
How Secure and Quick is QUIC?
Provable Security and Performance Analyses

Robert Lychev*, Samuel Jero+,

+Purdue
University

*Georgia Institute
of Technology

Alexandra Boldyreva*, and Cristina Nita-Rotaru++

1

++Northeastern
University

• Proliferation of mobile and web applications has made
latency a very important issue for online businesses

- users might visit a web site less often if it is slower than
a competitor by over 250ms, S. Lohler NY Times 2012

- 100ms latency costs Amazon 1% in sales, G. Linden, 2006

• Bandwidth is cheap and will continue

to grow, but information cannot travel

faster than the speed of light

Challenge: minimize number of RTT’s required
to establish a connection, without sacrificing security

my internets are so slow!

Minimizing Latency

2

• Google’s answer to the latency challenge

• Stands for Quick UDP Internet Connections

• Communication protocol developed by Google and
implemented as part of Chrome browser in 2013

• Was designed to
- produce security protection comparable to TLS

- reduce connection latency

Can QUIC do this in presence of attackers?

What is QUIC?

3

TCP session establishment

TLS key establishment

connection establishment
and key agreement

exchange data

exchange data

setup
latency

+

TLS over TCP QUIC

client server
serverclient

TCP guarantees ordered delivery, provides
protection against connection-spoofing, but

- adds latency

- suffers from subtle performance attacks,
e.g., TCP reset, Clayton et al, 2006

What about QUIC?

Setup Time: QUIC vs TLS

4

initial key
establishmen

t

session key
establishment

data exchange
with session

key

client server

data
exchange

with initial key

session key
establishmen

t
data exchange
with session

key

TLS QUIC
client server

• Parties can often avoid 1 RTT in initial key
establishment of QUIC by caching some
parameters (achieving 0-RTT connections)

• What implications does this have on security?

Starting Data Exchange: QUIC vs
TLS

5

• Fischlin & Günther, ACM CCS 2014
- develop a security definition for multi-stage key

agreement and show that QUIC’s key exchange meets
this definition

- show how to modify QUIC so that it can compose with
any secure data exchange protocol

- prove QUIC’s key exchange with a modification is
secure

Previous Work on QUIC

 What about security of the whole protocol as is?

 What about its latency in presence of attackers?

6

1. What provable security guarantees does QUIC
provide, and under which assumptions?

2. How effective is QUIC at minimizing latency in
presence of attackers?

Main Questions We Address

7

1. What provable security guarantees does QUIC
provide, and under which assumptions?

- we develop a security definition suitable for
performance driven protocols and show that QUIC
satisfies it

- QUIC does not satisfy the traditional notion of forward
secrecy, provided by some TLS modes, e.g., TLS-DHE

2. How effective is QUIC at minimizing latency in
presence of attackers?

- with simple attacks on some parameters, it is easy to
prevent QUIC from achieving its minimal latency goals

- we have implemented these attacks and demonstrated
that they are practical

Summary of Our Results

8

1. Provable Security Analysis of QUIC
a. how QUIC works

b. new protocol and security models

c. security of QUIC

2. QUIC Performance-degradation attacks

3. Recent Related Work

4. Summary

Outline

9

QUIC Protocol

c_i_hello: (cid)

s_reject: (cid, scfg, stk)

cid {0,1}64$

-verify scfg
signature
-generate DH
values
 (secc, pubc)

c_hello: (cid, stk, scfg, pubc)

s_hello: (cid, pubs)

- cid: connection id picked by the client
- stk: source-address token used to prevent spoofing
- scfg: server config contains server’s public
 Diffie-Hellman (DH) values

-generate stk
based
 on client’s IP

initial data exchange

data exchange

-generate session
 DH values
(secs,pubs)

-establish session
 key using pubs

-establish initial
 key using scfg

-verify stk
-establish initial
 key using pubc

-establish session
 key using pubc

client server

can be
reused

10

QUIC Protocol
Connection Resumption

cid {0,1}64$-
-generate DH
values
 (secc, pubc)

c_hello: (cid, stk, scfg, pubc)

s_hello: (cid, pubs)

- cid is the new connection id picked by the client
- stk can be reused before expiration
- scfg can be reused before expiration

initial data exchange

data exchange

-generate session
 DH values
(secs,pubs)

-establish session
key
 using pubs

-establish initial
 key using scfg

-verify stk
-establish initial
 key using pubc

-establish session
 key using pubc

client server

1 RTT

11

cid {0,1}64$-
-generate DH
values
 (secc, pubc)

c_hello: (cid, stk, scfg, pubc)

s_hello: (cid, pubs)

initial data exchange

data exchange

-generate session
 DH values
(secs,pubs)

-establish session
key
 using pubs

-establish initial
 key using scfg

-establish session
 key using pubc

client server

 -client cannot initially check stk authenticity, so this
 can lead to inconsistent view of the handshake
 -compromising the server before scfg expires can
 reveal data encrypted with initial key

QUIC Protocol
Connection Resumption

 -can achieve 0-RTT connections!

