draft-peterson-sipbrandy-rtpsec

Jon Peterson
SIPBRANDY WG
IETF 96 (Berlin)
Media Confidentiality with SIP

• Goal: show practices for establishing media confidentiality for sessions set up with SIP
 – Targeting BCP status

• Why?
 – PERPASS (RFC7258)
 – Hopefully influence implementation and/or policy
 • More prescriptive than descriptive, like PERPASS itself
 – Also, as we put this together, we will identify gaps
 • Story here is pretty good, but there are limitations
Two Pronged Strategy

• Divides into two confidentiality methods
 – **Comprehensive** protection
 • Use STIR (successor to RFC4474)
 • STIR object signs media fingerprints in SDP
 – Binds keys to the SIP-layer identities signed by STIR
 – **Opportunistic** security
 • Use draft-johnston-dispatch-osrtp
 – Offer AVP rather than SAVP, but provide key info in SDP
 • This document normatively relies on OSRTP
Applicability of STIR to this

• STIR revises the RFC4474 SIP Identity header
 – Scope narrowed to prevent impersonation for a set of specific threats (e.g. robocalling)
 – MitM protections not in scope
 • However, does provide the mky field as a hook
• Provides an **authentication service** abstraction that signs SIP requests
 – Can be implemented at endpoints or intermediaries
 • Signed at intermediaries, media protection is not E2E
 • Fine for STIR’s threat model, not great for media sec
 – Verifiers have no real way to tell if the sig is E2E
Connected Identity

• STIR (and original RFC4474) only signs SIP requests
 – No signatures over SIP responses
• Elwell’s RFC4916 patches this
 – UPDATE in the backwards direction sent after a PRACK or a 2xx
 – Or re-INVITE in an established dialog
 – RFC4916 lets the UAS alter To/From to show who you actually connected to
 – Also allows SDP for early media in these requests
• RFC4916 would need some post-STIR tweaks
 – Basically, though, this is a blueprint for signing SDP in the backwards direction for media confidentiality
Media Security

• OSRTP allows DTLS-SRTP, MIKEY, ZRTP, sdesc
 – People defend MIKEY for some corner cases
• This specification deprecates sdesc entirely
• Ultimately, need some MTI for a BCP
 – In this case, that is DTLS-SRTP
 – Provide options (MAY) for others, including ZRTP
• This BCP and OSRTP should be aligned on these
 – Though OSRTP can non-normatively describe existing deployments
The -01

• Filled in a few blanks
• We’ve been collecting some requirements
• Want to make sure we’ve caught ‘em all
 – Confidentiality for conferencing
 • Right now points to perc-double
 – There’s a nod to B2BUA behavior (RFC7879)
 – Warnings about SIPREC (RFC7245)
 – Better text about anonymity and its STIR interaction
The E2E STIR Profile

• Articulates a STIR profile for endpoints
• Requires UAs to have their own certs
 – And to implement both the authentication and verification roles of STIR
 • STIR allows intermediaries to perform those roles – and they still could here, multiple Identity headers allowed
 – Getting certs is something that will need some work
 • We’re planning an ACME use case around this
 – Need one for SIP URIs and one for TNs, realistically
 – Or...
“Opportunistic” STIR

• STIR could sign requests without vouching for the originator’s identity
 – Added some “don’t rule this out” text to rfc4474bis
 – Would provide an auth service sig over the key fingerprints hashes in SDP without identity
 – Ideally implemented in endpoint auth services
 • Use self-signed keys for trust on first use
 • Can be supplied in addition to a “real” Identity header

• Does it add any real benefit over simple OSRTP?
 – Shows that media keys have not been tampered with in transit (at least since they were signed...)
 • Basically with TOFU trust of auth services
Alignment with WebRTC

• Ideally, e2e SRTP should work when gatewaying SIP to WebRTC
 – Assuming some kind of STIR to IdP gatewaying
 – Cullen took a stab at what that might look like
 • draft-jennings-stir-rtcweb-identity

• But moreover, we want to clone the best practices of e2e SRTP that WebRTC pioneered
 – Consent, and thus ICE
 • Interaction of ICE, early media, and connected identity (RFC4916) a bit complicated
 • More complicated when we want it to work with existing WebRTC implementations
Path Forward

• Depending on how today went, adoption?
• Please to join the list, let’s get some eyeballs on it
 – Any requirements we’re missing?
 – Had some list comments (thanks Alan)
 – There are some serious TBDs here still
• Want to finish by March, that seems achievable (with some energy)