SF Forwarder2

’\\

nsH] IR . ' |
_ *DPI
Firewall (e.g., VoIP)
Mirror the traffic packets
Forward the traffic packets to SF Forwarder2
toward the Intranet through Mirroring

13

Use Case of VoIPVOLTE (5/6) Co

[I2NSF Client J

Security Controller

e o Developer’s
Policy Catalog P
i i Mgnt System
Manager Manager Registration
Interface
Instance Layer
Interface
NSF Facing Interface
- Unusual call pattern
(VolP)
= /)
[Classifier Jﬁ[SF Forwarderl]ﬁ[SF Forwarder?2] /J
£ "
L O
: o DPI
Firewall

(e.g., VoIP)

Drop the traffic packets!
14

Use Case of VoIP/VOLTE (6/6) Co

I2NSF Client

I Client Facing Interface

Security Controller

SFC
Policy
Manager

SFC

Catalog

Manager Registration
Interface

Developer’s
Mgnt System

Instance Layer
Report the processing Interface
result for a new policy at
I2NSF Client

NSF Facing Interface

[
(|
—

SF Forwarder2 J /J
\l/

[Classifier Jﬁ[SF Forwarderl
N DPI

15

Next Steps e

= We will design Information Models & Data Models for
the following two interfaces on traffic steering enabled
I2NSF architecture.

= Registration Interface
* between Security Controller & Developer’'s Mgnt System

* Instance Layer Interface
= between Developer’'s Mgnt System & Security Function

* To prove the effectiveness of our architecture with new
data models, we will implement the traffic steering
enabled I2ZNSF architecture.

16

