Network Scheduling in Software-defined Environments

Tal Mizrahi*[⋄], Yoram Moses*

*Technion – Israel Institute of Technology

Output

Output

Marvell

SDN Research Group, IRTF IETF 96, Berlin, Germany July 2016

Outline

- Background
- Use cases
- Accurate scheduling
- Conclusion

Outline

- Background
- Use cases
- Accurate scheduling
- Conclusion

Software Defined & Programmable Networks

- Centralized
- Flexible
- Dynamic

Timed SDN at a Glance

Controller A protocol allowing the controller to schedule network updates **Synchronized clocks Switches**

Outline

- Background
- Use cases
- Accurate scheduling
- Conclusion

Using Time in Network-managed Environments

Coordinated Configuration Update

Coordinated Snapshot

Using **Time** to Coordinate **Path** Updates

OpenFlow

I2RS

•

Time is Optimal for Flow Swaps [INFOCOM '16]

A key benefit of SDN: Dynamic path allocation based on network load

Time is Optimal for Flow Swaps [INFOCOM '16]

A key benefit of SDN: Dynamic path allocation based on network load

The TimedSDN Project

Time is Optimal for Flow Swaps [INFOCOM '16]

A key benefit of SDN: Dynamic path allocation based on network load

Consistent Path Update

Simultaneous Updates?

En-route packets run into a 'black hole'. Not consistent!

Timed Multi-phase Consistent Updates [SOSR '15]

- The controller sends timed update messages to S₁, S₂, S₃.
- Scheduled updates occur at times T₁, T₂, T₃.

Using Timestamps instead of Time [SWFAN '16]

Timestamp can be used in processing of intermediate devices.

- Delay measurement.
- Passive performance monitoring.
 https://tools.ietf.org/html/draft-ietf-ippm-alt-mark

 Timestamp-based marking.
- Policy / path decision criterion:
 "Do action A if Timestamp≥T₀"

Timestamp is

- Pushed by ingress switch.
- Removed by egress switch.

Outline

- Background
- Use cases
- Accurate scheduling
- Conclusion

Accurate Synchronization: It's Already Here

Precision Time Protocol (PTP)

[IEEE 1588 2008]

~1µsec accuracy

Mobile backhaul

Power substations

Industrial automation

Financial applications

China Mobile: over 1,000,000 PTP-enabled base stations

https://mailarchive.ietf.org/arch/attach/tictoc/pdfsY1ADO.pdf

The TimedSDN Project

TIMEFLIP: Timestamp-based TCAM Lookup

A Timestamp is attached to packet's metadata by the switch

The timestamp is used in the TCAM key – time range.

COTS switches can synchronize clocks very accurately $\sim 1 \, \mu sec.$ [Using IEEE 1588 Precision Time Protocol (PTP) or GPS]

The Cost of TIMEFLIP: 1 Bit / 1 Entry

Large # of bits in timestamp field?
Large # of entries per TimeFlip rule?

No !!

- Theorem: if $TOL \ge 2 \int [log \downarrow 2] (\Delta) \int$, then the every timestamp range requires as little as:
 - -1 bit in the timestamp field.
 - -1 TCAM entry.

TIMEFLIP: Would it Work on a Real Switch? Yes!!

Microbenchmark: TimeFlip was tested on a Marvell 98DX4251 with a sub-microsecond accuracy.

Outline

- Background
- Use cases
- Accurate scheduling
- Conclusion

The **TimedSDN** Project

Why do we need time in SDN?

Scheduling protocols

Accurate scheduling methods

SDN Clock synchronization

The TimedSDN Project

The **TimedSDN** Project – Practical Aspects

The **TimedSDN** Project – Practical Aspects

Timed SDN at a Glance

The **TimedSDN** Project – Future Directions

Timed Updates

NETCONF RFC 7758 ++

I2RS

•••

Data plane timestamping

SFC tools.ietf.org

https://tools.ietf.org/html/ draft-browne-sfc-nshtimestamp-01 NVO3

. . .

Time as a network programming abstraction

P4

Implementation and wide-scale experiments

We would be happy to collaborate with vendors / operators who are interested!

Thanks!

