
Internet	of	(Named)	Things:	
NDN	Protocol	Stack	for	RIOT-OS	

Wentao	Shang,	Alex	Afanasyev,	Lixia	Zhang	
	

Presented	by	Alex	Afanasyev	

July	21,	2016	
ICNRG	MeeJng,	Berlin,	Germany	

The	Design	and	Implementa9on	of	the	NDN	Protocol	Stack	for	RIOT-OS.	
Wentao	Shang,	Alexander	Afanasyev,	and	Lixia	Zhang.	
NDN,	Technical	Report	NDN-0043,	Revision	1,	July	16,	2016	

ICN/NDN	“Edge”	for	IoT	
•  Forget	about	hassle	with	managing	IP	addresses	

•  Bring	IoT	semanJcs	to	the	network	layer	
–  Name	the	“things”	and	operaJons	on	“things”	

•  “temperature	in	the	room”,	“humidity	on	the	second	floor”	
•  “blood	pressure”,	“body	temperature”	
•  “max/min/avg	pH	of	soil	in	specific	point	of	US	soil	grid”	

–  Focus	on	data	associated	with	things,	not	devices	
•  status	informaJon	or	actuaJon	commands	

–  Secure	data	directly	

ICNRG	MeeJng,	Berlin,	Germany	 2	

W.	Shang	et.	al,	"Named	Data	Networking	of	Things,”	in	proc.	of	IoTDI’2016	
hbp://lasr.cs.ucla.edu/afanasyev/data/files/Shang/ndn-IOTDI-2016.pdf		

IoT	at	the	Edge	
•  Ultra	low	cost,	longevity	

–  constrained	babery,	low-power	networking,	limited	memory,	low	CPU	
–  SAMR21-PRO:	32-bit	ARM,	48	MHz,	32KB	RAM,	256KB	flash	

•  RIOT-OS:	mulJ-plagorm	light-weight	OS	
–  hbps://www.riot-os.org/		
–  C	and	C++	programming	environment	
–  micro-kernel	for	mulJ-threading,	priority	scheduling,	interrupt	handling,	

IPC	
–  standard	build	tools	(gcc,	make)	
–  simulator	for	tesJng	on	Linux	PCs	
–  gaining	a	lot	of	momentum	

ICNRG	MeeJng,	Berlin,	Germany	 3	

Other	plagorms	
•  ConJki		

•  hbp://www.conJki-os.org/		
•  ARMmbed	

•  hbps://www.mbed.com/		
•  JnyOS	

•  hbp://Jnyos.net/		

NDN-RIOT:	NDN	For	RIOT-OS	
•  OpJmized	for	IoT	apps		
•  Memory	efficient	packet	encoding	&	decoding	
•  Data-centric	security	support	
•  Basic	stateful	NDN	packet	forwarding	
•  Support	for	802.15.4	and	Ethernet	
•  ApplicaJon	API	

•  A	few	basic	examples	
–  hbps://github.com/named-data-iot/ndn-riot-examples		

ICNRG	MeeJng,	Berlin,	Germany	 4	

Open	source,	contribuJons	welcome	
hbps://github.com/named-data-iot/ndn-riot		

NDN-RIOT	Architecture	

ICNRG	MeeJng,	Berlin,	Germany	 5	

NDN
app

NDN-
RIOT

module

Net
Device
Driver

Sched Interrupt
HandlerIPC

CPU Timer NIC Peripherals

IPC IPCThreads

RIOT-OS Core

Hardware

Memory-OpJmized	Packet	Decoding	

•  Shared	memory	block	structure	to	move	
packets	
– avoid	memory	copy	in	most	cases	

•  On-demand	packet	field	extracJon	
– avoid	memory	for	decoded	meta	data	

ICNRG	MeeJng,	Berlin,	Germany	 6	

Security	Support	
•  ECDSA	

–  micro-ecc	library	(hbps://github.com/kmackay/micro-ecc)		
–  secp256r1	curve	with	64-byte	signatures	
–  determinisJc	signing	(RFC	6979)	given	lack	of	good	entropy	on	
many	current	devices	
•  keys	need	to	be	generated	outside	the	device	

•  no	RSA	
–  too	much	overhead	and	too	expensive	to	produce	signatures	

•  HMAC	
–  RIOT-OS	built-in	APIs	

ICNRG	MeeJng,	Berlin,	Germany	 7	

Packet	Forwarding	
•  PIT	

–  exact	match	for	interest	
–  “any”	prefix	match	for	data	(all	interests	that	are	prefix	of	the	data)	

•  FIB	
–  longest	prefix	match	for	interest	names	
–  staJc	compile-Jme	prefix	registraJon	
–  IPC-based	run-Jme	prefix	registraJon	(for	local	apps)	

•  CS	
–  “any”	match	for	interests	(a	data	for	which	interest	is	a	prefix)	
–  compile-Jme	adjustable	size	(~24KB	default	seongs)	
–  FIFO	policy	

•  Work	in	progress	
–  Extendable	/	adapJve	interest	forwarding	strategy		
–  Support	for	basic	Interest	selectors	
–  Extend	dynamic	prefix	registraJon	and	maintenance	

