An Analysis of Lightweight Virtualization
Technologies for NFV

Sriram Natarajan, Deutsche Telekom Inc.
Ramki Krishnan, Dell Inc.
Anoop Ghanwani, Dell Inc.
Dilip Krishnaswamy, IBM Research
Peter Willis, BT Plc
Ashay Chaudhary, Verizon
Felipe Huici, NEC — new co-author

Recap of first version

e VM based network functions
— Key Challenges

e Container-based network functions

— Key Benefits, Challenges and Potential Solutions

Latest version summary
Beyond Container-based network functions

Include other lightweight virtualization
technologies Unikernels and OS Tinyfication

Detailed benchmarking experiments
Comparison discussion

Next Steps

Benchmark Setup (1)

e All tests are run on an x86-64 server with an Intel Xeon E5-1630 v3
3.7GHz CPU (4 cores) and 32GB RAM.

* For the hypervisors we use KVM running on Linux 4.4.1 and Xen
version 4.6.0. The virtual machines running on KVM and Xen are of
three types:

— Unikernels, on top of the minimalistic operating systems OSv and
MiniOS for KVM and Xen, respectively. The only application built into
them is iperf. To denote them we use the shorthand unikernel.osv.kvm
or unikernels.minios.xen.

— Tinyfied Linux (a.k.a. Tinyx), consisting of a Linux kernel version 4.4.1
with only a reduced set of drivers (ext4, and netfront/blkfront for Xen),
and a distribution containing only busybox, an ssh server for
convenience, and iperf. We use the shorthand tinyx.kvm and tinyx.xen.

— Standard VM, consisting of a Debian distribution including iperf and
Linux version 4.4.1. We use the shorthand standardvm.kvm and
standardvm.xen for it.

* For containers, we use Docker version 1.11 running on Linux 4.4.1.

Benchmark Setup (2)

 Numbers reported here for virtual machines (whether
standard, Tinyx or unikernels) include the following
optimizations to the underlying virtualization technologies.

— For Xen, we use the optimized Xenstore, toolstack and hotplug scripts
reported in [SUPERFLUIDITY] as well as the accelerated packet I/O
derived from persistent grants (for Tx) [PGRANTS].

— For KVM, we remove the creation of a tap device from the VM’s boot
process and use a pre-created tap device instead.

* Choice of iperf for VNF workloads
— Basic TCP-stack based throughput/delay measurements to find out
what the fundamental limits of the underlying virtualization
technology are *before* adding any VNFs.

— TCP stack data plane processing - cover a broad range of data plane
VNFs such as firewall, load balancer, IDS/IPS etc.

Benchmark - Instantiation Times
(Service Aglllty/EIast|C|ty)

e +
| Technology Type l Time (msecs) |
| e e e e e e e e e +
| standardvm.xen l 6500 [
standardvm. kvm	2988
Container	1711
tinyx.kvm	1081
tinyx.xen	431
unikernel.osv.kvm	330
unikernels.minios.xen	31
e Fmm -

* Test Methodology

— Carry out a SYN flood from an external server and measure the time it takes for the
container/VM to respond with a RST packet during instantiation

* Result
— Unikernel the fastest to come up

Benchmark - Throughput

o e -
| Technology | Throughput (Gb/s) | Throughput (Gb/s) |
| Type | TX | RX l
| - e e -
| standardvm.xen | 23.1 | 24.5]
| standardvm. kvm | 20.1 | 8.9]
| Container | 45.1 | 43.8]
| tinyx.kvm | 21.5 | 37.9]
| tinyx.xen | 8.6 | 24.59]
| unikernel.osv.kvm | 47.9 | 47.17]
| unikernels.minios.xen | 45.5 | 32.6]
e e o -

* Test Methodology

— TCP traffic using guest IPPERF application between the guest and the host
-- there are no NICs involved so that rates are not bound by physical
medium limitations.

e Result

— Containers and unikernels (at least for Tx and for Tx/Rx for KVM) are fairly
equally matched and perform best, with unikernels having a slight edge.

