Implementing Real-Time Transport Services over an Ossified Network

Stephen McQuistin and Colin Perkins
University of Glasgow

Marwan Fayed
University of Stirling

TAPS WG
IETF 96, July 2016, Berlin
Approach

- Top-down: start with application, work down to transport layer
- What services do real-time multimedia applications need?
- How can these services be provided by UDP and TCP?
Real-Time Multimedia Applications

- Maximum delay bound, depending on interactivity
- Interactive applications: low hundreds of milliseconds (for VoIP) — depends on human perceptibility
- Non-interactive: tens of seconds (for VoD) — depends on desired experience
- Services need to respect timeliness constraint, and add minimal latency
Timing and Deadlines

- Data has set time that it needs to have arrived by, otherwise it won’t be used
- If the transport layer doesn’t know about this deadline, useless data might be sent
- With the deadline, likelihood of data arriving on time can be estimated
- Requires network delay estimate, receive buffer size
- Fundamental service: others follow from this
Partial Reliability

- IP provides best-effort packet delivery, so some packets will be lost

- Timeliness constraint means that data is useless after its deadline

- Guaranteed reliability would result in useless data being sent, deadlines not being met

- Need *partial* reliability: retransmit lost data, but only if it will arrive within its deadline
Message-oriented

• Partial reliability means that some packets may not be delivered

• The packets that do arrive need to be independently useful

• Implies application-level framing, with application data units (ADUs) being sent

• Given independent utility, and need to reduce latency, ADUs can be delivered in the order they arrive

• Support for multiple sub-streams
Dependencies

- Partial reliability means that not all data will arrive successfully
- Interdependencies exist within data
- Data shouldn’t be sent if it relies on a previous transmission that was not received
- Utility difficult to define for some applications
Connections & Congestion Control

- Congestion control important to protect the network and other applications
- Need to select algorithm appropriate to application
- Connection-oriented service is useful in some scenarios
- Enables explicit setup and teardown of in-network state (e.g., for NAT mappings)
Real-Time Transport Services

<table>
<thead>
<tr>
<th>Transport Service</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadlines</td>
<td>Core</td>
</tr>
<tr>
<td>Partial reliability</td>
<td>Core</td>
</tr>
<tr>
<td>Message-oriented</td>
<td>Core</td>
</tr>
<tr>
<td>Sub-streams</td>
<td>Core</td>
</tr>
<tr>
<td>Dependencies</td>
<td>Core</td>
</tr>
<tr>
<td>Congestion controlled</td>
<td>Core</td>
</tr>
<tr>
<td>Connection oriented</td>
<td>Subsidiary</td>
</tr>
<tr>
<td>Keep-alive</td>
<td>Subsidiary</td>
</tr>
</tbody>
</table>
Realising transport services: UDP

- Already supports the sending of datagrams/messages
- Support for partial reliability requires detecting loss, retransmitting if message will arrive before deadline
- Need an estimate of one-way network delay
- Sub-stream support requires small header in each message
- Connections and congestion control can be added
Realising transport services: TCP

- Messaging requires a framing mechanism, to support resegmenting middleboxes — e.g., COBS, as in Minion/uTCP
- Sub-stream support requires small header in each message
- Already supports connections
- Congestion control supported, but algorithm fixed: support for other algorithms as in DCCP
Realising transport services: TCP

• Middleboxes ossified around TCP do not expect gaps in the TCP sequence space

• Need to “retransmit” missing TCP sequence numbers, without retransmitting payloads — *inconsistent retransmissions*

• Small scale evaluations conducted using TCP Hollywood prototype
Summary

• Defined set of services required by real-time multimedia applications

• Services can be provided by both UDP and TCP

• Allows fallback to TCP where UDP not available