The TimedSDN Project

http://tx.technion.ac.il/~dew/TimedSDN.html

A Closer Look at TIMEFLIP

Further details can be found in:

- TimeFlip paper (http://tx.technion.ac.il/~dew/TimeFlipINFOCOM.pdf)
- TimeFlip presentation (http://tx.technion.ac.il/~dew/TimeFlipInfocomPres.pdf)
- Next few slides...

SDN Switches

TCAM: Ternary Content Addressable Memory

Memory for quick searching

- Top-down search: first match "wins"
- Ternary: 0 / 1 / *
- * = don't care

TIMEFLIP: Timestamp-based TCAM Lookup

A Timestamp is attached to packet's metadata by the switch

The timestamp is used in the TCAM key – time range.

COTS switches can synchronize clocks very accurately \sim 1 µsec. [Using IEEE 1588 Precision Time Protocol (PTP) or GPS]

Time-based Updates using TIMEFLIP

TimeFlip: switch <u>accurately</u> starts using 'new' at T_0 .

Example: Timestamp Format

Network Time Protocol (NTP) timestamp format:

Time.Sec Time.Frac
Seconds Second Fraction

Example: TIMEFLIP in Practice

Goal: schedule an update to be performed at 2016-07-22 11:41:11 (at the beginning of the second)

Procedure: (steps also appear in the figure)
Step 1: install a TimeFlip with '1' in the
Isbit of the seconds field, and 'don't care' in
the rest.

Step 2: the update becomes effective exactly at the turn of the second.

Step 3: make the TCAM rule permanent by writing 'don't care' to the Isbit of the timestamp field.

1 second

References

- [1] T. Mizrahi, Y. Moses, "Software Defined Networks: It's About Time", IEEE INFOCOM, 2016.
- [2] T. Mizrahi, Y. Moses, "OneClock to Rule Them All: Using Time in Networked Applications", IEEE/IFIP Network Operations and Management Symposium (NOMS), 2016.
- [3] T. Mizrahi, E. Saat, Y. Moses, "<u>Timed Consistent Network Updates</u>", ACM SIGCOMM Symposium on SDN Research (SOSR), 2015.
- [4] T. Mizrahi, E. Saat, Y. Moses, "<u>Timed Consistent Network Updates in Software Defined Networks</u>", IEEE/ACM Transactions on Networking (ToN), 2016.
- [5] T. Mizrahi, O. Rottenstreich, Y. Moses, "TimeFlip: Scheduling Network Updates with Timestamp-based TCAM Ranges", IEEE INFOCOM, 2015.
- [6] T. Mizrahi, Y. Moses, "Time-based Updates in Software Defined Networks", workshop on hot topics in software defined networks (HotSDN), 2013.
- [7] T. Mizrahi, Y. Moses, "On the Necessity of Time-based Updates in SDN", Open Networking Summit (ONS), 2014.
- [8] T. Mizrahi, Y. Moses "<u>Using ReversePTP to Distribute Time in Software Defined Networks</u>", International IEEE Symposium on Precision Clock Synchronization for Measurement, Control and Communication, (ISPCS), 2014.
- [9] T. Mizrahi, Y. Moses, "ReversePTP: A Software Defined Networking Approach to Clock Synchronization", workshop on hot topics in software defined networks (HotSDN), 2014.
- [10] T. Mizrahi and Y. Moses, "ReversePTP: A clock synchronization scheme for software defined networks", International Journal of Network Management (IJNM), 2016.
- [11] T. Mizrahi, Y. Moses, "Time4: Time for SDN", arXiv preprint arXiv:1505.03421, 2016.
- [12] T. Mizrahi, Y. Moses, "The Case for Data Plane Timestamping in SDN", IEEE INFOCOM Workshop on Software-Driven Flexible and Agile Networking (SWFAN), 2016.
- [13] T. Mizrahi, Y. Moses, "<u>Time Capability in NETCONF</u>", RFC 7758, 2016.
- [14] Open Networking Foundation, OpenFlow switch specification, Version 1.5.0, 2015.
- [15] Open Networking Foundation, OpenFlow extensions 1.3.x package 2, 2015.