High-level VNF Descriptors using NEMO

draft-aranda-nfvrg-recursive-vnf-00
Pedro A. Aranda pedroa.aranda@telefonica.com
Diego Lopez diego.r.lopez@telefonica.com

vl Rationale

* No one in a clean state of mind can read VNFDs easily

* There is no simple way of reusing tested VNFs to build more
ellaborate VNFs

* This goes against one of the goodies of software
design/production
— RE-USABILITY

e Why?

— Itis easier to reuse things you understand

+
I

mgt@ |
I

-———t

I

I

I

+

Easy vs. difficult

ommemmmm - -
I I
----- + Template VM +------
I I
e T +--t
I I
_________ e e Y e
I I
xed xel

More difficult

vnf:

name: TEMPLATE
description: This is
class: parent

external -connections:

— name:

type:
VNFC:

local_iface_name:

description:
- name:

type:

VNFC:

local_iface_name:

description:
- name:

type:

VNFC:

local_iface_name:

description:
- name:

type:

VNFC:

local_iface_name:

description:

a template to help in the creation of

Optional. Used to organize VNFs

mgmt@

mgmt

TEMPLATE-VM
mgmt@

Management interface
xed

data

TEMPLATE-VM

xed

Data interface 1
xel

data

TEMPLATE-VM

xel

Data interface 2
ge@

bridge
TEMPLATE-VM

ged

Bridge interface

vl Alternative we propose

e Since VNFDs are not easy to understand
— Why not use the nework modelling language NEMO?

* BoF last summer in Prague
* Human readable AND human understandable

e Structured like high-level programming languages

<L How would this work?

* VNFDs like those in OpenMANO are used as low level blocks
* NEMO allows us to describe VNFs

— Service graphs (the relationships between the VNFCs) become more
obvious using the Connection concept

e NodeModels can be reused:

— Opening the door to recursiveness

g/ This is what we want

Find a way to describe the VNF as close as possible to this graph

— see http://www.etsi.org/deliver/etsi_gs/NFV-
MAN/001_099/001/01.01.01_60/gs_ NFV-MANO001v010101p.pdf

g So let’s go step by step

Import VNFD into NEMO

— Most VNF producers will anyhow have a VNFD (for OSM, OpenMANO,
etc.)

— Requirement on NEMO: ConnectionPoint

CREATE NodeModel NAME SampleVNF

IMPORT VNFD from https://github.com/nfvlabs/openmano.git
/openmano/vnfs/examples/dataplaneVNF1.yaml

DEFINE ConnectionPoint data_inside as VNFD:ge®

DEFINE ConnectionPoint data_outside as VNFD:gel

Step by step (2)

 Use the imported NodeModels to build more complex
functionality:

— Requirement on NEMO: Connection to define the service graph

CREATE NodeModel NAME ComplexNode

Node InputVNF TYPE SampleVNF

Node OutputVNF TYPE ShaperVNF

DEFINE ConnectionPoint input

DEFINE ConnectionPoint output

CONNECTION input_connection FROM input TO InputVNF:data_inside
TYPE p2p

CONNECTION output_connection FROM output TO ShaperVNF:wan
TYPE p2p

CONNECTION internal FROM InputVNF:data_outside TO ShaperVNF:lan
TYPE p2p

< And from here...

 Use NodeModels to create even more complex models once
these are tested and prove to fullfil your requirements

 Made easy when you understand what you read

LT T T T T T T -
| ComplexVNF |
| $ommmmmm e ——— - e - |
input | | | | output
Fommmm- + SampleVNF +--ccccce--- + ShaperVNF +-====-- +
I I I I I I
| R T - R e - |
| data_inside data_outside Llan wan |

Acknowledgement

This work has been partially performed in the scope of the
SUPERFLUIDITY project, which has received funding from the European
Union Horizon 2020 research and innovation programme under grant
agreement No.671566 (Research and Innovation Action).