ICNRG	MeeJng,	Berlin,	Germany	 8	

L2	CommunicaJon	
•  Run	directly	over	layer	2	interfaces	
–  IEEE	802.15.4	

•  send	packets	to	FF:FF	(broadcast)	
–  Ethernet	(e.g.,	debugging	on	naJve	plaform)	

•  send	packets	to		FF:FF:FF:FF:FF:FF:FF	(broadcast)	
•  Simple	hop-by-hop	fragmentaJon	if	needed	

ICNRG	MeeJng,	Berlin,	Germany	 9	

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+
|1|0|M| SEQ | Identification |
+-+

ApplicaJon	API	

ndn_app_create ndn_app_run ndn_app_destroy

ndn_app_schedule

ndn_app_express_interest

ndn_app_register_prefix

ndn_app_put_data

NDN-RIOT Thread

ICNRG	MeeJng,	Berlin,	Germany	 10	

ICNRG	MeeJng,	Berlin,	Germany	 11	

NDN ON RIOT-OS
{ WENTAO SHANG, ALEX AFANASYEV, AND LIXIA ZHANG } UCLA

MOTIVATION
• Named Data Networking (NDN) has shown

great potential in supporting network applica-
tions in the IoT environments [1].

• The goal of this project is to bring NDN proto-
col support to the constrained IoT devices with
100s of KB memory and low-power CPU.

• We build on top of a popular IoT software plat-
form called RIOT-OS [2].

RIOT-OS FEATURES

• Common OS abstraction across multiple plat-
forms (ARM, Arduino, MSP430)

• Multi-threading + IPC
• Custom network stack
• C/C++ programming environment
• Standard build tools (gcc, make)
• Simulator for testing on Linux PCs

REFERENCES

[1] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu,
A. Afanasyev, J. Thompson, J. Burke, B. Zhang,
and L. Zhang. Named Data Networking of
Things. In Proceedings of 1st IEEE International Con-

ference on Internet-of-Things Design and Implementa-

tion (IoTDI’2016). (Invited paper).

[2] RIOT - The friendly Operating System for the Inter-
net of Things. http://www.riot-os.org/.

SOURCE CODE
The source code of this work is available at
https://github.com/wentaoshang/RIOT/
tree/ndn/. It is currently released under LGPL
v2.1, the same license used by RIOT-OS itself.

ACKNOWLEDGMENT
This work has been supported by the National
Science Foundation under award CNS-1345318,
CNS-1345142, CNS-1455794, and CNS-1455850.

SYSTEM DESIGN

Hardware

OS core

Threads

CPU Timer Net Device

Sched IPC Soft_IRQ

APP NDN
Net

Device
Driver

IPC IPC

Software architecture of NDN on RIOT-OS

The NDN protocol is implemented as a kernel thread.
The IPC channel is used for:

• Passing NDN packets from & to APP and network
device driver threads

• Sending configuration commands (e.g., add faces,
register prefixes)

Currently implemented features:

• Basic packet forwarding logic (PIT, FIB, CS)
• Support for Ethernet and 802.15.4
• Memory efficient packet encoding & decoding
• HMAC-SHA256 data signing and verification

APPLICATION INTERFACE
The NDN code on RIOT-OS is C99-compatible.

Object Interface

Name ndn_name_from_uri, ndn_name_append,
ndn_name_print, ndn_name_compare_block,
ndn_name_get_component_from_block

Interest ndn_interest_create,
ndn_interest_get_name,
ndn_interest_get_nonce,
ndn_interest_get_lifetime

Data ndn_data_create, ndn_data_get_name,
ndn_data_get_content,
ndn_data_get_metainfo,
ndn_data_verify_signature

APP Handle ndn_app_create, ndn_app_run,
ndn_app_destroy, ndn_app_schedule,
ndn_app_express_interest,
ndn_app_register_prefix,
ndn_app_put_data

List of API for NDN APP on RIOT-OS

Simple NDN consumer on RIOT-OS

DEMO APPLICATION: NDN-PING

This demo application shows two RIOT-OS nodes
running NDN-Ping client and servers respectively
in a emulated network environment on a Ubuntu
15.10 machine. NDN packets are sent over Ether-
net directly.

Client Server
Interest

Data

Ethernet

Emulated testbed NDN-Ping client

NDN-Ping server Tcpdump output of network packets

text data bss dec hex file name

39636 228 11204 51068 c77c ndn_ping.elf

Code size & static memory usage (compiled for SAM R21 IoT board)

LIMITATIONS & FUTURE WORK

• Currently the code is only tested in emulated
environments. The next step is to try it out
on a real IoT device.

• The current implementation does not have
routing support or FIB/RIB management.
An interesting research direction is to pro-
vide routing functionality for constrained

NDN-IoT networks.
• The current implementation does not in-

clude advanced NDN features such as for-
warding strategies or cache management
policies. It is yet unclear whether it is nec-
essary to support those features on con-
strained devices.

NDN ON RIOT-OS
{ WENTAO SHANG, ALEX AFANASYEV, AND LIXIA ZHANG } UCLA

MOTIVATION
• Named Data Networking (NDN) has shown

great potential in supporting network applica-
tions in the IoT environments [1].

