LISP Predictive-RLOCs
Mobility with Near-Zero Packet Loss

draft-farinacci-lisp-predictive-rlocs-00

LISP Working Group - Berlin IETF
July 2016

Dino Farinacci and Padma Pillay-Esnault
Problem Statement

• The mobility problem is simple ;-)
 • When an EID moves, you send packets to the new location

• **NOT ;-)**

 • Packets already in the network are going to the old location
 (where the EID is no longer)

 • EID has arrived at the new location but it is not receiving
 packets (sender doesn’t know about the move yet)

• This is not “make-before-break”
Struggling Solutions

- Mobile-IP
 - You can’t send to home agent because it doesn’t know where the new location is

- Host Routes
 - They point to the old and the new location at the same time in different parts of the network
 - Handoffs are slow because the EID host route has to go everywhere

- Locator/ID Separation
 - A good solution if signaling is fast - sender gets new location quickly
Near-Zero Packet Loss

- We really don’t want to drop any packets
- We want handoffs to be instantaneous (atomic)
The Future is Clear

• What if we know all new locations?
• Have source send to all new locations
• We’ll search (and find) where the EID has roamed to
• Exercising a bandwidth/signaling tradeoff
Predictive RLOCs

LISP Mapping Database

'main-street' ->
RLE: RLOC-a, RLOC-b, RLOC-c, RLOC-d

EID-a ->
RLOC: 'main-street'

EID-b ->
RLOC: 'main-street'
Predictive RLOCs

Packet arrives at all xTRs, if EID discovered, forward packet else drop packet
Predictive RLOCs

No control-plane signaling for xTR-s to stop sending to RLOC-a for EID-b

Local xTRs can prefetch RLOC-s for server-side EID
Intersections

When EID-a is at xTR-a, driving straight ahead.

When EID-a is at xTR-b, anticipate turn north/south/ahead.

LISP Mapping Database

'wall-street' ->
RLE: RLOC-a, RLOC-b,
(RLE: RLOC-1, RLOC-3),
(RLE: RLOC-2, RLOC-4),
RLOC-c, RLOC-d

'main-street'
LISP Protocol Changes

- None
- Use RLE LCAF for unicast map-cache entries
- By the way, multicast just works
 - When roaming EID is a receiver
 - When roaming EID is a source, (S-EID, G) cannot be pre-fetched
Quick Demo

Any road-side-unit xTR discovers a roaming EID [1]2.2.2.2 . . .

lispers.net

Scalable Open Overlay Networking

dino-macbook.local

Site name: any, EID-prefix: [1]2.2.2.2/32, registered: yes, dynamic

- Description:
- Last registerer: [0]127.0.0.1, xTR-ID: 0xf688382cdf56e5d, site-ID: 0
- First registered: 0:00:22, last registered: 0:00:22, auth-type: sha2, registration flags: p-s-I-t-r-m-n
- Default registration timeout TTL: 180 seconds
- Forcing proxy Map-Reply: yes
- Forcing proxy Map-Reply for xTRs behind NATs: no
- Send drop-action proxy Map-Reply to PITR: no
- Proxy Map-Reply action: not configured
- Allowed RLOC-set: any

Registered RLOC-set (replacement-semantics):

- [0]no-address, state: up-state, up/uw/mp/mw: 0/0/255/0, rloc-name: "replicate-to-each-rsu"
 - rle: 10.1.1.1(L0), 10.2.2.2(L0), 10.3.3.3(L0)

Individual registrations: none

Tue Jun 21 16:52:34 PDT 2016 - Uptime 0:00:37, Version 0.332+
Copyright 2013-2016 - all rights reserved by lispers.net LLC
Features/Issues go to support@lispers.net

. . . the RSU or a controller could register the predictive-RLOC mapping
Quick Demo

ITR has EID [1]2.2.2.2 in its map-cache . . .

. . . replicates to predictive-RLOCs 10.1.1.1, 10.2.2.2, and 10.3.3.3
Work in Progress

• Use geo-prefixes to reduce replication scope for future RLOCs
• Use overlapping RLEs to reduce replication scope
• Use multiple RLOC-records with shorter RLEs to reduce replication scope
• Use RTRs close to ETR so replication is O(1) over RANs
• Use a level of indirection with distinguished-names for grouping roaming-EIDs to reduce predictive-RLOC duplication in different mappings
• LISP-crypto operation
 • Encrypt for each predictive-RLOC replication (like draft-ietf-lisp-signal-free-multicast)
 • Or encrypt once and replicate many (would have to share keys)
Questions/Comments/Tomatoes?