Path Layer UDP Substrate (PLUS)
Technical Considerations

Brian Trammell (@britram)
PLUS BoF — IETF 96 Berlin — 21 July 2016
PARENTAL

ADVISORY

EXPLICIT COOPERATION
Explicit Cooperation

• “Implicit cooperation” between endpoints and middleboxes already widespread in the Internet,
 • where “cooperation” may be the wrong term: some hacks and workarounds are quite hostile.

• Explicit cooperation under endpoint control may be a way to reduce tension in this tussle
 • Declarative, advisory signaling with no trust required between endpoint and path.

• Encrypt everything devices on path don’t need to see (including transport headers), to prevent future “implicit cooperation” without sender authorization.
Three and a half mechanisms to make the path layer explicit

- Sender – Path Signaling
- Path – Receiver Signaling
 - with encrypted feedback to sender
- Direct Path – Sender Signaling
 - information about dropped packets
Sender to Path (sender-side)
Sender to Path (on-path)
Sender to Path (receiver-side)
Sender to Path
Transport State Signaling
Path to Receiver (sender-side)
Path to Receiver (on-path)
Path to Receiver (receiver-side)
Receiver Feedback
Path Direct to Sender (sender-side)
Path Direct to Sender (on-path)
Path Direct to Sender (feedback)
Anatomy of the Path Layer

- UDP encapsulation
- userspace implementation
- ports for NAT
- ~95% deployable today
- encoding for signaling mechanisms
- crypto to protect transport headers and above
meanwhile, on the spud@ietf.org list...
Is this a user tracking and network neutrality violation machine?

- Will it be possible for a middlebox to use PLUS to insert user identifiers in the server-bound stream of a client-server protocol?
 - No, unless the client specifically requests it.
 - (Note: possible without PLUS, out of band, today)
- Will it be possible to use PLUS to require a client to insert a particular kind of metadata into a stream?
 - Bad news: yes; no technical solution exists here.
 - (Worse news: also many ways to do this without PLUS)
 - Good news: PLUS brings **transparency** to this behavior.
Can we make transport innovation work without explicit cooperation?

- **draft-herbert-transports-over-udp**
 - x over DTLS over UDP.
 - Make transport innovation possible with crypto.
 - Breaks middleboxes.
 - This is a feature.

- Equivalent to PLUS when neither endpoint decides to expose anything to the path.
Can we use IPv6 extension headers?

- IPv6 extension headers can be used to implement PLUS mechanisms
- Ignore IPv4 in future deployments
- DO to expose to path: hack, but more deployable
- HBH for exchange with path: cleaner, but less deployable
- DO/HBH already supported in most socket APIs
- But: more impaired than UDP

<table>
<thead>
<tr>
<th></th>
<th>web</th>
<th>MX</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO</td>
<td>89.5%</td>
<td>88.5%</td>
<td>79.7%</td>
</tr>
<tr>
<td>HBH</td>
<td>61.0%</td>
<td>54.5%</td>
<td>45.9%</td>
</tr>
</tbody>
</table>

1-p(loss), 8-byte DO/HBH to Alexa top 1M domains, 8.2014-6.2015 (draft-ietf-v6ops-ipv6-ehs-in-real-world-02)
Can we use UDP Options?

- **draft-touch-tsvwg-udp-options**
 - add option space to UDP in a “gap” between the UDP and IP lengths of a packet.
 - Allows optional data to be added to existing UDP applications in a backward compatible manner.
 - Proposal: use this option space for PLUS
 - Are these the same problem?
 - Must be in-kernel: no userspace implementation.
Do we need to choose now?
and in conclusion...
Things we need

• A mechanism for making widespread cooperation between endpoints and middleboxes explicit
• Endpoint control over explicit cooperation
• A clear boundary between what the path can see and what it cannot, enforced by encryption
• A design for this facility that deploys on the endpoints from day zero
• All this without requiring a trust relationship between the endpoints and middleboxes