• The goal of this project is to bring NDN proto-
col support to the constrained IoT devices with
100s of KB memory and low-power CPU.

• We build on top of a popular IoT software plat-
form called RIOT-OS [2].

RIOT-OS FEATURES

• Common OS abstraction across multiple plat-
forms (ARM, Arduino, MSP430)

• Multi-threading + IPC
• Custom network stack
• C/C++ programming environment
• Standard build tools (gcc, make)
• Simulator for testing on Linux PCs

REFERENCES

[1] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu,
A. Afanasyev, J. Thompson, J. Burke, B. Zhang,
and L. Zhang. Named Data Networking of
Things. In Proceedings of 1st IEEE International Con-

ference on Internet-of-Things Design and Implementa-

tion (IoTDI’2016). (Invited paper).

[2] RIOT - The friendly Operating System for the Inter-
net of Things. http://www.riot-os.org/.

SOURCE CODE
The source code of this work is available at
https://github.com/wentaoshang/RIOT/
tree/ndn/. It is currently released under LGPL
v2.1, the same license used by RIOT-OS itself.

ACKNOWLEDGMENT
This work has been supported by the National
Science Foundation under award CNS-1345318,
CNS-1345142, CNS-1455794, and CNS-1455850.

SYSTEM DESIGN

Hardware

OS core

Threads

CPU Timer Net Device

Sched IPC Soft_IRQ

APP NDN
Net

Device
Driver

IPC IPC

Software architecture of NDN on RIOT-OS

The NDN protocol is implemented as a kernel thread.
The IPC channel is used for:

• Passing NDN packets from & to APP and network
device driver threads

• Sending configuration commands (e.g., add faces,
register prefixes)

Currently implemented features:

• Basic packet forwarding logic (PIT, FIB, CS)
• Support for Ethernet and 802.15.4
• Memory efficient packet encoding & decoding
• HMAC-SHA256 data signing and verification

APPLICATION INTERFACE
The NDN code on RIOT-OS is C99-compatible.

Object Interface

Name ndn_name_from_uri, ndn_name_append,
ndn_name_print, ndn_name_compare_block,
ndn_name_get_component_from_block

Interest ndn_interest_create,
ndn_interest_get_name,
ndn_interest_get_nonce,
ndn_interest_get_lifetime

Data ndn_data_create, ndn_data_get_name,
ndn_data_get_content,
ndn_data_get_metainfo,
ndn_data_verify_signature

APP Handle ndn_app_create, ndn_app_run,
ndn_app_destroy, ndn_app_schedule,
ndn_app_express_interest,
ndn_app_register_prefix,
ndn_app_put_data

List of API for NDN APP on RIOT-OS

Simple NDN consumer on RIOT-OS

DEMO APPLICATION: NDN-PING

This demo application shows two RIOT-OS nodes
running NDN-Ping client and servers respectively
in a emulated network environment on a Ubuntu
15.10 machine. NDN packets are sent over Ether-
net directly.

Client Server
Interest

Data

Ethernet

Emulated testbed NDN-Ping client

NDN-Ping server Tcpdump output of network packets

text data bss dec hex file name

39636 228 11204 51068 c77c ndn_ping.elf

Code size & static memory usage (compiled for SAM R21 IoT board)

LIMITATIONS & FUTURE WORK

• Currently the code is only tested in emulated
environments. The next step is to try it out
on a real IoT device.

• The current implementation does not have
routing support or FIB/RIB management.
An interesting research direction is to pro-
vide routing functionality for constrained

NDN-IoT networks.
• The current implementation does not in-

clude advanced NDN features such as for-
warding strategies or cache management
policies. It is yet unclear whether it is nec-
essary to support those features on con-
strained devices.

NDN ON RIOT-OS
{ WENTAO SHANG, ALEX AFANASYEV, AND LIXIA ZHANG } UCLA

MOTIVATION
• Named Data Networking (NDN) has shown

great potential in supporting network applica-
tions in the IoT environments [1].

• The goal of this project is to bring NDN proto-
col support to the constrained IoT devices with
100s of KB memory and low-power CPU.

• We build on top of a popular IoT software plat-
form called RIOT-OS [2].

RIOT-OS FEATURES

• Common OS abstraction across multiple plat-
forms (ARM, Arduino, MSP430)

• Multi-threading + IPC
• Custom network stack
• C/C++ programming environment
• Standard build tools (gcc, make)
• Simulator for testing on Linux PCs

REFERENCES

[1] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu,
A. Afanasyev, J. Thompson, J. Burke, B. Zhang,
and L. Zhang. Named Data Networking of
Things. In Proceedings of 1st IEEE International Con-

ference on Internet-of-Things Design and Implementa-

tion (IoTDI’2016). (Invited paper).

[2] RIOT - The friendly Operating System for the Inter-
net of Things. http://www.riot-os.org/.

SOURCE CODE
The source code of this work is available at
https://github.com/wentaoshang/RIOT/
tree/ndn/. It is currently released under LGPL
v2.1, the same license used by RIOT-OS itself.

ACKNOWLEDGMENT
This work has been supported by the National
Science Foundation under award CNS-1345318,
CNS-1345142, CNS-1455794, and CNS-1455850.

