draft-gomez-lpwan-fragmentation-header-02

Carles Gomez (UPC/i2cat)
Josep Paradells (UPC/i2cat)
Jon Crowcroft (University of Cambridge)
Motivation (I/II)

• IPv6 MTU requirement (1280 bytes)
 – But some LPWAN technologies lack L2 fragmentation

• 6LoWPAN fragmentation (RFC 4944)
 – IEEE 802.15.4 (maximum frame size of 127 bytes)
 • 4-byte header (1st fragment)
 • 5-byte header (subsequent fragments)

• However, LPWAN technologies:
 – Maximum payload size one order of magnitude less
 – Bit rate several orders of magnitude less
 – Further limited message rate
 • E.g. due to regulatory constraints on the duty cycle
Motivation (II/II)

• RFC 4944 fragmentation header
 – May represent high overhead for LPWAN
• Furthermore, the RFC 4944 offset field is expressed in increments of 8 octets
 – Only supports L2 payload size ≥ 13 bytes
 – However, there are LPWAN technologies with a shorter maximum payload size
Proposed new format

• 6LoWPAN Fragmentation Header for LPWANs (6LoFHL)

• First fragment

• Subsequent fragments
Changes from RFC 4944 and rationale

• datagram_size field only included in the first fragment
 – Reordering is less likely in (star topology) LPWAN than in a mesh network
 – The format still supports reordering…

• datagram_tag field size reduced to 1 byte
 – Ambiguities due to wrapping not expected
 • Low message rate in LPWAN

• datagram_offset increased from 8 bits to 11 bits
 – Allows to express the offset in 1-byte increments
Benefits of 6LoFHL (I/II)

• Simple, byte-exact, short format
 – Supports maximum L2 payloads ≥ 4 bytes

• Overhead (L2 data units)

<table>
<thead>
<tr>
<th>IPv6 datagram size (bytes)</th>
<th>11</th>
<th>40</th>
<th>100</th>
<th>1280</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 payload (bytes)</td>
<td>4944</td>
<td>6LoFHL</td>
<td>4944</td>
<td>6LoFHL</td>
</tr>
<tr>
<td>10</td>
<td>----</td>
<td>2</td>
<td>----</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Benefits of 6LoFHL (II/II)

- Overhead (adaptation layer fragmentation header bytes)

<table>
<thead>
<tr>
<th>L2 payload (bytes)</th>
<th>IPv6 datagram size (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: The table shows the overhead in bytes for different payload sizes and IPv6 datagram sizes.
IANA considerations

- 6LoFHL allocates 16 Dispatch values:
 - 11001 000 through 11001 111
 - 11010 000 through 11010 111
Security considerations (I/III)

• 6LoWPAN fragmentation attacks and mitigation analyzed in the literature

• Buffer reservation DoS attack
 – Attacker sends a first fragment to a target
 • Reassembly buffer occupied during reassembly timeout
 • Repeat after the timeout
 • Low cost attack
 – Mitigation
 • Allow fragments of multiple packets in reassembly buffer
 • Define buffer slots
 • If buffer overload, discard packets based on sender behavior
Security considerations (II/III)

• Sending spoofed duplicates
 – Malicious node is required to have overhearing capabilities
 – Attacker
 • Overhears fragment
 • Sends spoofed duplicate (e.g. with random payload)
 – Receiver
 • Cannot distinguish legitimate from spoofed
 • Original IPv6 packet considered corrupt and dropped

– Mitigation suggested
 • Establish a binding among the fragments to be sent
 • E.g. with cryptographic hash functionality
 • Receiver can distinguish illegitimate fragments
Security considerations (III/III)

• Implementers should avoid problems due to:
 – Sending overlapped fragments
 • Comprising overlapping parts of the original datagram
 – Announcing a fake datagram size (1st fragment)
For discussion: alternative 1

• We define a 2-bit ‘LPWAN dispatch’
• We reduce the tag size to 3 bits
• Format:
 – First fragment
 \[
 \begin{array}{c}
 0123456789012345 \\
 ++++++++++++++++++++ \\
 |1 0| \text{datagram_size} | \text{tag} |
 \end{array}
 \]
 – Subsequent fragments
 \[
 \begin{array}{c}
 0123456789012345 \\
 ++++++++++++++++++++ \\
 |1 1| \text{datagram_offset} | \text{tag} |
 \end{array}
 \]
• 2-byte, simple format (but tag too short?)

LPWAN@IETF96
For discussion: alternative 2

- We define a 2-bit ‘LPWAN dispatch’
- We reduce the tag size to 6 bits
- We assume Sigfox as the lower bound L2 MTU
- Format
 - First fragment
 - Datagram_offset in units of 5 bytes
 - To fit Sigfox downlink MTU
 - Subsequent fragments
 - Datagram_offset in units of 5 bytes
 - Saves 1 byte for subsequent fragments

Too complex?
Thanks!

Questions?

Carles Gomez (UPC/i2cat)
Josep Paradells (UPC/i2cat)
Jon Crowcroft (University of Cambridge)
Back-up slide: RFC 4944
fragmentation header format

• First fragment

```
|1 1 0 0 0|  datagram_size  |  datagram_tag  |
```

• Subsequent fragments

```
|1 1 1 0 0|  datagram_size  |  datagram_tag  |
```

|datagram_offset|

```