A socket API to control Multipath TCP

draft-hesmans-mptcp-socket-00

Benjamin Hesmans
Olivier Bonaventure
UCL, Belgium

Multipath TCP and the architecture

Application
socket
Application | ,.-*" —“ﬂ-i
Transport
Network TCP1 || TCP2 | ... | TCPn
Datalink
Physical

* Backward compatibility : socket unchanged

A. Ford, C. Raiciu, M. Handley, S. Barre, and J. lyengar, “Architectural guidelines for multipath TCP
development", RFC6182 2011.

Multipath TCP deployments

* |nitial assumption
— Backward compatible replacement for TCP
* Use by some researchers and multipath-tcp.org
* Existing deployments
— Siri (Apple)
— SOCKS (KT, OVH, ...)
— Hybrid Access Networks (Tessares, ...)

* Current Multipath TCP users need to control the
utilisation of the subflows

How to control the subflows ? [\

-

* Current reference implementation on Linux

— Unmodified standard socket API to support existing
applications

* Subflows are managed by the path manager
kernel module

— Full-mesh
* use all available interfaces as soon as they are available

— NDiffports
* Use N flows per interface (assumes single-homed hosts)

What was wrong with this approach ?

In theory, kernel path manager can be tuned to
the user's needs but
— User needs vary a lot
* Prefer A over B if Cis down

* Use B only for a given app
* Start over C and establish A if flow is long enough

— Writing a new path manager is difficult

— New path manager kernel must be shipped to
support specific needs

How to control these subflows ? -

/* socket creation */
s = socket (AF_MULTIPATH, SOCK_STREAM, IPPROTO_TCP);

/* creation of first subflow *
sa_endpoints_t endpoints;

/* any source interface */
endpoints.sae_srcif = 0;

/* any address of the client */
endpoints.sae_srcaddr = NULL;
endpoints.sae_srcaddrlen = 0;
/* server address */
endpoints.sae_dstaddr = (struct sockaddr *)
daddr->ai
i gl ad

Special AF

Other system
calls

endpoints.sae_dstaddrlen = drlen;

connectx(s, &endpoints, SAE_ASSOCID_ANY,
0, NULL, 0, NULL, NULL);

int rc

Towards a standardised MPTCP API using
socket options

* Why socket options ?

—getsockopt and setsockopt are well-known
and extensible

— Relatively easy to implement a new socket option

— Can pass information from app to stack as memory
buffer

— Can retrieve information from stack to app as memory
buffer

* |nitially suggested in RFC6897, but not supported
by any implementation

Implemented MPTCP socket options

MPTCP_GET _SUB_IDS
— Retrieve the ids of the different subflows

MPTCP_GET_SUB_TUPLE

— Retrieve the endpoints of a specific subflow
MPTCP_OPEN_SUB_TUPLE

— Create a new subflow with specific endpoints
MPTCP_CLOSE_SUB_ID

— Closes one of the established subflows

MPTCP_SUB_GETSOCKOPT and
MPTCP_SUB_SETSOCKOPT

— Apply a TCP socket option on a specific subflow

Currently established subflows

int 1i;

unsigned int optlen;

struct mptcp sub ids *ids;
optlen = 42; // must be large enough

ids = (struct mptcp_sub_ids *) malloc(optlen) ;

err=getsockopt (sockfd, IPPROTO_TCP,
MPTCP_GET SUB IDS, ids, &optlen) ;

for(i = 0; 1 < ids->sub count; 1i++) { S l)ﬂ .d
printf ("Subflow id : %i\n", UubTiow |

ids->sub status[i] .id);

What are the endpoints of a subflow ?

unsigned int optlen;
struct mptcp_sub_tuple *sub_tuple;

optlen = 100; // must be large enough

sub. tuple = (struct mptep sub tuple *)malloc | Local endpoint

sub_tuple->id = sub_id;
getsockopt (sockfd, IPPROTO_TCP,
sub_tuple, &optlen) ;

MP ~ GET_SUB_TUPLE,

sin = (struct sockaddr _in*) &sub_ tuple->addrs|[0];

printf ("\tip src : %s src port : %hu\n", inet ntoa(sin->sin addr),
ntohs (sin->sin_port)) ;

sin = (struct sockaddr_in*) &sub_ tuple->addrs|[l];

(sin->sin _addr),
->sin port)) ;

Remote endpoin

printf ("\tip dst : %s dst port : %hu\n", inet_n

Creating a subflow

unsigned int optlen;

struct mptcp_sub_ tuple *sub_tuple;

struct sockaddr_ in *addr;

optlen = sizeof (struct mptcp_sub_ tupl
2 * gizeof (struct sockaddr]

sub_tuple = malloc (optlen) ;

sub_tuple->id = 0; sub_tuple->prio = 0;

Local endpoint

addr = (struct sockaddr_ in*) &sub_ tuple->addrs[0];

addr->sin_family = AF_INET;

addr->sin_port = htons (12345) ;

inet_pton (AF_INET, "10.0.0.1",

&addr->sin addr) ;

addr = (struct sockaddr_in*) &sub_tuple->addrs[1l];

addr->sin_family = AF_INET;
addr->gsin_port = htons(1234) ;
inet_pton (AF_INET, "10.1.0.1",

&addr->sin_addr) ; Remote endpoln

error = getsockopt (sockfd, IPPROTO_TCP,
MPTCP_OPEN_ SUB_ TUPLE, sub_ tuple, &optlen);

Status

* Implemented in Linux
— Create/delete/query subflows, apply socket options

— non-blocking I/O and events, e.g. with
select, recvmsg and sendmsg

* Seeking cooperation with application developers
— Better understand their requirements
— Expose the right abstractions

* Next steps in IETF
— Add socket API to WG charter
— WG interest ?

	Slide 1
	Multipath TCP and the architecture
	Multipath TCP deployments
	How to control the subflows ?
	What was wrong with this approach ?
	How to control these subflows ?
	Towards a standardised MPTCP API using socket options
	Implemented MPTCP socket options
	Currently established subflows
	What are the endpoints of a subflow ?
	Creating a subflow
	Status