SYSTEM DESIGN

Hardware

OS core

Threads

CPU Timer Net Device

Sched IPC Soft_IRQ

APP NDN
Net

Device
Driver

IPC IPC

Software architecture of NDN on RIOT-OS

The NDN protocol is implemented as a kernel thread.
The IPC channel is used for:

• Passing NDN packets from & to APP and network
device driver threads

• Sending configuration commands (e.g., add faces,
register prefixes)

Currently implemented features:

• Basic packet forwarding logic (PIT, FIB, CS)
• Support for Ethernet and 802.15.4
• Memory efficient packet encoding & decoding
• HMAC-SHA256 data signing and verification

APPLICATION INTERFACE
The NDN code on RIOT-OS is C99-compatible.

Object Interface

Name ndn_name_from_uri, ndn_name_append,
ndn_name_print, ndn_name_compare_block,
ndn_name_get_component_from_block

Interest ndn_interest_create,
ndn_interest_get_name,
ndn_interest_get_nonce,
ndn_interest_get_lifetime

Data ndn_data_create, ndn_data_get_name,
ndn_data_get_content,
ndn_data_get_metainfo,
ndn_data_verify_signature

APP Handle ndn_app_create, ndn_app_run,
ndn_app_destroy, ndn_app_schedule,
ndn_app_express_interest,
ndn_app_register_prefix,
ndn_app_put_data

List of API for NDN APP on RIOT-OS

Simple NDN consumer on RIOT-OS

DEMO APPLICATION: NDN-PING

This demo application shows two RIOT-OS nodes
running NDN-Ping client and servers respectively
in a emulated network environment on a Ubuntu
15.10 machine. NDN packets are sent over Ether-
net directly.

Client Server
Interest

Data

Ethernet

Emulated testbed NDN-Ping client

NDN-Ping server Tcpdump output of network packets

text data bss dec hex file name

39636 228 11204 51068 c77c ndn_ping.elf

Code size & static memory usage (compiled for SAM R21 IoT board)

LIMITATIONS & FUTURE WORK

• Currently the code is only tested in emulated
environments. The next step is to try it out
on a real IoT device.

• The current implementation does not have
routing support or FIB/RIB management.
An interesting research direction is to pro-
vide routing functionality for constrained

NDN-IoT networks.
• The current implementation does not in-

clude advanced NDN features such as for-
warding strategies or cache management
policies. It is yet unclear whether it is nec-
essary to support those features on con-
strained devices.

Memory	Usage	Numbers	

ICNRG	MeeJng,	Berlin,	Germany	 12	

TABLE II: Object code size of the NDN-RIOT API (in bytes)

Function Name ARMv6-M ARMv7-M
ndn_name_from_uri 420 408
ndn_name_append 232 232
ndn_name_get_size_from_block 124 124
ndn_name_get_component_from_block 152 164
ndn_interest_create 196 192
ndn_interest_get_name 92 94
ndn_data_create 668 692
ndn_data_get_name 98 100
ndn_data_get_content 160 168
ndn_data_verify_signature 450 502
ndn_app_run 612 596
ndn_app_schedule 96 88
ndn_app_express_interest 160 168
ndn_app_register_prefix 180 180
ndn_app_put_data 60 56

TABLE III: Overall memory usage of the skeleton NDN
consumer and producer apps for RIOT-OS (in bytes)

ISA App text data bss Flash RAM
ARMv6-M Consumer 35,300 192 11,208 35,492 11,400
ARMv7-M Consumer 33,900 192 11,208 34,092 11,400
ARMv6-M Producer 35,212 192 11,208 35,404 11,400
ARMv7-M Producer 33,800 192 11,208 33,992 11,400

compiled for the ARM Cortex-M0+ MCU, which is based on
the ARMv6-M Instruction Set Architecture (ISA). The third
column shows the size of the APIs compiled for the ARM
Cortex-M3 MCU, which is based on the ARMv7-M ISA. Both
architectures support the Thumb instruction set with 16-bit/32-
bit encoding, which leads to similar sizes of the object code.

Table III shows the output from the GNU size command
for the skeleton consumer and producer examples sketched
out in Listings 1 and 2. The source code of both examples
have roughly the same structure, which therefore results in
similar code sizes after compilation. The last two columns in
the table show the total amount of static memory residing in
Flash and RAM. On a device with 32KB RAM, the static
data occupies about 11KB of the embedded RAM,2 leaving
21KB for dynamic allocation, such as creating PIT, FIB and
CS entries, creating shared memory blocks for NDN packets,
and storing dynamic user data generated at run-time.

B. Performance

To gauge the run-time performance of the system, we first
analyze the execution speed of individual APIs through a set
of benchmarks, and then show the application-level RTT as
an indicator for the performance of an integrated NDN-IoT
system. We did not measure the maximum network throughput
since most IoT applications running on constrained devices do
not require high throughput data transmission.

1) API execution speed: We measure the execution time of
the NDN APIs by calling the functions repeatedly and dividing
the total running time by the number of iterations. The results

2The static data in the .data and .bss sections includes fixed-size stack for
each thread and other pre-allocated global variables.

