Client Discovery of NFSv4.1 Server Multipath Addresses

Andy Adamson
andros@netapp.com
IETF 96, Berlin, 2016
Motivation

- Motivated by desire for session trunking
 - Linux prototype code
- pNFS data servers have the GETDEVICEINFO multipath4 to list potential session trunking addresses
- No such protocol feature for non-pNFS or MDS NFSv4.1+ servers
- How does the client discover a list of potential session trunking addresses?
- Meeting topic at June 2016 NFSv4 Bakeathon
Multipath Options for Session Trunking

- IP Layer
 - MPTCP RFC 6820
 - SCPT RFC 4960

- RPC Layer
 - Linux feature: multiple RPC transports per mount

- All take advantage of multiple network paths between the client and the server to:
 - Fully utilize network resource
 - Achieve better throughput
 - Failover for network failures (HA)
MPTCP

- Client and server RPC layer sees a single TCP connection which is multiplexed
 - NFS server cannot assign resources per multiplex TCP, but is this really needed…
 - Automatic ‘session trunking’
 - No support for other transports such as RDMA

- Detects existence of multiple network interfaces on the hosts and creates the multiple TCP flows
 - No need for additional client discovery of addresses
 - New features in discussion to respond to topology
 - Load balancing, path priority to name a few
SCTP

- SCTP association has multiple IP addresses
 - Originally for HA, new load sharing for performance.

- No specification for SCTP in ONC RPC
 - Will the NFS server see one SCTP association or the potentially multiple connections within an association?
 - No support for other transports such as RDMA

- Requires client discovery of server multipath
 - SCTP association is defined as [a set of IP addresses at A]+[Port-A]+[a set of IP addresses at Z]+[Port-Z]

- Still a new protocol that needs work
 - Performance only slightly better than TCP
Linux Multiple RPC transports

- New Linux RPC feature allows for multiple transports per mount
 - Supports a mix of transports (TCP, MPTCP, RDMA, SCTP, ...)

- RPC layer controls use
 - Currently only round-robin algorithm implemented
 - Needs work: network topology, which path to prefer

- Server sees each connection as separate

- Requires client discovery of transport addresses
Client Discovery: Multipath Addresses

- Multiple host names on mount command
- Use a DNS A-record, or special trunk record
- Use `fs_locations` or `fs_locations_info` attribute on the pseudo file system
Multiple host names on mount

- Solaris supports this feature
 - Disliked due to the need to address all clients when network conditions change. (as reported at June 2016 Bakeathon)

- Discussion on Linux kernel list
 - Linux RFC prototype received a mixed response
 - Support issues influenced the decision to not implement multiple host names mount feature
 - Response to change in network conditions
 - Dislike another mount option to support
 - Server should supply addresses
DNS for Multipath

- Use DNS A-records, or special trunk record
- Changing a DNS record due to an interface change on a server is problematic
 - Making a DNS change in many organizations is difficult and takes a lot of time as making a mistake that brings DNS down stops all computing services.
- DNS caching means that when a change occurs, need to wait the cache timeout, typically an hour.
fs_locations

- fs_locations/_info useful replica definition:
 - “When a set of servers have corresponding file systems at the same path within their namespaces, an array of server names may be provided.”
 - Client could test each replica address for session trunking using the EXCHANGE_ID test.
 - Most addresses will be to different replica servers

- fs_locations/_info is per file system
 - session trunking is server wide.
fs_locations proposal

- Use an fs_locations or fs_locations_info replica attribute on the pseudo file system
 - pseudo file system does not migrate and is not replicated (I guess it could be - but what is the point?)
- Define this to apply to the whole server
- Client test each address for session trunking with the EXCHANGE_ID test
 - All addresses will be from the same server
Summary

- Do we need to specify a means of client discovery of NFSv4.1 server multipath addresses?
- MPTCP gets us most of the way for TCP
 - Protocol development is active
- Is fs_locations/_info on pseudo file system a reasonable approach?

© 2015 NetApp, Inc. All rights reserved. NetApp Proprietary – Limited Use Only
Thank you
Multipath Trunk Options

- Testing has shown that multiple connections
 - Improves performance
 - Improves availability

- Testing:
 - MPTCP
 - Prototype Linux NFS client with multiple RPC transports
 - SCTP
 - https://www.researchgate.net/publication/220776215_Performance_Comparison_of_SCTP_and_TCP_over_Linux_Platform

- All trunk options require some sort of discovery of multipath addresses