Modeling Video Traffic Source for RMCAT Evaluations

draft-ietf-rmcat-video-traffic-model

Xiaoqing Zhu, Sergio Mena, and Zaheduzzaman Sarker
Outline

• What’s new?
• What’s next?
WHAT’S NEW?
What’s New (Outline)

• Updates on:
 – the draft
 – the video traces
 – the open source code (*syncodecs*)

• Plots
Updates on the Draft

• Section 7
 – Before (draft-ietf-rmcat-video-traffic-model-00):
 • comparison of both models
 – Now (draft-ietf-rmcat-video-traffic-model-01):
 • guidelines on how to combine them
 – (see next slide)

• Other minor edits
 – (all over the document)
The Two Traffic Models

• Presented in previous meetings
 • http://www.ietf.org/proceedings/91/slides/slides-91-rmcat-0.pdf

• Statistical
 – Model of transient and steady state
 – Each state has different statistical distributions

• Trace-driven
 – Model of steady state with real codec traces
 – Scaling and interpolation of traces at different bitrates
Section 7: Combining the models

R_v(t) > 1.2 * R_v(t – tau_v)

TRUE: transient
Generate next K_d frames (Statistics)

FALSE: steady-state
Generate next frame (Trace-driven)

• “20% increase” based on observations in our experiments using x264 (see ietf-95 slides)
• Could be modified according to further experiments
Update on Video Traces

• The quest for video traces
 – Hard to find the right sequence
 • Length: minimum 1 minute (ideally 2 min)
 • Resolution: >= 1080p
 • Content: video conferencing ("talking head")
 – Very few (if any) scene cuts
 – Our sequences as of IETF-95:
 • Traces with right content, at 4K (Foreman, News, Suzie)
 – BUT, short! (10-12s)
 • Longer traces, at 1080p (Elephant dream, Big buck bunny)
 – BUT, animations (frequent scene cuts)
 – Still looking for the right traces
 – Interim solution: **stitching** short sequences together
Video Traces. Stitching (1)

• Source of video:
 http://www.elementaltechnologies.com/resources/4k-test-sequences

• Sequences: *Foreman, News, Suzie*

• Encoder: x264 (lookahead = 1 in rate control)

• Encoding parameters:
 – Frame rate: 25 fps
 – Target rates: 100 ~ 1500 Kbps
 – Frame#1: Intra-coded (I), the rest: predictive (P)

Video Traces. Stitching (2)

• Sequence order:
 – Foreman → News → Suzie

• For News & Suzie, remove first 25 frames (1 s)
 – I frame followed by smaller-than-normal P frames

• Gets us from 255 to 809 frames
 – (~10 s → 32 s)

• Added as a “new” sequence (Concat)
Example Traffic Trace: \textit{Concat} (1)

All three: resolution=540p, target rate=1000 Kbps
Example Traffic Trace: *Concat* (2)

Resulting sequence: **Concat**

resolution=540p, target rate=1000 Kbps
Distribution of Frame Size: *Concat*

Foreman

- Resolution: 540p
- Target rate: 1000 Kbps

News

- Resolution: 540p
- Target rate: 1000 Kbps

Suzie

- Resolution: 540p
- Target rate: 1000 Kbps

Concat

- Resolution: 540p
- Target rate: 1000 Kbps
Updates on Syncodecs

• Recap:
 – Codecs implemented as C++ iterators
 – Open source (https://github.com/cisco/syncodecs)
 – Standalone (ns2, ns3, real testbed, etc.)

• New codec added:
 – *Simple video content sharing*
 – Based on discussion in rmcat mailing list
 – *No-op* frames sent often (very low bitrate)
 – Transition frames:
 • 20x-200x the size of *no-op* frames
 • Sent with probability .05
 – (parameters configurable)
PLOTS
Perfect Codec. TC 5.1
Simple Content Sharing Codec. TC 5.1
Trace-Driven Codec. TC 5.1

Concat sequence
WHAT’S NEXT?
Next Steps

• Implement hybrid model in syncodecs
• Find video sequences fulfilling our requirements
 – Long enough (1-2 min)
 – Contents: talking head
 – Resolution >= 1080p
 – Add trace files to syncodecs
• Further study transient behavior with codecs other than x264
• Syncodecs: feedback from users
 – Would be pleased hear/learn from your experience
Thank you

Questions?