

Low Latency, Low Loss, Scalable Throughput
(L4S)

Problem Statement
draft-briscoe-tsvwg-aqm-tcpm-rmcat-l4s-problem

Bob Briscoe*

Koen De Schepper†

Marcelo Bagnulo Braun§

July 2016

*
 Simula Research Laboratory

†
Nokia Bell Labs

§ Universidad Carloss III, Madrid

 2

The application performance
problem

● increasingly all of a user's apps at one time require low delay
● online gaming
● voice
● conversational video, interactive video
● virtual reality, augmented reality
● instant messaging
● interactive Web, Web services
● remote desktop, cloud-based apps

● Need a new service for all Internet traffic to transition to

● caches have cut base (propagation) delay, where they can
● queuing remains a major component of delay, albeit intermittent

– under load, delay roughly doubles,
even with state-of-the-art queue management tuned for your current base RTT

 3

The deployment incentive problem

● Significantly better – not just incremental
– worth the deployment hassle

– enable valuable new products and services

 4

The technology problem

● More access bandwidth?
● does not address queuing delay

● Differentiated services (Diffserv)?
● only cuts delay for some packets at the expense of others

● Per-flow queuing?
● isolates one flow from the delay of another, but not from its own
● requires L4 header inspection and significant processing expense

● Active Queue Management (AQM)?
with Explicit Congestion Notification (ECN)?

● on the right track, but the root problem is beyond AQM control...

● …'Classic' TCP (not the network) determines queue delay
● to go faster, its saw-teeth get bigger (unscalable)

New word: Classic TCP =
Reno congestion control [RFC5681] & friends: Cubic, SCTP, QUIC, etc.

time

ra
te

1990s

2010s

 5

The Classic TCP dilemma:
delay vs. utilization

AQM
operating

point

TCP saw-teeth
seeking the

operating point

Today (at best)
TCP on end-systems
AQM at bottlenecks

delay-utilization
dilemma

lin
e

ut
il

is
at

io
n

bu
ff

er
oc

cu
pa

nc
y

b u f f e r s i z e

TCP saw-teeth
seeking capacity

Today (typical)
TCP on end-systems
Drop-tail buffers

time

cuts delay, but
poorer line
utilization

shallower
operating
point

sawtooth amplitude:
~1 'typical' base RTT
(round trip time)

full line
utilisation

buffer kept
for bursts

more smaller
saw-teeth

A Scalable TCP
Resolves dilemma
Have to change TCP

queuing
delay
consistently
lower

 6

Actually, it's a Hexlemma
● Three impairments:

– queuing delay

– under-utilization

– packet loss

● If AQM reduces one, TCP increases the others

New word: hexlemma =
like a dilemma, but between six things

● Three wider issues:
– layering violation

– unscalable

– RTT-unfairness

 7

Fine saw-teeth
are only feasible...

1)if drop is not used as the congestion signal
● drop would be too frequent
● need explicit congestion notification (ecn)

– and not “the same as drop” [RFC3168],
otherwise coarse saw-teeth

2)if the 'coexistence problem' is solved
● one 'Scalable' flow with frequent sawteeth

looks like many 'Classic' flows to a 'Classic' TCP flow
● so the Classic flow starves itself

Classic

Scalable

 8

TCP

Problem: very high level summary

● Problem: Classic TCP is the elephant in the room
● Solution: build another room without the elephant

 9

TCP

Solution: very high level summary

● Problem: Classic TCP is the elephant in the room
● Solution: build another room without the elephant

L4S

 10

1 23

Coexistence: Solution Architecture
● DualQ Coupled AQMs: a 'semi-permeable membrane' that:

● partitions latency (separate queues for L4S & Classic)
● but pools bandwidth (shared by apps/transport, not by network)

● per 'site' (home, office, campus or mobile device)
● typically one access bottleneck in each direction
● deploying DualQ here should give nearly all the benefit

Classifier
priority

scheduler

 L4S

Classic

1

marker

drop or
marker

Classic
sender

 Scalable
sender

Coupling

 11

Coexistence: Solution Architecture
● DualQ Coupled AQMs: a 'semi-permeable membrane' that:

● partitions latency (separate queues for L4S & Classic)
● but pools bandwidth (shared by apps/transport, not by network)

Classifier
priority

scheduler

 L4S

Classic

1

marker

drop or
marker

Classic
sender

 Scalable
sender

Coupling

r∝1/ p

r∝1/√ p
p2
p

r: packet rate
p: drop/mark probability
r: packet rate
p: drop/mark probability

 12

Framework for Diverse Solutions

ECN
Classifier

priority
scheduler

 L4S: [X1]

Classic: [X0]

1

marker

drop or
marking

Classic
sender

 Scalable
sender

Coupling

many scalable algorithms already:

DCTCP, Relentless, S-SCREAM, etc.
(not yet with safety features–see later)

many scalable algorithms already:

DCTCP, Relentless, S-SCREAM, etc.
(not yet with safety features–see later)

2 different classic AQMs
already implemented:

Curvy RED & PIE

2 different classic AQMs
already implemented:

Curvy RED & PIE

2 different schedulers
already implemented:

strict priority & MEDF

2 different schedulers
already implemented:

strict priority & MEDF

● The DualQ Coupled AQM draft is structured as a framework

– pseudocode of concrete examples in the appendices

OK to include some
unresponsive VoIP,
DNS, etc. in L4S

invariantinvariant

 13

TCP

very high level summary

Scalable
TCP

+ everything
else

● problem: Classic TCP is the elephant in the room
● solution: build another room without the elephant

Q&A

large saw teeth can ruin the quality of your experience

 15

Why is performance so much better?
Immediate signalling

● Today's AQMs defer drop for ~100ms
1)to allow time for a worst-case RTT response

because: the network doesn't know each packet's RTT

2)to avoid drop unless the queue proves persistent
because: drop is an impairment as well as a signal

● Using ECN for L4S makes it feasible to signal immediately
– because ECN is a signal but not an impairment

marker

drop or
marking

Classic
sender

 Scalable
sender

Signal smoothed over ~100ms

Immediate
response

Signal immediately

Response
to signals
smoothed

over own RTT

Problem with the Classic approach:
a flow with RTT=5ms

gets no signal for 20 round-trips

 L4S

Classic

 16

related problems L4S also addresses
● incremental deployment of low delay DCTCP

– within & between data centres with no unified control

● near-zero congestion loss
– for short flows, loss translates to timeout and retransmit delay

● incremental deployment of scalable congestion controls
– 'Scalable' = invariant recovery time

– TCP Reno [RFC5681]: unscalable

– TCP Cubic: less unscalable

t t

recovery
time

w
in

do
w

w
in

do
w

0.1

1

10

100

1,000

10,000

100,000

1,000,000

Recovery time (log scale) [round trips]

RFC5681 TCP
Cubic RTT
0.01s
HSTCP
CTCP
Cubic RTT 0.5s
Scalable TCP
DCTCP

window (log scale)
[packets per round trip time]

Better

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

