
Implementing Real-Time Transport Services
over an Ossified Network 

Stephen McQuistin and Colin Perkins
University of Glasgow

Marwan Fayed
University of Stirling

TAPS WG
IETF 96, July 2016, Berlin



Approach
• Top-down: start with application, work down to transport layer

• What services do real-time multimedia applications need?

• How can these services be provided by UDP and TCP?

2



Real-Time Multimedia Applications
• Maximum delay bound, depending on interactivity

• Interactive applications: low hundreds of milliseconds (for 
VoIP) — depends on human perceptibility

• Non-interactive: tens of seconds (for VoD) — depends on 
desired experience

• Services need to respect timeliness constraint, and add 
minimal latency

3



Timing and Deadlines
• Data has set time that it needs to have arrived by, otherwise it 

won’t be used

• If the transport layer doesn’t know about this deadline, useless 
data might be sent

• With the deadline, likelihood of data arriving on time can be 
estimated

• Requires network delay estimate, receive buffer size

• Fundamental service: others follow from this

4



Partial Reliability
• IP provides best-effort packet delivery, so some packets will 

be lost

• Timeliness constraint means that data is useless after its 
deadline

• Guaranteed reliability would result in useless data being sent, 
deadlines not being met

• Need partial reliability: retransmit lost data, but only if it will 
arrive within its deadline

5



Message-oriented
• Partial reliability means that some packets may not be 

delivered

• The packets that do arrive need to be independently useful

• Implies application-level framing, with application data units 
(ADUs) being sent

• Given independent utility, and need to reduce latency, ADUs 
can be delivered in the order they arrive

• Support for multiple sub-streams

6



Dependencies
• Partial reliability means that not 

all data will arrive successfully

• Interdependencies exist within 
data

• Data shouldn’t be sent if it 
relies on a previous 
transmission that was not 
received

• Utility difficult to define for 
some applications

7

0 19

20 byte application data unit

(a) 20 byte write() at application layer

0 1 20

S 20 byte application data unit

(b) S (sub-stream identifier) prepended before COBS encoding

0 1 22 23

0 block from (b), COBS-encoded 0

(c) COBS-encoded datagram to be passed to transport layer

Figure 3: On-the-wire representation of application data units

Figure 4: MPEG-1 video frame prediction between I-frames
(red), P-frames (orange) and B-frames (yellow)

size_t send_dgram(int fd, char *buf, size_t len,

int seq);

size_t send_dgram(int fd, char *buf, size_t len,

uint32_t expiryTime,

uint16_t seq, uint16_t dep);

size_t send_dgram(int fd, char *buf, size_t len,

uint16_t seq, uint16_t dep);

size_t recv_dgram(int fd, char *buf, size_t len);

size_t recv_dgram(int fd, char *buf, size_t len,

uint8_t *substream);

void setClockrate(uint32_t clockrate);

size_t getPMTU(int sockfd);

Figure 5: uTLTCP API including dependency support

Experimental design and methodology

For the most part, the performance evaluations are carried
out using the testbed topology shown in figure 6. In order
to evaluate the performance of uTLTCP with respect to
other protocols, the protocols used at the sender and receiver
hosts are varied as shown in table 1. Where TCP is used,
the TCP_NODELAY socket option is enabled, as this is not a
contribution of the work presented here. The performance of
a uTLTCP sender and a TCP receiver is evaluated because
this configuration is more deployable than having a uTLTCP
receiver; userspace libraries can be used on the TCP receiver
to allow it to decode COBS-encoded datagrams, although
without benefiting from the decrease in latency.

Broadly, the methodology is to send a number of packets
using the listed protocols between the sender and receiver
and measure performance with respect to a set of metrics,
with the packet loss rates being varied between each eval-
uation. More specifically, 10,000 packets will be sent, with

Figure 6: Testbed topology

Label Sender Receiver
A TCP TCP
B UDP UDP
C uTLTCP TCP
D uTLTCP uTLTCP

Table 1: Protocols under evaluation

20ms between each packet; where timelines are being tested,
the clockrate is 8000Hz. The size of datagrams will alter-
nate between 550 and 650 bytes to allow for padding to be
tested. The packet loss rates being tested are 0%, 2%, 4%,
8% and 16%. Finally, evaluations will be run 10 times for
each metric and protocol combination.
The clock rate and packet sizes have been selected to im-

itate that of audio transmission. However, in such appli-
cations, packet sizes are usually constant. They vary here
only to to allow padding to be tested. The choice of clock
rate and packet size means that TCP’s flow and congestion
control algorithms may not be exercised during these evalu-
ations; this may a↵ect the throughput and goodput metrics
being measured.
The metrics that will be measured are:

Average throughput

This is the amount of data delivered to the receiving
host, divided by the time taken to deliver it. This in-
cludes protocol headers, padding, and duplicate pack-
ets, where appropriate.

Average goodput

This is the amount of data delivered to the receiving
application, divided by the time taken to deliver it.
This excludes protocol headers, padding, and retrans-
missions, where appropriate. In addition, the goodput
metric used here has a narrower definition than pre-
sented elsewhere [8]; packets that arrive after the time
that they are to be played out will not be counted.

Average latency

This is the average one-way latency between the sender
and receiver as measured at the receiver.

Average interarrival jitter

This is the average delay variation between consecutive

7

MPEG-1: I, P, and B frames



Connections & Congestion Control
• Congestion control important to protect the network and other 

applications

• Need to select algorithm appropriate to application

• Connection-oriented service is useful in some scenarios

• Enables explicit setup and teardown of in-network state (e.g., 
for NAT mappings)

8



Real-Time Transport Services

9

Transport Service Requirement

Deadlines Core

Partial reliability Core

Message-oriented Core

Sub-streams Core

Dependencies Core

Congestion controlled Core

Connection oriented Subsidiary

Keep-alive Subsidiary



Realising transport services: UDP
• Already supports the sending of datagrams/messages

• Support for partial reliability requires detecting loss, 
retransmitting if message will arrive before deadline

• Need an estimate of one-way network delay

• Sub-stream support requires small header in each message

• Connections and congestion control can be added

10



Realising transport services: TCP
• Messaging requires a framing mechanism, to support 

resegmenting middleboxes — e.g., COBS, as in Minion/uTCP

• Sub-stream support requires small header in each message

• Already supports connections

• Congestion control supported, but algorithm fixed: support for 
other algorithms as in DCCP

11

TCP TCPTCPTCPTCP

time

message fragmentation



Realising transport services: TCP
• Middleboxes ossified around TCP do 

not expect gaps in the TCP sequence 
space

• Need to “retransmit” missing TCP 
sequence numbers, without 
retransmitting payloads — inconsistent 
retransmissions

• Small scale evaluations conducted 
using TCP Hollywood prototype

12

tim
e

x

...

seq: 1
seq: 2
seq: 3
seq: 4
seq: 5

ack: 2

ack: 3

ack: 3

ack: 3

ack: 3seq: 3



Summary
• Defined set of services 

required by real-time 
multimedia applications

• Services can be provided by 
both UDP and TCP

• Allows fallback to TCP where 
UDP not available

• Paper: 
https://irtf.org/anrw/2016/
anrw16-final25.pdf

13

Transport Service

Deadlines

Partial reliability

Message-oriented

Sub-streams

Dependencies

Congestion controlled

Connection oriented

Keep-alive

https://irtf.org/anrw/2016/anrw16-final25.pdf