Benchmark - RTT

et Fom e -
| Technology Type | Time (msecs) |
| = e e e e +
standardvm.xen	34
standardvm.kvm	18
Container	4
tinyx.kvm	19
tinyx.xen	15
unikernel.osv.kvm	9
unikernels.minios.xen	5
e Fmm e ——— -

* Test Methodology

— To measure round-trip time (RTT) from an external server to the VM/container we
carry out a ping flood and report the average RTT.

* Result
— Containers are the best, unikernels with mini OS follow.

Benchmark - Image Size

e o -
| Technology Type | 8ize (MBs) |
| -
| standardvm.xen | 813 |
| standardvm. kvm | 813 |
| Container | 61 |
| tinyx.kvm | 3.5 |
| tinyx.xen | 3.7 |
| unikernel.osv.kvm | 12 |
| unikernels.minios.xen | 2 |
e o +

* Test Methodology
— Measure image size using standard “Is” tool.

 Result
— Largest image size is standard VM
— The smallest image is the one based on MiniOS/Xen with 2MB.

Benchmark - Memory Usage

ettt -
| Technology Type |

| standardvm.xen |
| standardvm.kvm |
| Container |
| tinyx.kvm |
| tinyx.xen |
| unikernel.osv.kvm |
| unikernels.minios.xen |

+

Test Methodology

_____________ +
Usage (MBs) |

— Measure memory usage using standard tools such as “top” and “xI” (Xen’s

management tool).

Result
— Largest memory usage — standard VM
— Smallest memory usage — container

10

Comparison Discussion

Service Agility/Elasticity
— Unikernels and Containers are the best
Memory Usage
— Containers are the best, share host resources
Management Frameworks
— Standard VMs and Containers have well supported open source communities
— Unikernels might need open source glue
Security/lsolation
— VM based solutions are robust
— Containers are evolving
* Kernel security modules SELinux, Apparmor can cover some aspects
Application Compatibility
— Standard VMs are most flexible

— Linux OS has the best container support — container feature set is catching up in
other OS such as Windows, BSD etc.

— Unikernels are specialized
Overall choice
— Not black and white — use case and vendor solution availability dependent

Next Steps
* Read the draft?

* Requesting for research group adoption
over the list

Backup
(material from
previous version)

Virtual Machine vs. Container Stack

/KVM

\2

\ /Container-stack \

VNF

Libraries VNF

Libraries

Host-0S

Guest-0S

Host-0S

Lightweight footprint:
Very small images with
API-based control to
automate the management
of services

Resource Overhead:
Lower use of system
resources (CPU, memory,

etc.) by eliminating
hypervisor & guest OS
overhead

I I Container Engine I I

Kernel Functions and Modules:

Namespaces, cgroups, capabilities, chroot, SELinux

Host-0S

Deployment time:
Rapidly deploy
applications with minimal
run-time requirements

Updates: Depending on
requirements, updates,
failures or scaling apps
can be achieved by
scaling containers
up/down

14

VM based Network Functions
Key Challenges

15

Service Agility/Performance

* Provisioning time:

— Hypervisor configuration Libraries Libraries
— Spin-up guest OS
. : Guest-0S Guest-0S
— Align dependencies between Guest-0OS e =
& VNFs Hypervisor
Host-0OS

* Runtime performance overhead:

— Performance proportional to resource allocated to individual VMs (throughput,
line rate, concurrent sessions, etc.)

— Overhead stems from components other than VNF process (e.g. guest OS)

— Need for inter-VM networking solution

— Meeting SLAs requires dynamic fine tuning or instantiation of additive features,
which is complex in a VM environment

16

Portability/ Elasticity/Scalability

* Porting VNFs require:

— Identifying suitable nodes for new VNF
instances (or re-locating existing
instances). For example, resource types,
available capacity, guest OS images,
hypervisor configs, HW/SW accelerators,
etc.)

— Allocating required resources for new
instances

— Provisioning configs to components in the
guest OS, libraries and VNF

* Elastic scalability needs are driven by
workloads on the VNF instances, and
stateful VNFs increase the latency to
spin up new instances to fully
working state.

