Forwarding Information Base for MANET Multicast

Lessons Learned from SMF

96th IETF MANET
Background - SMF

Simplified Multicast Forwarding (SMF)

• MANET Multicast (broadcast) protocol.

• Packets are disseminated to the entire MANET.
 – Duplicates are eliminated (no loops).
 – Optimized through use of Connected Dominating Set (CDS).

• Very efficient in small, highly dynamic mobile networks.

• Not intended to scale to large networks.
Background – SMF Shortcomings

• Design results in implementations in user space = poor performance
• Packets are disseminated to the entire MANET
• No knowledge of group membership
• CDS algorithms do not support multiple interfaces well
 – Appendix algorithms are all/none forwarding on all interfaces
• Forwarding rules are not well defined for multiple interfaces
 – DPD per interface? Incoming/outgoing?
 – DPD method managed manually
 • Hash based vs ID based
nrlsmf Functions

• MANET interface support
 – Duplicate packet detection
 – Supports S-MPR/ECDS/Classical forwarding
 – Multi-interface support (limited algorithmic control)
• Gateway support
 – Forced relaying of multicast packets across and among multiple interfaces.
 – Resequencing or packet marking for external flows injected into MANET/SMF areas
• “Remote control” interface allows external processes to control nrlsmf forwarding.
• Packet marking and resequencing for source hosts.
The Current nrlsmf Architecture

Note: A "Smf::Interface" may "associate" with itself for MANET interface forwarding
Separation of Forwarding/Control Plan in the Design

- Control Plane (e.g., user space)
 - Routing Control (e.g., arouted, nhdp, etc)
 - Control Interface API (e.g., netlink, etc)
- Forwarding Plane (e.g., kernel)
 - Forwarding Engine (e.g., SMF)
 - Forwarding Information Base

Forwarding Engine (e.g., SMF)
Current SMF Design

- NHDP
- MIB API
- SMF Management
- Undefined Algorithm Control API
- Undefined Forwarding State
- SMF
- Duplicate packet detection
- Interface Algorithm State
- Interface 1
- Interface 2
- Interface n
Next Generation MANET Multicast FIB Based Design: a cleaner approach

Algorithmic Control Process
- NHDP (SMF enabled)
- Static Management
- Dynamic Routing

Standard FIB API Control Channel
- Forwarding Information Base
- Duplicate Packet Detection
- Source-Destination-Flow-Interface Forwarding State

Filter
- Interface 1
- Interface 2
- Interface n

SMF Management

MIB API
Future - Elastic Multicast
FIB Design should support

• Dynamic pruning of SMF relays for specific group memberships
• Converges to single path multicast trees in stable networks
• Expands to full network flood in highly dynamic networks
 – Dynamic expansion/reduction in forwarding
• Maintains no topology or global membership information
• Relay set reduction applied to higher bandwidth traffic
 – Flow based reductions
• Lower bandwidth traffic still flooded to the entire MANET
Elastic Multicast
Control/Forwarding Interaction

flow_forwarding_status
(based on configured policies, membership, and ACKs)

flow_activity_status
(active, idle)
Flow vs. Generalized Forwarding

• What do I mean by Flow?
 – Packets identified by
 • Destination
 • Source
 • Port
 • Protocol
 • Incoming interface
 – Forwarding rules based on largest match
 • Supports pruning
 • Supports group based joins
 • Supports general dissemination rules
 • Can reduce redundant rebroadcasts

• Current SMF algorithms only specify On/Off forwarding on all interfaces for ALL multicast
Just Forwarding?

• Current *nrlsmf* implementation doesn’t just do forwarding on matching packets....
 – Forward
 – Limited (rate limited)
 – Hybrid (fixed forward then drop)
 – Drop
 – Queue
 – Error
FIB API should NOT be unidirectional

• Algorithmic controllers should be able to be notified of new flows
 – Perform algorithmic duties (i.e. send control messages etc.)
 – Update the FIB
MANET FIB for just Multicast?

• A “MANET Multicast FIB” useful for supporting multiple multicast approaches
 – Elastic Multicast
 – On Demand MANET Routing Protocol

• A “MANET FIB” could be part of a more generalized MANET approach in support other protocols
 – On-demand protocols
 – Network Coding

• A “MANET Multicast solution” would need to consider additional things including group management and gateway to existing infrastructure network multicast protocols
struct mfc_cache {
 struct mfc_cache *next; /* Next entry on cache line */
 #ifdef CONFIG_NET_NS
 struct net *mfc_net;
 #endif
 __be32 mfc_mcastgrp; /* Group the entry belongs to */
 __be32 mfc_origin; /* Source of packet */
 vifi_t mfc_parent; /* Source interface */
 int mfc_flags; /* Flags on line */

 union {
 struct {
 unsigned long expires;
 struct sk_buff_head unresolved; /* Unresolved buffers */
 } unres;
 struct {
 unsigned long last_assert;
 int minvif;
 int maxvif;
 unsigned long bytes;
 unsigned long pkt;
 unsigned long wrong_if;
 unsigned char ttls[MAXVIFS]; /* TTL thresholds */
 } res;
 } mfc_un;
};