
Control as LCD for 
future networking

Artur Hecker and Zoran Despotovic

European Research Center, Munich

Huawei Technologies

IETF 96 – IRTF – SDNRG Berlin, Germany
July 22, 2016



Programmable networks: change in paradigm

• Legacy: design a network to provide a specific (set of) service(s)
• Protocols/ exchanges (management, control, data) + stacks/ logic

• Deployment topology, configuration to bind the pieces

• Operational traffic steering/traffic distribution

• Programmable networks:
• Infrastructure with basic capabilities and open interfaces

• Services: several logics programmed on the latter

• Change: design the network now, program the service later

• Software brittleness (*): cyclomatic complexity

A. Hecker, Z. Despotovic Control as LCD for programmable networks 2

Code from 
vendors tested
on their HW

Untested code
from 3rd parties

(*) Steve Bellovin



Example: OF SDN

• Chicken-Egg Problem in SDN
• Current SDN promises a “software-defined networking”, yet it actually 

requires an existing, well-configured and well-working TCP/IP network
• Note that this is independent of in-band / out-of-band discussions

• A pre-set, fixed CP in SDN cannot suit all use cases that SDN promises
• Non-functional requirements: QoS, scalability, reliability, resilience

• Self-inflicted errors in SDN
• Insufficient protection: the programming model is comparable to DOS

• You can write a control app to disconnect the controller from switches

• Hard to protect against this w/o limiting programmability

A. Hecker, Z. Despotovic Control as LCD for programmable networks 3

Limits
programmability



General Problem Statement

• Context
• Many components (HW/SW; remote/local; short-/long-lived)

• Need to be able to bind them to working services operationally

• What is the common minimal requirement on all those components?
• How to make them programmable?

• Without making the components too complex

• Without having to manually deploy things

• How to make such programmability simple / usable?
• What do you need to know to start? Does trial-and-error model work?

A. Hecker, Z. Despotovic Control as LCD for programmable networks 4



Our Proposal: Unified control

• Resource-to-resource protocol suite, dedicated to establishing and 
maintaining control

• Akin to BGP establishing and maintaining IP routing

• ... But without presuming a specific usage

• Two dimensions of unification
• Horizontal: span different types of components

• Vertical: span both executing and executed modules

A. Hecker, Z. Despotovic Control as LCD for programmable networks 5



Our model

Network 
Element 1

Computation
Element 2

Res
Element N

Unified Control Plane
Distributed Object/State Store | App Execution Environment | QoS Communication Service

5G MCN App 1 Middlebox as App Other Apps
Behaviour

Resource
pool

New function:
Provide a stable view 
on a distributed 
resource pool

A. Hecker, Z. Despotovic Control as LCD for programmable networks 6

Resource control agent, running the resource-to-resource protocol



RCA implementation

Resource Control AgentResource Control Agent

CP Routing

Message Codec

Unified Control Peer

Security Service

Message ProcessorLocal Resource

Res Specific Adapters
- Local Exec Env
- Comm Interfaces

Resource State Mon
- Counters, Gauges
- Logs, Errors, Alarms
- (Other Monitors)

CP PeerRes Ctrl

Init Configuration
- Name, Sec Assoc.
- (Friend List), (misc)

Msg Dispatcher
Protocol Processor

API Distributed Object 
Store

Neighbor Selection

Friend Discovery

Two faces of the RCA: the RCA acts both as an interface to the local resource that it controls, and as a building block of the 
control plane spanning all resources within the control domain (unified control peer).

A. Hecker, Z. Despotovic Control as LCD for programmable networks 7



Phases 

• All resource elements (RE) have an RCA

• Phases, repeated (on event / periodically)
• All REs bootstrap (find all visible friends)

• Friends: RCAs from the same control domain

• All RCAs choose from the friend list some neighbors

• RCAs run routing over neighbors only

• The controller capacity and placement is decided autonomously
• E.g. the topologically most important RE with compute capacity becomes Controller

• Using distributed storage, RCAs eventually discover a new abstract function 
“controller”

A. Hecker, Z. Despotovic Control as LCD for programmable networks 8



Conclusions

• We propose a new resource to resource protocol suite

• Capable of producing self-* control planes
• Need to produce a resilient common functionality to be able to control the 

resources and the modules
• Network OS “Kernel”

• Could be a possible extension to ANIMA
• Extend to other resource types and modules

• Extend from control channel to control plane

• Fundamental: infrastructure control through the controlled infrastructure
• Conflict modeling

A. Hecker, Z. Despotovic Control as LCD for programmable networks 9



Appendix: Cmp. Unified Control to ANIMA

Criterion ANIMA Unified Control

Zero preconfiguration ready Yes (for networking resources) Yes (for resources)

Discovery “All nodes” Only friends

Autonomic Control Plane Yes, interconnect nodes Yes, establishes control

Routing On all nodes On neighbors only

Compute Nodes No Yes

Overlay structure As it emerges Use neighbor selection criteria

Distributed storage No? Yes

Secure bootstrap Yes Not considered so far

Support for topology dynamics Yes Yes

Religion/ paradigm Autonomic networking Controlled networking
Only autonomic in its own
implementation

A. Hecker, Z. Despotovic Control as LCD for programmable networks 10



Appendix: what’s wrong with orchestration?

• Orchestration is a management function 
• Requires signaling channels and control

• Is too far away

• Cannot efficiently react to faults, local events, etc

A. Hecker, Z. Despotovic Control as LCD for programmable networks 11

SDN 
Controller

Virtual 
Infrastructure 

Manager

NFVSDN

NE1 CEkNEk CE1 CE2

Orchestrator

State of the art:


