YANG Schema Mount

draft-ietf-schema-mount-02

Martin Björklund

⟨mbj@tail-f.com⟩

Ladislav Lhotka

(lhotka@nic.cz)

18 July 2016

Objectives

Provide a data modelling mechanism for defining compound schemas: a schema is embedded at a specific location of another schema.

```
+--rw if:interfaces
   +--rw if:interface* [name]
     +--rw ip:ipv4
      +--rw ip:ipv6
+--rw logical-device* [name]
   +--rw name
   +--rw if:interfaces
    +--rw if:interface* [name]
         +--rw ip:ipv4
         +--rw ip:ipv6
```

- subschemas are self-contained and isolated from the top-level schema and other subschemas,
- arbitrary number of nesting levels,
- same modules may be used repeatedly in the top-level schema and/or subschemas.

Components of the Solution

1. YANG library specifies all modules in the top-level schema **including** the module *ietf-yang-schema-mount*.

```
"module": [
    "name": "example-logical-devices",
    "revision": "2016-07-18",
    "namespace": "urn:example:logical-devices",
    "conformance-type": "implement"
    "name": "ietf-interfaces",
    "revision": "2014-05-08",
    "namespace": "urn:ietf:params:xml:ns:yang:ietf-interfaces",
    "conformance-type": "implement"
    "name": "ietf-yang-schema-mount",
    "revision": "2016-07-01",
    "namespace": "urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount",
    "conformance-type": "implement"
```

2. anydata node(s) containing the mount-point extension statement.

```
module example-logical-devices {
  yang-version 1.1;
  namespace "urn:example:logical-devices";
  prefix exld;
  import ietf-yang-schema-mount {
    prefix yangmnt;
  container logical-devices {
    list logical-device {
      key name;
      leaf name {
        type string;
      anydata root {
        yangmnt:mount-point logical-device;
```

- 3. state data specifying the subschema for each mount point
 - a. in place, schema analogical to yang library, or
 - b. by referring to a YANG library instance that is mounted under the mount point.

```
"ietf-yang-schema-mount:mount-points": {
  "mount-point": [
      "module": "example-logical-devices",
      "name": "logical-device",
                                                      case a
      "modules": {
        "module": [
            "name": "ietf-interface",
            "revision": "2014-05-08",
            "namespace": "urn:ietf:params:xml:ns:yang:ietf-interfaces",
            "conformance-type": "implement"
```

Extension Statement mount-point

yangmnt:mount-point logical-device { yangmnt:mount-yang-library; } optional, indicates case b

Case **b** can be used to define a specific subschema for different entries of a list. This approach doesn't scale because an instance of YANG library has to be present in every list entry.

Alternative approach:

```
anydata ld-foo {
   when "../type = 'foo'";
   yangmnt:mount-point logical-device-foo;
}
anydata ld-bar {
   when "../type = 'bar'";
   yangmnt:mount-point logical-device-bar;
}
```

Mount Points Only Under anydata

Advantages:

- compatible with old clients that don't understand schema mount,
- unique context in which the mount-point extension can be used.

Drawbacks:

- adds extra level of schema hierarchy,
- makes the schema less strict any data may be present.

Proposal: Define a capability serving as conformance statement – the server advertising it will accept only data defined by a mounted schema inside an **anydata** instance containing the mount-point extension.

Is It What We Want?

The current mechanism should work fine for implementing servers with ad hoc compound schemas, including use cases like peer mount.

However, it is not a data modelling tool: the overall schema has to be constructed in an iterative way.

It is unclear how a compound schema involving schema mount could be published, especially with multiple levels of embedding.

DSDL Inspiration

1. External reference pattern in RELAX NG:

```
element logical-devices {
   external "logical-device.rnc" *
}
```

Embedded grammars in RELAX NG aren't completely isolated, they can refer to definitions in the parent grammar.

Providing a similar mechanism in YANG would require a new statement.

2. Namespace-based Validation Dispatching Language (NVDL)

A separate meta-schema language is used for splitting the schema of a compound document into fragments based on namespaces, and assigning a schema to each fragment.

Advantages:

- more flexible and modular, existing schemas can be combined in different way,
- schemas expressed in different schema languages can be used in the same compound schema.

YSDL (draft-lhotka-netmod-ysdl-00, expired) tried to adapt this approach to YANG.