The abstract art of composing
SDN applications

Pedro A. Aranda — Telefonica
pedroa.aranda@telefonica.com




Programmable and virtualized
networks...

* bring new enablers

* create new opportunities

* but also new challenges and requirements for
their control and management.

— more versatility
— more automation,
— new interactions/control models...



Therefore...

* Management of these networks need to
evolve

* So... what are the foreseeable evolution
paths?
— Treat network functions as software libraries

— Better abstractions
— Integration of machine learning mechanisms



Compose-ability of network functions

AKA Application composition

The purpose is to integrate SW development
techniques into the network creation process

SDN applications yhat work should not be
thrown away

In comes the NetIDE architectire



Application composition - I

* But wait a second... this sort of looks like e.g.
12rs

e So it actually boils down to multi-headed
environments

— ie. multiple independent applications addressing
the same network resurce

e But wait... this spells out CONFLICT



Application composition - |lI

* Example of conflict

— Two different applications in an i2rs environment try
to set different next-hops for a prefix in a box

— Hot topic: is assigning different priorities to the
applications enough?

* Other implications
— Nice: Application composition may simplify the design
of network elements

— However: we need a framework with well-defined
semantics

— Example: what if a block is silent?



Integration of machine learning
mechanisms

* So... if we have SDN controllers gathering
information from the network...

* Why don't we just use that information in a really
intelligent way?
— But what is really intelligent?
— Learning from the past?

— Since we humans have a hard time doing that, why
not using machines

— In comes machine learning techniques to solve
complex issues



Integration of ML systems - |l

 So... we have the SDN controller

— |t gathers information about the nework
* Statistics
* Input events



Integration of ML - Il

What if we feed all this information into a ML system?
We could train it to detect complex events from
different contexts

— Note that this is something that would be very complex to
implement as an App running in the SDN Controller

This trained system could actually talk to different Apps
running in the controller and coordinate them

But how could we do that

— This actions would be very high level

— In comes *Intent™* as a possible way of represent these
high level actions



Better abstractions

* | will try to be provocative...
* But not too much



Intent

Let me start with NON-intents
— (Java, Python) Libraries are NOT intent
— They are just (low level) abstractions

— What purpose do they serve in an NBI of an SDN
controller?



So what should Intent be? - |

* "A framework to express network control
desires as policies..."

A model that describes requests to alter
network behaviour

e All good and nice and a very first step in the
right direction

— As long as the resulting construct is *not™ just
another library



What should Intent be? - |l

SDN controller independent NBIs with focus on semantics and data
models

— Declarative?
— Imperative?
Human readable and understadable (e.g. IBNEMO)

— Nice for early adoption and debugging
— However, should that be a must?

— Nice approach that may be copied by new initiatives

* Minimalistic approach: 20% of the language constructs that covers 80% of the
use cases

Build on models (e.g. ODL-NIC)
— Support of YANG models seems to be ubiquitous
— Minimalistic approach: something simple and filter through reality



Conclusion

Adopt SW
development in
networking

Intent Machine learning

Or was it the other way round?



