
IETF 96 – TAPS

Socket Intents
Leveraging Application Awareness
for Multi-Access Connectivity

Philipp S. Tiesel, Theresa Enghardt,

IETF 96 – TAPS Socket Intents

Applications know more than they can
express using today’s Socket API

2

IETF 96 – TAPS Socket Intents

File Size

Flow Category

Timeliness

Bitrate / Duration

Resilience

Socket Intents

3

IETF 96 – TAPS Socket Intents

Socket Intents
Intent Type Value

Category Enum Query, bulk transfer, control traffic, stream
File size Int Number of bytes transferred by the application
Duration Int Time between first and last packet in seconds
Bitrate Int Size divided by duration in bytes per second
Burstiness Enum Random bursts, regular bursts, no bursts or bulk

(congestion window limited)
Timeliness Enum Stream (low delay, low jitter),

interactive (low delay),
transfer (completes eventually)
or background traffic (only loose time constraint)

Resilience Enum Sensitive to connection loss,
undesirable (loss can be handled)
or resilient (loss is tolerable)

Table 1: List of proposed Socket Intents.

ness, and resilience. (ii) If you want to watch a video it usu-
ally means using a streaming application. This is a stream
transfer for which the application may know the bitrate and
the duration. It does rather not want the TCP connection
to be disconnected because that might have an effect that is
visible to the user. It can put this connection into the general
category stream transfer with additional information about
duration, bitrate and resilience.

Based on this philosophy, we propose a set of Socket In-
tent options, see Table 1. Socket Intents are optional in the
sense that they are not required but any number of them can
be specified. They are structured hierarchically, starting with
the “category” option with possible values of query, bulk
transfer, control traffic, stream which are realized as enum.
Then we have more specific options which include file size,
duration of the flow, expected bitrate, whether the traffic is
bursty, whether the timeliness of the flow completion mat-
ters and how resilient the application is against connection
loss. Each of these can either be enums or integers. Note,
these are extensible and Table 1 is only a first proposal.

2.3 Policies
One of the key questions is what policy to use. However,

we note that the specific policy that is most beneficial may
depend on the configuration of the host, the current location,
the current network availability, etc. Therefore, we decided
to not focus on a specific policy but rather provide a generic
framework in which one can use and evaluate different poli-
cies. Accordingly, the system components of our design are
summarized in Figure 3.

However, for our prototype implementation we need some
policies to start with. Among the most obvious policy is the
following one: use high bandwidth interfaces for application
requests of the category bulk transfer and low latency inter-
faces for application requests of the category query. Yet,
even this simple policy points out certain limits to realizing
policies without additional information. How can the pol-
icy infer that an interface is high bandwidth or low delay?
This is information that can only be derived via configura-
tion or measurements. Accordingly, we decided to add both

Figure 3: Components of the framework.

Figure 4: Interactions of the Socket Intent components.

a configuration interface as well as a statistics interface to
our prototype.

Finally, policies are not limited to the use of a single inter-
face if the transport protocol supports the simultaneous use
of multiple interfaces. The polices in our current prototype
use socket options to control use of MPTPC (RFC6897) or
multiple paths in SCTP (RFC6458). Future versions will
incorporate interactions between our policies and the path
selection of MPTCP and SCTP.

3. IMPLEMENTATION
Our Socket Intents implementation consists of three com-

ponents: the Multi Access Manager (MAM), the policies,
and the Socket Intent library, see Figure 3, each implemented
in C and compatible with Linux as well as MacOS. The re-
sulting functions as well as the control transfers are shown
in Figure 4. The latter figure highlights that it is not suffi-
cient to just modify the socket and the connect calls. Rather
we also needed to modify the interface to the resolver which
handles the host name to IP address translation.

3.1 Multiple Access Manager
The Multi Access Manager (MAM) is a daemon for host-

ing the policy modules which can be exchanged. As such
it provides the policy framework with initialization and re-
quest processing.

Upon startup, the MAM scans for available network in-
terfaces. Then, it reads the configuration file which includes
the list of interfaces to include/exclude for source or desti-
nation address selection. Moreover, it is possible to specify

3

4

IETF 96 – TAPS Socket Intents

Modified BSD / Legacy Socket API calls

•  Socket Intents are realized as socket options
•  Original prototype: modified most socket calls
socket(), getaddrinfo(), get/setsockopt(), conect()

•  Current prototype: only modified addrinfo struct

5

IETF 96 – TAPS Socket Intents

New Socket API calls for Connation Reuse

•  socketconnect
Ø  connect to a given host and service

based on Socket Intents Policy's decision

•  socketchoose
Ø  connect to a given and service

or reuse an existing socket
based on Socket Intents Policy's decision

•  socketrelease
Ø  mark a socket as “unused” for reuse or close

IETF 96 – TAPS Socket Intents

socketconnect Signature

7

IETF 96 – TAPS Socket Intents

Socket Intents Prototype
available on https://github.com/fg-inet/socket-intents