TABLE IV: Execution time of the NDN-RIOT APIs

Test Case SAMR21-XPRO IoTLab-M3
Time (µs) Cycles Time (µs) Cycles

URI to Name 184 8,832 282 20,304
Get Name size 13 624 11 792

Get Name component 8 384 7 504
Append to Name 28 1,344 29 2,088

Create Interest 25 1,200 23 1,656
Get Interest Name 2 96 2 144

Create Data (HMAC) 1,806 86,688 1,333 95,976
Create Data (ECDSA) 451,215 21,658,320 269,314 19,390,608
Verify Data (ECDSA) 500,115 24,005,520 294,225 21,184,200

Get Data Name 3 144 2 144
Get Data Content 4 192 4 288

TABLE V: RTT of Interest-Data exchange on RIOT-OS

Data Size Cached? Fragmented? RTT (ms)

100 bytes
No No 280

Remote No 11
Local No <1

196 bytes
No Yes 286

Remote Yes 16
Local No <1

are presented in Table IV in both real time and MCU cycles for
comparison across MCUs. Since the benchmark suites run as
a single-threaded application that takes over the whole MCU,
the measurement results are quite stable over different runs.

To summarize, on SAMR21-XPRO with a 48 MHz MCU,
NDN-RIOT is able to create 5,434 NDN names (from URI
strings), 40,000 Interests, or 553 HMAC-signed Data in one
second. The most expensive operations are creating and verify-
ing ECDSA-signed Data packets. SAMR21-XPRO can create
and verify about 2 Data packets with ECDSA signatures per
second. On IoTLab-M3 (72 MHz MCU) the performance
improves to 3.5–3.7 packets per second,3 although it is still
⇡150 times slower than using HMAC.

2) Application-level RTT: Our final evaluation measures
the RTT of Interest-Data exchange between two RIOT-OS
devices. The experiments are carried out on the FIT IoTLab
testbed [17] in Paris with two IoTLab-M3 nodes communi-
cating over IEEE 802.15.4 radio. The testbed network has an
MTU of 102 bytes and a fixed data rate of 250 Kbps. The
measurement is performed under two scenarios with the Data
packet size of 100 bytes and 196 bytes. In each scenario, we
measure the RTTs of fetching new Data packets generated
by the producer upon request, fetching Data packets from
remote cache, and fetching Data packets from local cache.
Each experiment performs 100 Interest-Data exchange without
pipelining and the RTT is calculated as the total running time
divided by 100. All Data packets are signed by ECDSA.

Table V shows the RTT measurement results. When fetching
newly created data, the RTT is dominated by the ECDSA
signing operation (which takes about 270 ms). When fetching
Data packet of 196 bytes, the packet is fragmented into

3We noticed that the load/store instructions execute slower than expected on
IoTLab-M3, causing several “memory-bound” test cases to run much slower
than on SAMR21-XPRO. The reason for the slow memory access is unclear.

TABLE II: Object code size of the NDN-RIOT API (in bytes)

Function Name ARMv6-M ARMv7-M
ndn_name_from_uri 420 408
ndn_name_append 232 232
ndn_name_get_size_from_block 124 124
ndn_name_get_component_from_block 152 164
ndn_interest_create 196 192
ndn_interest_get_name 92 94
ndn_data_create 668 692
ndn_data_get_name 98 100
ndn_data_get_content 160 168
ndn_data_verify_signature 450 502
ndn_app_run 612 596
ndn_app_schedule 96 88
ndn_app_express_interest 160 168
ndn_app_register_prefix 180 180
ndn_app_put_data 60 56

TABLE III: Overall memory usage of the skeleton NDN
consumer and producer apps for RIOT-OS (in bytes)

ISA App text data bss Flash RAM
ARMv6-M Consumer 35,300 192 11,208 35,492 11,400
ARMv7-M Consumer 33,900 192 11,208 34,092 11,400
ARMv6-M Producer 35,212 192 11,208 35,404 11,400
ARMv7-M Producer 33,800 192 11,208 33,992 11,400

compiled for the ARM Cortex-M0+ MCU, which is based on
the ARMv6-M Instruction Set Architecture (ISA). The third
column shows the size of the APIs compiled for the ARM
Cortex-M3 MCU, which is based on the ARMv7-M ISA. Both
architectures support the Thumb instruction set with 16-bit/32-
bit encoding, which leads to similar sizes of the object code.

Table III shows the output from the GNU size command
for the skeleton consumer and producer examples sketched
out in Listings 1 and 2. The source code of both examples
have roughly the same structure, which therefore results in
similar code sizes after compilation. The last two columns in
the table show the total amount of static memory residing in
Flash and RAM. On a device with 32KB RAM, the static
data occupies about 11KB of the embedded RAM,2 leaving
21KB for dynamic allocation, such as creating PIT, FIB and
CS entries, creating shared memory blocks for NDN packets,
and storing dynamic user data generated at run-time.

B. Performance

To gauge the run-time performance of the system, we first
analyze the execution speed of individual APIs through a set
of benchmarks, and then show the application-level RTT as
an indicator for the performance of an integrated NDN-IoT
system. We did not measure the maximum network throughput
since most IoT applications running on constrained devices do
not require high throughput data transmission.

