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The application performance 
problem

● increasingly all of a user's apps at one time require low delay
● online gaming
● voice
● conversational video, interactive video
● virtual reality, augmented reality
● instant messaging
● interactive Web, Web services
● remote desktop, cloud-based apps

● Need a new service for all Internet traffic to transition to

● caches have cut base (propagation) delay, where they can
● queuing remains a major component of delay, albeit intermittent

– under load, delay roughly doubles, 
even with state-of-the-art queue management tuned for your current base RTT
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The deployment incentive problem

● Significantly better – not just incremental
– worth the deployment hassle

– enable valuable new products and services
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The technology problem

● More access bandwidth?
● does not address queuing delay

● Differentiated services (Diffserv)?
● only cuts delay for some packets at the expense of others

● Per-flow queuing?
● isolates one flow from the delay of another, but not from its own
● requires L4 header inspection and significant processing expense

● Active Queue Management (AQM)?
with Explicit Congestion Notification (ECN)?

● on the right track, but the root problem is beyond AQM control...

● …'Classic' TCP (not the network) determines queue delay
● to go faster, its saw-teeth get bigger (unscalable)

New word: Classic TCP =
Reno congestion control [RFC5681] & friends: Cubic, SCTP, QUIC, etc.
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The Classic TCP dilemma:
delay vs. utilization
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Actually, it's a Hexlemma
● Three impairments:

– queuing delay

– under-utilization

– packet loss

● If AQM reduces one, TCP increases the others

New word: hexlemma =
like a dilemma, but between six things

● Three wider issues:
– layering violation

– unscalable

– RTT-unfairness
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Fine saw-teeth
are only feasible...

1)if drop is not used as the congestion signal
● drop would be too frequent
● need explicit congestion notification (ecn) 

– and not “the same as drop” [RFC3168], 
otherwise coarse saw-teeth

2)if the 'coexistence problem' is solved
● one 'Scalable' flow with frequent sawteeth 

looks like many 'Classic' flows to a 'Classic' TCP flow
● so the Classic flow starves itself

Classic

Scalable
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TCP  

Problem: very high level summary

● Problem: Classic TCP is the elephant in the room
● Solution: build another room without the elephant
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TCP  

Solution: very high level summary

● Problem: Classic TCP is the elephant in the room
● Solution: build another room without the elephant

L4S
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Coexistence: Solution Architecture
● DualQ Coupled AQMs: a 'semi-permeable membrane' that:

● partitions latency (separate queues for L4S & Classic)
● but pools bandwidth (shared by apps/transport, not by network)

● per 'site' (home, office, campus or mobile device)
● typically one access bottleneck in each direction
● deploying DualQ here should give nearly all the benefit
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Coexistence: Solution Architecture
● DualQ Coupled AQMs: a 'semi-permeable membrane' that:

● partitions latency (separate queues for L4S & Classic)
● but pools bandwidth (shared by apps/transport, not by network)
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Framework for Diverse Solutions

ECN
Classifier

priority 
scheduler

 L4S: [X1]

Classic: [X0]

1

marker

drop or 
marking

Classic
sender

 Scalable
sender

Coupling

many scalable algorithms already:

DCTCP, Relentless, S-SCREAM, etc.
(not yet with safety features–see later)

many scalable algorithms already:

DCTCP, Relentless, S-SCREAM, etc.
(not yet with safety features–see later)

2 different classic AQMs
already implemented:

Curvy RED & PIE

2 different classic AQMs
already implemented:

Curvy RED & PIE

2 different schedulers 
already implemented:

strict priority & MEDF

2 different schedulers 
already implemented:

strict priority & MEDF

● The DualQ Coupled AQM draft is structured as a framework

– pseudocode of concrete examples in the appendices

OK to include some
unresponsive VoIP, 
DNS, etc. in L4S

invariantinvariant
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TCP  

very high level summary

Scalable
TCP

+ everything 
else

● problem: Classic TCP is the elephant in the room
● solution: build another room without the elephant



  

Q&A

large saw teeth can ruin the quality of your experience
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Why is performance so much better?
Immediate signalling

● Today's AQMs defer drop for ~100ms
1)to allow time for a worst-case RTT response

because: the network doesn't know each packet's RTT

2)to avoid drop unless the queue proves persistent
because: drop is an impairment as well as a signal

● Using ECN for L4S makes it feasible to signal immediately
– because ECN is a signal but not an impairment

marker

drop or 
marking

Classic
sender

 Scalable
sender

Signal smoothed over ~100ms

Immediate
response

Signal immediately

Response
to signals 
smoothed 

over own RTT

Problem with the Classic approach:
a flow with RTT=5ms 

gets no signal for 20 round-trips

 L4S

Classic
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related problems L4S also addresses
● incremental deployment of low delay DCTCP

– within & between data centres with no unified control

● near-zero congestion loss
– for short flows, loss translates to timeout and retransmit delay

● incremental deployment of scalable congestion controls
– 'Scalable' = invariant recovery time 

– TCP Reno [RFC5681]: unscalable

– TCP Cubic: less unscalable
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