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vl Rationale

* No one in a clean state of mind can read VNFDs easily

* There is no simple way of reusing tested VNFs to build more
ellaborate VNFs

* This goes against one of the goodies of software
design/production
— RE-USABILITY

e Why?

— Itis easier to reuse things you understand
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vl Alternative we propose

e Since VNFDs are not easy to understand
— Why not use the nework modelling language NEMO?

* BoF last summer in Prague
* Human readable AND human understandable

e Structured like high-level programming languages




<L How would this work?

* VNFDs like those in OpenMANO are used as low level blocks
* NEMO allows us to describe VNFs

— Service graphs (the relationships between the VNFCs) become more
obvious using the Connection concept

e NodeModels can be reused:

— Opening the door to recursiveness



g/ This is what we want

Find a way to describe the VNF as close as possible to this graph

— see http://www.etsi.org/deliver/etsi_gs/NFV-
MAN/001_099/001/01.01.01_60/gs_ NFV-MANO001v010101p.pdf




g So let’s go step by step

Import VNFD into NEMO

— Most VNF producers will anyhow have a VNFD (for OSM, OpenMANO,
etc.)

— Requirement on NEMO: ConnectionPoint

CREATE NodeModel NAME SampleVNF

IMPORT VNFD from https://github.com/nfvlabs/openmano.git
/openmano/vnfs/examples/dataplaneVNF1.yaml

DEFINE ConnectionPoint data_inside as VNFD:ge®

DEFINE ConnectionPoint data_outside as VNFD:gel




Step by step (2)

 Use the imported NodeModels to build more complex
functionality:

— Requirement on NEMO: Connection to define the service graph

CREATE NodeModel NAME ComplexNode

Node InputVNF TYPE SampleVNF

Node OutputVNF TYPE ShaperVNF

DEFINE ConnectionPoint input

DEFINE ConnectionPoint output

CONNECTION input_connection FROM input TO InputVNF:data_inside
TYPE p2p

CONNECTION output_connection FROM output TO ShaperVNF:wan
TYPE p2p

CONNECTION internal FROM InputVNF:data_outside TO ShaperVNF:lan
TYPE p2p




< And from here...

 Use NodeModels to create even more complex models once
these are tested and prove to fullfil your requirements

 Made easy when you understand what you read
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