1) API execution speed: We measure the execution time of
the NDN APIs by calling the functions repeatedly and dividing
the total running time by the number of iterations. The results

2The static data in the .data and .bss sections includes fixed-size stack for
each thread and other pre-allocated global variables.

TABLE IV: Execution time of the NDN-RIOT APIs

Test Case SAMR21-XPRO IoTLab-M3
Time (µs) Cycles Time (µs) Cycles

URI to Name 184 8,832 282 20,304
Get Name size 13 624 11 792

Get Name component 8 384 7 504
Append to Name 28 1,344 29 2,088

Create Interest 25 1,200 23 1,656
Get Interest Name 2 96 2 144

Create Data (HMAC) 1,806 86,688 1,333 95,976
Create Data (ECDSA) 451,215 21,658,320 269,314 19,390,608
Verify Data (ECDSA) 500,115 24,005,520 294,225 21,184,200

Get Data Name 3 144 2 144
Get Data Content 4 192 4 288

TABLE V: RTT of Interest-Data exchange on RIOT-OS

Data Size Cached? Fragmented? RTT (ms)

100 bytes
No No 280

Remote No 11
Local No <1

196 bytes
No Yes 286

Remote Yes 16
Local No <1

are presented in Table IV in both real time and MCU cycles for
comparison across MCUs. Since the benchmark suites run as
a single-threaded application that takes over the whole MCU,
the measurement results are quite stable over different runs.

To summarize, on SAMR21-XPRO with a 48 MHz MCU,
NDN-RIOT is able to create 5,434 NDN names (from URI
strings), 40,000 Interests, or 553 HMAC-signed Data in one
second. The most expensive operations are creating and verify-
ing ECDSA-signed Data packets. SAMR21-XPRO can create
and verify about 2 Data packets with ECDSA signatures per
second. On IoTLab-M3 (72 MHz MCU) the performance
improves to 3.5–3.7 packets per second,3 although it is still
⇡150 times slower than using HMAC.

2) Application-level RTT: Our final evaluation measures
the RTT of Interest-Data exchange between two RIOT-OS
devices. The experiments are carried out on the FIT IoTLab
testbed [17] in Paris with two IoTLab-M3 nodes communi-
cating over IEEE 802.15.4 radio. The testbed network has an
MTU of 102 bytes and a fixed data rate of 250 Kbps. The
measurement is performed under two scenarios with the Data
packet size of 100 bytes and 196 bytes. In each scenario, we
measure the RTTs of fetching new Data packets generated
by the producer upon request, fetching Data packets from
remote cache, and fetching Data packets from local cache.
Each experiment performs 100 Interest-Data exchange without
pipelining and the RTT is calculated as the total running time
divided by 100. All Data packets are signed by ECDSA.

Table V shows the RTT measurement results. When fetching
newly created data, the RTT is dominated by the ECDSA
signing operation (which takes about 270 ms). When fetching
Data packet of 196 bytes, the packet is fragmented into

3We noticed that the load/store instructions execute slower than expected on
IoTLab-M3, causing several “memory-bound” test cases to run much slower
than on SAMR21-XPRO. The reason for the slow memory access is unclear.

Performance	Numbers	

ICNRG	MeeJng,	Berlin,	Germany	 13	

TABLE II: Object code size of the NDN-RIOT API (in bytes)

Function Name ARMv6-M ARMv7-M
ndn_name_from_uri 420 408
ndn_name_append 232 232
ndn_name_get_size_from_block 124 124
ndn_name_get_component_from_block 152 164
ndn_interest_create 196 192
ndn_interest_get_name 92 94
ndn_data_create 668 692
ndn_data_get_name 98 100
ndn_data_get_content 160 168
ndn_data_verify_signature 450 502
ndn_app_run 612 596
ndn_app_schedule 96 88
ndn_app_express_interest 160 168
ndn_app_register_prefix 180 180
ndn_app_put_data 60 56

TABLE III: Overall memory usage of the skeleton NDN
consumer and producer apps for RIOT-OS (in bytes)

ISA App text data bss Flash RAM
ARMv6-M Consumer 35,300 192 11,208 35,492 11,400
ARMv7-M Consumer 33,900 192 11,208 34,092 11,400
ARMv6-M Producer 35,212 192 11,208 35,404 11,400
ARMv7-M Producer 33,800 192 11,208 33,992 11,400

compiled for the ARM Cortex-M0+ MCU, which is based on
the ARMv6-M Instruction Set Architecture (ISA). The third
column shows the size of the APIs compiled for the ARM
Cortex-M3 MCU, which is based on the ARMv7-M ISA. Both
architectures support the Thumb instruction set with 16-bit/32-
bit encoding, which leads to similar sizes of the object code.

Table III shows the output from the GNU size command
for the skeleton consumer and producer examples sketched
out in Listings 1 and 2. The source code of both examples
have roughly the same structure, which therefore results in
similar code sizes after compilation. The last two columns in
the table show the total amount of static memory residing in
Flash and RAM. On a device with 32KB RAM, the static
data occupies about 11KB of the embedded RAM,2 leaving
21KB for dynamic allocation, such as creating PIT, FIB and
CS entries, creating shared memory blocks for NDN packets,
and storing dynamic user data generated at run-time.

