
Post Sockets
A generic API for multipath-cooperative

communication
Brian Trammell, Networked Systems and Network Security Groups, ETH Zürich  

with Laurent Chuat and Jason Lee, Network Security Group, ETH Zürich  
and Mirja Kühlewind, Networked Systems Group, ETH Zürich

TAPS WG, IETF 96, Berlin, Thursday 21 July 2016

SOCK_STREAM:  
yesterday’s interface

• Synchronous
• Unicast
• No framing support
• Single-stream
• Single-path
• No path abstraction
• No security
• Implicit measurability

• But it makes the network look like a file. Simplicity wins!

SOCK_STREAM:  
yesterday’s interface, today

• Synchronous
• Unicast (nobody cares, multicast routing, security too hard)
• No framing support (nobody cares, apps do this anyway)
• Single-stream (just open multiple flows)
• Single-path (MPTCP might actually deploy…)
• No security (TLS/OpenSSL solves all our problems, right?)
• No path abstraction

• Can we do better than this?

SOCK_SEQPACKET:  
tomorrow’s interface, yesterday
• Synchronous (with async event notification!)
• Unicast or multicast!
• Framing support!
• Single- or multiple-stream!
• Multipath! (for failover)
• No security
• No path abstraction
• Bound to Stream Control Transmission Protocol (SCTP),  

not extremely deployable in the open Internet today.

• Let’s go back to the interface…

A few insights
(or, alternately, silly assumptions)

• Applications deal in objects (messages) of arbitrary size
• May depend on each other, but don’t have a strict stream ordering
• Let the transport layer solve the optimization problem!

• The network of the future is explicitly multipath.
• Applications must have access to path properties.

• Future transports must guarantee security properties.
• “Bolted-on” security (TLS) adds complexity, latency.
• Path elements must not be able to see transport-layer metadata.

• Message reception is inherently asynchronous.
• Present scalable programming models enable (and require!)

async IO.

Post Sockets: Abstractions

AssociationPath

StreamListener

Object

0..1

0..n

1

0..n

0..n
createsLocal

Remote

1

1

0..n

0..n

depends-on

lifetime

niceness0..n

niceness

bandwidth

latency

capacity

condition

1 send()

read()

write()

1

0..n

open()

Handler

register()

recv()

ack()

expired()
paths_changed()

0..n

interfaces

identity

identitynames

Abstractions
• Associations represent communication state among a group (pair) of network-

connected processes:
• Remote and Local Public key and certificate information
• Session and cryptographic state for fast resume
• Currently available Paths (or interface addresses)
• Callbacks for association events (object receive, etc)

• Listeners allow for passive opening of Associations
• Objects given to one end of an association appear at the other,  

subject to priority, lifetime, and dependency constraints.
• Objects may require multiple segments to transport.
• Object boundaries guaranteed to be preserved.

• Streams over Associations allow bandwidth reservations for nonmaterialized,
streaming data to coexist with Objects.

Entry Points and Events
• Associations created with associate(), given Local, Remote.
• Most calls are conceptual methods on Association:

• .send(): send an object
• object properties include lifetime, niceness, antecedents

• .open(): get a new stream compatible with platform’s stream IO API
• stream properties include bandwidth, niceness

• .register(): register a handler for a given event
• event types include recv, ack, expired, paths-changed

• Listener (created with listen()):  
rump Association with a single event, accept.

• Local and Remote API are architecture-dependent.

Post Sockets and TAPS

• TAPS allows you to select transport protocols…
• …but if each protocol has its own API, this is not

very useful.

• The NEAT API is one solution to this problem.
• PostSockets represents an alternate (and more

radical) approach.

(Potential) Implementations

• API is designed to be transport-, architeture- and
platform-neutral

• Different implementations will have different feature
tradeoffs:

Implementation/
Features over TCP

over SCTP
(or SCTP over UDP

over DTLS)

native transport  
over UDP userland/ 

PLUS

native transport over
UDP in-kernel/

PLUS

Async Receive coroutines
in userland

coroutines  
in userland

coroutines
in userland zero copy w/ coroutines

Object Framing and
Interleaving

object header
in TCP stream
(can deadlock)

provided by SCTP object header
with native segmentation

object header
with native segmentation

Object Lifetime
and Reliability sender-side-only expiry sender-side-only expiry,

provided by SCTP-PR
expiry at sender,  

receiver, and on-path
expiry at sender,

receiver, and on-path

Multistreaming multiple TCP sockets multiple SCTP streams,
single association

via object  
interleaving

via object  
interleaving

Path Primacy
interface only
no path info

MPTCP?

interface only
no path info

SCTP path failover

interface only
path info via PLUS

interface only
path info via PLUS

Security using TLS using DTLS using DTLS 1.3 using DTLS 1.3

