
• Defining security properties for OAuth-like protocols and client-side 
flows
• Separate doc for long-term vision (BCP or separate draft?)

• Evaluating mitigations and protocol extensions

• Analyzing mitigations



Security properties for OAuth 2.0

• Proof-of-possession
• Also a form of authentication, addressed with token bindings

• Containment
• Eliminate infoleaks/extraction through Referrer, Fragment, server logs

• Authentication
• Allow endpoints to identify sender and receiver (caller URL/origin)



Evaluating mitigations and protocol extensions

Implementation level:

• TLS vs. HTTP

• OS vs. browser vs. application

• Provider vs. client

Amount of protection:

• Which security properties it addresses?

• Does this cover the missing property(ies) fully?

• Which mitigations it obsoletes?

Implementation costs:

• Complexity and cost of deployment
• People won’t implement what they don’t understand or what’s hard

• Deprecation costs
• Every breaking change should have a very clear business objective



Evaluating mitigations and protocol extensions:
Mix-Up: iss + client_id returned in response
Implementation level:

• Application-level

• Provider + client (requires protocol change)

Amount of protection:

• Property: Authentication

• Not covers authentication fully (URL params are spoofable from web attacker), just the 
Mix-Up

Implementation costs:

• Complexity: medium (new response_type + params check on client)

• Deprecation costs: no (backward compatible)



POST binding + Origin check

POST https://provider/oauth

Origin: client.com

…

client_id={client_id}&redirect_uri={redirect_uri}&state={state}

↓

is client.com permitted for {client_id}?

↓

HTTP/1.1 200 OK

…

<form action=“{redirect_uri}” method=“POST”>…



POST binding + Origin check to mitigate IdP MixUp

POST {redirect_uri}

Origin: provider.com

…

code={code}&state={state}

↓

is provider.com the origin we expect to handle for this {state} or current session?

↓

code  token exchange

login

…



Evaluating mitigations and protocol extensions:
POST binding with Origin check
Implementation level:

• Application-level

• Provider + client (requires protocol change)

Amount of protection:

• Property: Authentication + Containment

• Covers authentication (almost) fully (Origin header is not spoofable from web attacker)
• Almost because Origin has domain, not full endpoint URL

• Covers containment (almost) fully
• Except 307 redirect leaks

Implementation costs:

• Complexity: low

• Deprecation costs: high (migrate provider + client flows)


