draft-leipnitz-spring-pms-implementation-report

Use case: MPLS path monitoring Monitoring MPLS paths

- network topology (the implementation detects and stacks LDP signaled Labels)
- the MPLS path monitoring packets remain in data plane
- a single PMS is able to address all LSPs of a domain, a PMS allows allows arbitrary path combinations
- Example task shown here: PMS based data plane failure detection between LER i and LER j.

In general, all MPLS LSPs of a domain can be monitored this way.

イロト 不得 トイラト イラト 一日

July 2016 1 / 5

Measurement Topology (extract) case one: IPPM and PMS comparison of RT Delay measurement:

- \blacktriangleright PerfMA 1 \leftrightarrow PerfMA 3 (reference)
- \blacktriangleright PMS \leftrightarrow LER 3

case two: LER 2 \leftrightarrow LER 3 measurements:

- \blacktriangleright I FR 2 \leftrightarrow I FR 3 = PMS \rightarrow LER 1 \rightarrow LER 2 \rightarrow LER 3 \rightarrow $I \in \mathbb{R} 2 \rightarrow I \in \mathbb{R} 1 \rightarrow PMS$ $- PMS \leftrightarrow IER 2$
- \blacktriangleright LER 3 \leftrightarrow LER 2 in analogy by subtracting PMS \leftrightarrow LER 3

Rüdiger Geib, Raik Leipnitz (SPRING WG)

July 2016

Measurement Results and Evaluation

- measurement: 288 mean RT Dealy values each calculated of 10 singleton samples (8 hours measurement)
- Anderson-Darling-K-Sample (ADK) is successful (≤ 1.993, RFC 6576) after adjustment of the mean / median
- high precision of the values
- no network emulator inserted
- LER 2 \leftrightarrow LER 3 two calculation methods result in mean / median values differing by 10 μ s

Test metric	PERFAS+	PMS
minimum [µs]	691.5	695.5
maximum [µs]	701	704.5
mean [µs]	695.4	699.6
median [μ s]	695.5	699.5
standard devia-	1.4	1.7
tion [µs]		
ADK-value	278.445	
ADK-value (adj.	1.701	
of mean)		
ADK-value (adj.	1.982	
of median)		

Table: PERFAS+ and PMS OWD measurement results for path LER 1 to LER 2 and ADK test results

- 4 回 ト 4 ヨ ト 4 ヨ ト

IP-address variation

- identical routing paths for all measurements, no Equal-cost multi-path routing
- 11 mean round-trip delay values of 10 singletons per measurement, collected at different times of a day
- only IP-addresses varied, MPLS-stack kept the same
- PMS connected to two different LER "one" and "two"
- difference in mean values of 19.5 µs and 14.4 µs, RTD a.b.c.0 is always smaller than that of a.b.c.32

Rüdiger	Geib,	Raik	Leipnitz	(SPRING	WG)
---------	-------	------	----------	---------	-----

Interface IP-	mean	median
address	[µs]	[µs]
one / a.b.c.0	1413.2	1412
one / a.b.c. 32	1432.7	1433
two/a.b.c.0	1446.4	1446
two / a.b.c.32	1460.8	1460.5

Table: Destination-IP-address variation

< □ > < □ > < □ > < □ > < □ > < □ >

July 2016 4 / 5

Progress on SPRING based OAM within IETF

- SPRING allows for new OAM features
- a single PMS may send packets to any router and collect responses or it may send and receive circular routed measurement packets
- no need to standardize protocols
- SPRING WG is chartered to produce also OAM related use cases, draft-ietf-spring-oam-usecase is stable for a while
- draft-leipnitz-spring-pms-implementation-report documents first experiences with SPRING enabled OAM features
- How to make progress on SPRING enabled new OAM features within IETF?

< 日 > < 同 > < 回 > < 回 > < 回 > <