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* This document describes an architecture of the I2ZNSF
framework using security function chaining for the traffic
steering.

= Service Functions (i.e., Network Security Functions)
determine down-stream paths.

= What information is going from Security Controller to
Service Function and vice versa?




Motivation W

New Information Model
& New Data Model _

We need to STEER the
acket/flow to the subs
module(function)

Leveraging SFC to
STEER the packet/fld

We focused on
HOW TO REALIZE?S

}

It usually runs as the first step to handle traffic. According to
the results of network security function, the content security
and attack mitigation sub-models can be enforced

O

Content Call Network Call Attack
Security - Security Mitigation
Sub-Model Sub-Model Sub-Model

<Information model for I2NSF capability interface>
Reference: draft-xia-i2Znsf-capability-interface-im-05
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Use Case of VoIP/VoLTE (1/6, :
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Use Case of VolP/\VoLTE (2/6’ Co
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Use Case of VOIPVOLTE (3/6) . -
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*NSH: Network Service Header 12



Use Case of VOIPVOLTE (4/6) .~ -
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Use Case of VoIPVOLTE (5/6) Co
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Use Case of VoIP/VOLTE (6/6) Co
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Next Steps e

= We will design Information Models & Data Models for
the following two interfaces on traffic steering enabled
I2NSF architecture.

= Registration Interface
* between Security Controller & Developer’'s Mgnt System

* Instance Layer Interface
= between Developer’'s Mgnt System & Security Function

* To prove the effectiveness of our architecture with new
data models, we will implement the traffic steering
enabled I2ZNSF architecture.

16