-verify stk
-establish initial
 key using pubc

12

Provable Security
Methodology

• Protocol and/or Environment Definition
- who are the entities and how they are able to

communicate

• Security Model
- what the attacker is allowed to do (e.g. peek on

communication, corrupt entities, collude)

- when the attacker is considered successful

• Proof by Reduction
- attacker can succeed with only negligible probability

under reasonable assumptions on the security of the
building blocks (e.g. digital signatures, block cipher, etc)

13

Security Analysis Main
Challenges

• Previous analyses of TLS are not suitable (Jager et al,
Krawzcyk et al, Bhargavan et al, Crypto 2012, 2013, 2014)

- data in QUIC can be exchanged using initial key before the
session key is set

• Parties can set distinct initial keys
- notion of having a ‘matching conversation’ is not sufficient

- need new notion of ‘setting a key with’ to capture data privacy

• scfg is public and can be reused before it expires
- need weaker notion for forward secrecy for initial keys

- use traditional notion of forward secrecy for session keys

• UDP does not address unordered delivery and spoofing
- need to capture attacks involving misordering, selectively

delaying or dropping packets, and connection spoofing
14

Security Analysis Main
Challenges

• To address these challenges we developed
- protocol model that captures data exchanges under initial

key before session key is set: Quick Communications (QC)

- security notion: Quick Authenticated and Confidential
Channel Establishment (QACCE)

15

How Secure is QUIC?

QUIC meets our notion of QACCE-security if

• The underlying signature scheme is suf-cma
- QUIC supports ECDSA-SHA256 and RSA-PSS-SHA256

• The underlying AEAD scheme is ind-cpa and auth-secure
- QUIC uses AES Galois-Counter Mode (GCM), McGrew et al,

INDOCRYPT 2004

• SCDH Problem is hard

• In the random oracle (RO) model
- model HMAC with RO in the key derivation

16

1. Provable Security Analysis of QUIC

2. QUIC Performance-degradation attacks
a. types of performance-degradation attacks on QUIC

b. performance-degradation attacks we have
implemented

c. similarities with existing attacks and mitigations

3. Recent Related Work

4. Summary

Outline

17

• Replaying public, cacheable content, e.g., scfg and stk
- results in fooling client and/or server parties into trying

to achieve a connection and maintain state

• Manipulating unprotected packet fields, e.g., cid & stk
- leads clients and server to have a distinct view of the key

exchange resulting in a failure to establish a session key

• The attacks we have studied
- cause servers and clients to waste time and resources

- stem from parameters whose purpose was to minimize
latency, e.g., scfg and stk

- do not concern data authenticity and confidentiality

Performance Attack Overview

18

Attack Name Attack Type Impact

cid Manipulation Attack Manipulation Connection Failure,
Server Load

stk Manipulation Attack Manipulation Connection Failure,
Server Load

scfg Replay Attack Replay Connection Failure

stk Replay Attack Replay Server DoS

Crypto Stream Offset
Attack

Other Connection Failure

targeted QUIC Chromium implementation from October 1, 2014
used Python scapy library (http://www.secdev.org/projects/scapy/)

Attacks We Have Implemented

Attacks can be used to deny clients access to any
application of choice and cause servers to waste resources!

19

http://www.secdev.org/projects/scapy/

c_i_hello: (cid)

(cid, scfg, stk)

cid {0,1}64$

-verify scfg
signature
-generate DH
values
 (secc, pubc)

(cid,stk*,scfg,pubc)

-generate stk
based
 on client’s IP

cannot decrypt
exchanged data

-establish initial
 key ik* using scfg

-verify stk
-establish initial
 key ik using pubc

client server

stk is an input into the key derivation process,
because client uses stk*, client and server

derive different initial keys: ik* ≠ ik

(cid, scfg, stk*)

(cid,stk,scfg,pubc)

stk* ≠ stk

stk Manipulation Attack

20

c_i_hello: (cid)cid {0,1}64$

-verify scfg
signature
-generate DH
values
 (secc, pubc)