Libraries

Guest-0S

Hypervisor

Libraries

Same
Guest-0OS
Hypervisor

Re-config

Host-0S

Host-0S (VvCPU, RAM,
SSL accelerator)

17

VNF
Securely recover
with minimal or no
downtime
(reschedule VNF)

Security/Isolation

X

If VNF is compromised

(misconfiguration,

etc.), how to securely

guarantine the VNF,

but ensure continuity
of other VNFs?

|
|
|
Libraries Libraries :
|
Guest-0S Guest-0S |
|
. |
Hypervisor
Host-0S

/

Guarantee complete isolation across
resource entities (hardware units,
hypervisor, protection of shared

\

Resource hungry VNF can starve the
shared resources (noisy neighbor

effect) that are allocated to other VNFs;

resource, isolation of virtual networks,
L3 cache, QPI, etc.)

Need to monitor and cut-off hungry

VNF usage

18

Containerized Network Functions
Key Benefits, Challenges and Potential Solutions

19

Service Agility/Performance/lIsolation (1)

Cluster
Management
Tool

Scheduler

VNF
A

Container Engine

Host-OS

06

Container Engine

Host-0S

Key Benefits:

- Containers can provide better
service agility (e.g. dynamically
provision VNFs for offering on-
demand services), and performance
as it allows us to run the VNF process
directly in the host environment

- Inter-VNF communication latency
depends on inter-process
communication option (when hosted
in the same host)

20

Service Agility/Performance/lIsolation (2)

Cluster
Management
Tool

Scheduler

VNF
A

Container Engine

Host-OS

06

Container Engine

Host-0S

Key Challenges:

- Isolation: Containers create a slice of
the underlying host using techniques
like namespaces, cgroups, chroot etc.;
several other kernel features that are
not completely isolated.

- Resource Mgmt: Containers do not
provide a mechanism to quota manage
the resources and hence susceptible to
the “noisy neighbor” challenge.

Potential Solutions:
- Kernel Security Modules: SElinux,

AppArmor
- Resource Mgmt: Kubernetes
- Platform Awareness: ClearLinux

21

Elasticity & Resilience

Pod Pod Pod

-[1 Key Benefits:

- Auto-scaling VNFs or achieving
Container Engine service elasticity in runtime can be
simplified by the use of container
Replication Host-05 based VNFs due to the lightweight
Controller resource usage of containers (e.g.
Cluster Mesosphere/Kubernetes)
Man?ﬁi:nent _[m 1 - Container management solutions_
(e.g. Kubernetes) provide self-healing
ccheduler Container Engine features such as auto-placement,
restart, and replacement by using
Host-05 service discovery and continuous

monitoring

22

Operations & Management

Service
Discovery

Replication
Controller

Cluster
Management
Tool

Scheduler

Security

OO0

Container Engine

Host-0S

RIEE

Container Engine

Host-0S

Key Challenges:

- Containers are supported in
selective operating systems such as
Linux, Windows and Solaris

- In the current range of VNFs, many
don’t support Linux OS or other OSes
such as Windows and Solaris

Potential Solutions:

- Hybrid deployment with VMs and
containers can be envisioned, e.g.
leverage ideas from Aptible
technology currently used for
applications

23

Conclusion and Future Work

Conclusion and Future Work

* Use of containers for VNFs appears to have significant
advantages compared to using VMs and hypervisors,
especially for efficiency and performance

— “Virtual Customer CPE Container Performance White Paper,”
http://info.ixiacom.com/rs/098-FRB-840/images/Calsoft-Labs-CaseStudy2015.pdf

* Test Setup:
— COTS server with Intel Xeon E5-2680 v2 processor

— Virtual CPE VNFs (Firewall etc.) fast path optimized using Intel DPDK
— Measured L2-L3 TCP traffic throughput per core

VM (KVM) environment with SRIOV -- 5.8Gbps
* Containers (LXC) environment -- 7.2Gbps
— ~25% PERFROMANCE IMPROVEMENT OVER VMs

* Opportunistic areas for future work

— Distributed micro-service network functions
— VNF Controller discovery/management/etc. standardization

— eftc.

Call for Action

Address aforementioned challenges
Further research to identify currently unknown challenges

Vendors to consider developing container based solutions —
especially to support proof of concepts and field trials

Reach consensus on a common framework for use of
containers for NFV

Field trial container-based VNFs