B. Performance

To gauge the run-time performance of the system, we first
analyze the execution speed of individual APIs through a set
of benchmarks, and then show the application-level RTT as
an indicator for the performance of an integrated NDN-IoT
system. We did not measure the maximum network throughput
since most IoT applications running on constrained devices do
not require high throughput data transmission.

1) API execution speed: We measure the execution time of
the NDN APIs by calling the functions repeatedly and dividing
the total running time by the number of iterations. The results

2The static data in the .data and .bss sections includes fixed-size stack for
each thread and other pre-allocated global variables.

TABLE IV: Execution time of the NDN-RIOT APIs

Test Case SAMR21-XPRO IoTLab-M3
Time (µs) Cycles Time (µs) Cycles

URI to Name 184 8,832 282 20,304
Get Name size 13 624 11 792

Get Name component 8 384 7 504
Append to Name 28 1,344 29 2,088

Create Interest 25 1,200 23 1,656
Get Interest Name 2 96 2 144

Create Data (HMAC) 1,806 86,688 1,333 95,976
Create Data (ECDSA) 451,215 21,658,320 269,314 19,390,608
Verify Data (ECDSA) 500,115 24,005,520 294,225 21,184,200

Get Data Name 3 144 2 144
Get Data Content 4 192 4 288

TABLE V: RTT of Interest-Data exchange on RIOT-OS

Data Size Cached? Fragmented? RTT (ms)

100 bytes
No No 280

Remote No 11
Local No <1

196 bytes
No Yes 286

Remote Yes 16
Local No <1

are presented in Table IV in both real time and MCU cycles for
comparison across MCUs. Since the benchmark suites run as
a single-threaded application that takes over the whole MCU,
the measurement results are quite stable over different runs.

To summarize, on SAMR21-XPRO with a 48 MHz MCU,
NDN-RIOT is able to create 5,434 NDN names (from URI
strings), 40,000 Interests, or 553 HMAC-signed Data in one
second. The most expensive operations are creating and verify-
ing ECDSA-signed Data packets. SAMR21-XPRO can create
and verify about 2 Data packets with ECDSA signatures per
second. On IoTLab-M3 (72 MHz MCU) the performance
improves to 3.5–3.7 packets per second,3 although it is still
⇡150 times slower than using HMAC.

2) Application-level RTT: Our final evaluation measures
the RTT of Interest-Data exchange between two RIOT-OS
devices. The experiments are carried out on the FIT IoTLab
testbed [17] in Paris with two IoTLab-M3 nodes communi-
cating over IEEE 802.15.4 radio. The testbed network has an
MTU of 102 bytes and a fixed data rate of 250 Kbps. The
measurement is performed under two scenarios with the Data
packet size of 100 bytes and 196 bytes. In each scenario, we
measure the RTTs of fetching new Data packets generated
by the producer upon request, fetching Data packets from
remote cache, and fetching Data packets from local cache.
Each experiment performs 100 Interest-Data exchange without
pipelining and the RTT is calculated as the total running time
divided by 100. All Data packets are signed by ECDSA.

Table V shows the RTT measurement results. When fetching
newly created data, the RTT is dominated by the ECDSA
signing operation (which takes about 270 ms). When fetching
Data packet of 196 bytes, the packet is fragmented into

3We noticed that the load/store instructions execute slower than expected on
IoTLab-M3, causing several “memory-bound” test cases to run much slower
than on SAMR21-XPRO. The reason for the slow memory access is unclear.

TABLE II: Object code size of the NDN-RIOT API (in bytes)

Function Name ARMv6-M ARMv7-M
ndn_name_from_uri 420 408
ndn_name_append 232 232
ndn_name_get_size_from_block 124 124
ndn_name_get_component_from_block 152 164
ndn_interest_create 196 192
ndn_interest_get_name 92 94
ndn_data_create 668 692
ndn_data_get_name 98 100
ndn_data_get_content 160 168
ndn_data_verify_signature 450 502
ndn_app_run 612 596
ndn_app_schedule 96 88
ndn_app_express_interest 160 168
ndn_app_register_prefix 180 180
ndn_app_put_data 60 56

TABLE III: Overall memory usage of the skeleton NDN
consumer and producer apps for RIOT-OS (in bytes)

ISA App text data bss Flash RAM
ARMv6-M Consumer 35,300 192 11,208 35,492 11,400
ARMv7-M Consumer 33,900 192 11,208 34,092 11,400
ARMv6-M Producer 35,212 192 11,208 35,404 11,400
ARMv7-M Producer 33,800 192 11,208 33,992 11,400

compiled for the ARM Cortex-M0+ MCU, which is based on
the ARMv6-M Instruction Set Architecture (ISA). The third
column shows the size of the APIs compiled for the ARM
Cortex-M3 MCU, which is based on the ARMv7-M ISA. Both
architectures support the Thumb instruction set with 16-bit/32-
bit encoding, which leads to similar sizes of the object code.

Table III shows the output from the GNU size command
for the skeleton consumer and producer examples sketched
out in Listings 1 and 2. The source code of both examples
have roughly the same structure, which therefore results in
similar code sizes after compilation. The last two columns in
the table show the total amount of static memory residing in
Flash and RAM. On a device with 32KB RAM, the static
data occupies about 11KB of the embedded RAM,2 leaving
21KB for dynamic allocation, such as creating PIT, FIB and
CS entries, creating shared memory blocks for NDN packets,
and storing dynamic user data generated at run-time.