(cid,stk,scfg,pubc)

-generate stk

cannot exchange
any data

-establish initial
 key ik using scfg

-verification of
 stk fails

client server

the server is not aware of the client’s request,
so it rejects stk and any associated client’s messages

(cid, scfg, stk)

scfg Replay Attack

21

c_hello: (cid*,scfg,stk, pub*c)

cid {0,1}64$

-grab scfg and stk
-spoofed
connections

client server

stk is bound to an IP address and is reusable while not expired.
Server must derive keys, keep state, and send replies

 for each of these connections.

stk Replay Attack

22

c_i_hello: (cid)

s_reject: (cid, scfg, stk)

c_hello: (cid*,scfg,stk, pub*c)

c_hello: (cid*,scfg,stk, pub*c)

c_hello: (cid*,scfg,stk, pub*c)

• stk Replay Attack is similar to TCP SYN Flood
- both attacks overwhelm a server’s resources by starting and

then abandoning a connection

- single use SYN-Cookies are the traditional mitigation

- stk has to be replayable for 0-RTT

• Manipulation Attacks show similarity with SSL Downgrade
Attacks
- downgrade attacks: rewrite handshake to request vulnerable

crypto

- protection in SSL 3+ by including hash of all messages in
Finished message, causing failure at end of handshake

- manipulation attacks in QUIC detected by different keys at end
of handshake

- QUIC fails much more slowly than SSL/TLS

23

Similar Attacks on TCP/TLS

• Mitigating Replay Attacks
- seems impossible without limiting public, cacheable

parameters (e.g., scfg and stk) to single use, but

- this would prohibit the possibility of 0-RTT connections

• Mitigating Packet Manipulation Attacks
- could sign modifiable parameters (e.g., cid and stk), but

- this would require additional signature-related
computations, introducing other DoS attacks via IP-
spoofing

Mitigations

24

1. Provable Security Analysis of QUIC

2. QUIC Performance-degradation attacks
a. types of performance-degradation attacks on QUIC

b. performance-degradation attacks we have
implemented

c. similarities with existing attacks and mitigations

3. Recent Related Work
a. TLS 1.3

4. Summary

Outline

25

1. TLS 1.3 has a number of similarities with QUIC
- handshake with multiple keys

- performance optimized

- 0-RTT mode

2. Currently in the draft stage

3. Provable Security Analyses already being
published

- Very encouraging

TLS 1.3
The next performance-optimized secure protocol

26

1. Dowling et al, ACM CCS 2015
- show that TLS1.3 drafts are secure multi-stage key

exchange protocols

- show how to compose with symmetric-key protocols to
securely exchange data

2. Cremers et al, IEEE S&P 2016
- formal model of TLS1.3 handshakes in Tamarin
- show security of all TLS1.3 handshakes

3. Li et al, IEEE S&P 2016
- show that all TLS1.3 handshakes compose

securely

Provable Security for TLS 1.3

27

1. Jager et al, ACM CCS 2015
- weaknesses of RSA-based PKCS#1 v1.5 encryption can

result in attacks against TLS1.3 and QUIC

a. if they have to coexistence with previous TLS
versions

b. even if they do not support PKCS#1 v1.5

Implementation Attacks

28

1. Provable Security Analysis of QUIC

2. QUIC Performance-degradation attacks
a. types of performance-degradation attacks on QUIC

b. performance-degradation attacks we have
implemented

3. Recent Related Work
a. TLS 1.3

4. Summary

Outline

29

Summary
• Developed security definition for performance-

driven protocols and showed that QUIC meets
our definition

• Have implemented five different practical
performance degradation attacks against QUIC

• Highlights an example of a tradeoff
 between performance vs security

securitylatency
low

30

Thank You

Please check out the full version
https://eprint.iacr.org/2015/582

1. Security definitions and proofs
2. Attack implementation details

31

https://eprint.iacr.org/2015/582

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Main Questions We Address
	Summary of Our Results
	Outline
	QUIC Protocol
	QUIC Protocol Connection Resumption
	QUIC Protocol Connection Resumption
	Provable Security Methodology
	Security Analysis Main Challenges
	Security Analysis Main Challenges
	How Secure is QUIC?
	Slide 17
	Slide 18
	Slide 19
	stk Manipulation Attack
	scfg Replay Attack
	stk Replay Attack
	Similar Attacks on TCP/TLS
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Summary
	Slide 31

