In-Band OAM

Frank Brockners, Shwetha Bhandari,
Sashank Dara, Carlos Pignataro (Cisco)
Hannes Gedler (rtbrick)
Steve Youell (JMPC)
John Leddy (Comcast)

IETF 96 - RTGWG; July 20th, 2016

draft-brockners-proof-of-transit-01.txt draft-brockners-inband-oam-requirements-01.txt draft-brockners-inband-oam-data-01.txt draft-brockners-inband-oam-transport-01.txt

How to send OAM information in packet networks?

In-band OAM

- OAM traffic embedded in the data traffic but not part of the payload of the packet
- OAM "effected by data traffic"
- Example: IPv4 route recording

- OAM traffic is sent as dedicated traffic, independent from the data traffic ("probe traffic")
- OAM "not effected by data traffic"
- Examples: Ethernet CFM (802.1ag), Ping, Traceroute

In-Band/Passive OAM - Motivation

- Multipath Forwarding debug ECMP networks
- Service/Path Verification –
 prove that traffic follows a pre-defined path
- Service/Quality Assurance –
 Prove traffic SLAs, as opposed to probetraffic SLAs; Overlay/Underlay
- Derive Traffic Matrix
- Custom/Service Level Telemetry

"Most large ISP's prioritize Speedtest traffic and I would even go as far to say they probably route it faster as well to keep ping times low."

Source: https://www.reddit.com/r/AskTechnology/comments/2i1nxc/can i trust my speedtestnet resu

What if you could collect operational meta-data within your traffic?

Example use-cases	Meta-data required
 Path Tracing for ECMP networks 	 Node-ID, ingress i/f, egress i/f
 Service/Path Verification 	 Proof of Transit (random, cumulative)
Derive Traffic Matrix	Node-ID
 SLA proof: Delay, Jitter, Loss 	 Sequence numbers, Timestamps
 Custom data: Geo-Location, 	 Custom meta-data

In-Band OAM

- Gather telemetry and OAM information along the path within the data packet, as part of an existing/additional header
 - No extra probe-traffic (as with ping, trace, ipsla)
- Transport options
 - IPv6: Native v6 HbyH extension header or double-encap
 - VXLAN-GPE: Embedded telemetry protocol header
 - SRv6: Policy-Element (proof-of-transit only)
 - NSH: Type-2 Meta-Data (proof-of-transit only)
 - ... additional encapsulations being considered (incl. IPv4, MPLS)
- Deployment
 - Domain-ingress, domain-egress, and select devices within a domaininsert/remove/update the extension header
 - · Information export via IPFIX/Flexible-Netflow/publish into Kafka
 - Fast-path implementation

In-Band OAM: Information carried

- Per node scope
 - Hop-by-Hop information processing
 - Device_Hop_L
 - Node_ID
 - Ingress Interface ID
 - Egress Interface ID
 - Time-Stamp
 - Application Meta Data

- Set of nodes scope
 - Hop-by-Hop information processing
 - Service Chain Validation (Random, Cumulative)
- Edge to Edge scope
 - Edge-to-Edge information processing
 - Sequence Number

Tracing Option

```
Node data List [0]
Node data List [1]
Node data List [n-1]
                                Hop_Lim
                                                             node_id
                                  ingress_if_id
                                                                        egress_if_id
Node data List [n]
                                                         timestamp
                                                          app data
```

Proof-of-Transit Option

Edge-to-Edge Option

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    Option Type | Opt Data Len | IOAM-E2E-Type | reserved
  E2E Option data format determined by IOAM-E2E-Type
  Option Type: 000xxxxxx 8-bit identifier of the type of option.
Opt Data Len: 8-bit unsigned integer. Length of the Option Data field of this option, in octets.
iOAM-E2E-Type: 8-bit identifier of a particular iOAM E2E variant.
    0: E2E option data is 64-bit Per Packet Counter (PPC) used to identify packet loss and reordering.
Reserved: 8-bit. (Reserved Octet) Reserved octet for future use.g
```

Transport Options – IPv6, VXLAN-GPE, SRv6, NSH...

- IPv6: v6 HbyH extension header
- VXLAN-GPE: Embedded telemetry protocol header; Combines with NSH etc.
- SRv6: In-Band OAM TLV in v6 SR-header SRH (proof-of-transit only)
- NSH: Type-2 Meta-Data (proof-oftransit only)
- ... more to come: MPLS, IPv4,...

Proof of Transit

Consider traffic engineering, policy based routing, service chaining:

"How do you *prove* that traffic follows the suggested path?"

Ensuring Path and/or Service Chain Integrity

Approach Meta-data added to all user traffic

- Based on "Share of a secret"
- Provisioned by controller over secure channel to segment hops where "proof of transit" is required
- Updated at every segment hop where proof of transit is required
- Verifier checks whether collected meta-data allows retrieval of secret
 - "Proof of Transit": Path verified

Solution Approach: Leverage Shamir's Secret Sharing "A polynomial as secret"

- Each service is given a point on the curve
- When the packet travels through each service it collects these points
- A verifier can reconstruct the curve using the collected points
- Operations done over a finite field (mod prime) to protect against differential analysis

Running Code: Experimental OpenSource Implementation

- Open source experimental Implementation: FD.io/VPP (see fd.io)
- Demo Videos:

Google+ In-Band OAM group: https://www.youtube.com/u/0/b/112958873072003542518/videos?hl=en
Youtube In-Band OAM channel: https://www.youtube.com/channel/UC0WJOAKBTrftyosP590RrXw

Next Steps

- The authors appreciate thoughts, feedback, and text on the content of the documents from the RTGWG WG
- The authors also value feedback on where to progress the work?
- Is RTGWG interested in taking on inband OAM and/or the POT work?