B. Performance

To gauge the run-time performance of the system, we first
analyze the execution speed of individual APIs through a set
of benchmarks, and then show the application-level RTT as
an indicator for the performance of an integrated NDN-IoT
system. We did not measure the maximum network throughput
since most IoT applications running on constrained devices do
not require high throughput data transmission.

1) API execution speed: We measure the execution time of
the NDN APIs by calling the functions repeatedly and dividing
the total running time by the number of iterations. The results

2The static data in the .data and .bss sections includes fixed-size stack for
each thread and other pre-allocated global variables.

TABLE IV: Execution time of the NDN-RIOT APIs

Test Case SAMR21-XPRO IoTLab-M3
Time (µs) Cycles Time (µs) Cycles

URI to Name 184 8,832 282 20,304
Get Name size 13 624 11 792

Get Name component 8 384 7 504
Append to Name 28 1,344 29 2,088

Create Interest 25 1,200 23 1,656
Get Interest Name 2 96 2 144

Create Data (HMAC) 1,806 86,688 1,333 95,976
Create Data (ECDSA) 451,215 21,658,320 269,314 19,390,608
Verify Data (ECDSA) 500,115 24,005,520 294,225 21,184,200

Get Data Name 3 144 2 144
Get Data Content 4 192 4 288

TABLE V: RTT of Interest-Data exchange on RIOT-OS

Data Size Cached? Fragmented? RTT (ms)

100 bytes
No No 280

Remote No 11
Local No <1

196 bytes
No Yes 286

Remote Yes 16
Local No <1

are presented in Table IV in both real time and MCU cycles for
comparison across MCUs. Since the benchmark suites run as
a single-threaded application that takes over the whole MCU,
the measurement results are quite stable over different runs.

To summarize, on SAMR21-XPRO with a 48 MHz MCU,
NDN-RIOT is able to create 5,434 NDN names (from URI
strings), 40,000 Interests, or 553 HMAC-signed Data in one
second. The most expensive operations are creating and verify-
ing ECDSA-signed Data packets. SAMR21-XPRO can create
and verify about 2 Data packets with ECDSA signatures per
second. On IoTLab-M3 (72 MHz MCU) the performance
improves to 3.5–3.7 packets per second,3 although it is still
⇡150 times slower than using HMAC.

2) Application-level RTT: Our final evaluation measures
the RTT of Interest-Data exchange between two RIOT-OS
devices. The experiments are carried out on the FIT IoTLab
testbed [17] in Paris with two IoTLab-M3 nodes communi-
cating over IEEE 802.15.4 radio. The testbed network has an
MTU of 102 bytes and a fixed data rate of 250 Kbps. The
measurement is performed under two scenarios with the Data
packet size of 100 bytes and 196 bytes. In each scenario, we
measure the RTTs of fetching new Data packets generated
by the producer upon request, fetching Data packets from
remote cache, and fetching Data packets from local cache.
Each experiment performs 100 Interest-Data exchange without
pipelining and the RTT is calculated as the total running time
divided by 100. All Data packets are signed by ECDSA.

Table V shows the RTT measurement results. When fetching
newly created data, the RTT is dominated by the ECDSA
signing operation (which takes about 270 ms). When fetching
Data packet of 196 bytes, the packet is fragmented into

3We noticed that the load/store instructions execute slower than expected on
IoTLab-M3, causing several “memory-bound” test cases to run much slower
than on SAMR21-XPRO. The reason for the slow memory access is unclear.

Work	in	Progress	
•  Energy	consumpJon	evaluaJon	/	
opJmizaJons	

•  Advanced	forwarding	strategy	supportData	
discovery	

•  Nearby	data	discovery	
•  Pub-sub	API	on	top	of	Interest/Data	exchange	

ICNRG	MeeJng,	Berlin,	Germany	 14	

Help	welcome!	

Use	Cases	and	Other	IoT-Related	NDN	
Efforts	

•  NDN-BMS:	encrypJon-based	access	control	
–  Wentao	Shang,	Qiuhan	Ding,	Alessandro	Marianantoni,	Jeff	Burke,	Lixia	

Zhang.	"Securing	Building	Management	Systems	Using	Named	Data	
Networking.”	In	IEEE	Network,	Vol.	28,	no.	3,	May	2014.	

•  NDN-ACE:	authorizaJon	framework	for	actuaJon	apps	
–  W.	Shang,	Y.	Yu,	T.	Liang,	B.	Zhang,	and	L.	Zhang,	“NDN-ACE:	Access	

Control	for	Constrained	Environments	over	Named	Data	Networking,”	
NDN	Project,	Tech.	Rep.	NDN-0036,	Revision	1,	December	2015.	

•  NDN-IoT:	toolkit	for	NDN	dev	on	Raspberry	Pi	
–  hbps://github.com/remap/ndn-pi		

•  NDN	on	Arduino:	minimal	app	for	Arduino	
–  hbps://github.com/ndncomm/ndn-btle		

ICNRG	MeeJng,	Berlin,	Germany	 15	

