
Transports advancements in the 
Windows network stack

Praveen Balasubramanian
Engineering Lead, Data Transports & Security

pravb@microsoft.com



The fight against TCP ossification
• Key barriers to TCP innovation

1. Slow OS updates

2. Middleboxes

3. Slow adoption of new features by services

• Continuous rapid updates – address problem 1

• Enable by default with safe fallbacks – partly address problem 2

• Fast moving services – address problem 3

• Windows 10 is now on 350 million+ systems
• PC / tablet / mobile / Xbox / Hololens / IoT

• 96 percent of major enterprise customers now piloting or deploying

• “Anniversary update for Windows 10” – free update for all users

• Windows Server 2016
2



TCP Fast Open (and TLS False Start)

3



TCP Fast Open
• First step towards 0-RTT (Microsoft is very interested in TLS 1.3)
• RFC 7413 compliant
• TCP global setting is enabled by default
• about:flags setting (off by default) in Microsoft Edge in Windows 

Insider Preview builds 14352 and higher
• Found interop issues with 

• Firewalls and anti-virus software
• Mitigated by bug fixes in OS and firewall software code
• RFC could include this as source of problems

• Middleboxes
• Same class of issues as found by Apple in iOS and OSX tests*
• Requires detection and mitigation
• Request tcpm community to standardize – maybe errata to RFC 7413?

*https://www.ietf.org/proceedings/94/slides/slides-94-tcpm-13.pdf

4

https://www.ietf.org/proceedings/94/slides/slides-94-tcpm-13.pdf


TCP Fast Open details
• IANA assigned option number 34 

• State machine based approach (modeled as sub-states before estab)

• Stop negotiation after first SYN timeout

• No correlation between attempting TFO and retransmitting first SYN for top 
10000 websites

• Most server properties enable TFO on port 443

• Client will accept server cookie of all valid sizes
• Server side support is in the works

• Sample code to enable and use TFO:
char option = 1; 

int rc = setsockopt(sock, IPPROTO_TCP, TCP_FASTOPEN, &option, 
sizeof(option));

// Use ConnectEx, an existing Winsock API that takes a send data // buffer
https://msdn.microsoft.com/en-us/library/windows/desktop/ms737606(v=vs.85).aspx

// If server accepted SYN with cookie request or cookie + data, // option 
will be 1

int rc = getsockopt(sock, IPPROTO_TCP, TCP_FASTOPEN, &option, &optlen);

5

https://msdn.microsoft.com/en-us/library/windows/desktop/ms737606(v=vs.85).aspx


Initial Congestion Window 10 (IW10)

• IW limits amount of data in first RTT

• Up until Windows 10 and Server 2012 R2, the default IW = 4 MSS

• Anniversary update for Windows 10 and Server 2016, default IW = 10 
MSS

• Loss in first burst, reset to IW = 4 MSS for the connection

• Initial telemetry shows increased loss in initial burst across device 
types. Working on 
• Quantifying the increased loss rate

• A/B testing with IW = 4 and IW = 10

• SIO_TCP_SET_ICW socket option on client allows (2, 4 ,10 MSS). On 
server allows up to 64 MSS

6



Tail Loss Probe (TLP)

7

• Based on draft-dukkipati-tcpm-tcp-loss-probe-01

• Try to convert RTOs into Fast Retransmits

• Limit to only one probe segment

• WCDelAckT = 200 msec seems too conservative for single outstanding 
segment case
• What value does the Linux kernel use?
• Does Linux kernel have dynamic delayed ACK timeout tuning?

• On by default on Windows 10 Anniversary update and Server 2016

• TLP enabled only for connections that have an RTT of at least 10 msec in 
both client and server

• FACK with a fixed reordering threshold of 3 to improve TLP based recovery

• FACK is always enabled independent of TLP



Recent ACKnowledgement (RACK)

8

• Based on draft-cheng-tcpm-rack-00

• Use rotating buffer of “time slots” instead of time per send buffer
• Tradeoff between precision and memory space
• “Reading index” tracks forward with ACKs, “Insertion index” tracks new sends 
• LSO sends tracked in single slot – not expensive to convert LSO to standard 

send in recovery retransmissions

• On by default on Windows 10 Anniversary update and Server 2016

• RACK enabled only for connections that have an RTT of at least 10 
msec in both client and server

• RACK.reo_wnd = min_RTT/4

• Increase in spurious RTOs with RACK enabled – investigating further

• Encourage tcpm to publish this as experimental RFC



LEDBAT

• The background downloads problem

• Prototype implementation based on RFC 6817

• Several proprietary deviations as a result of measurements that show 
sub-optimal behavior of stock LEDBAT

• Undocumented socket option – not ready for public consumption

• Under evaluation by several first party workloads 

• More on this in the next IETF

9



Diversity or convergence of congestion control?
• Windows client  Compound TCP 

• Windows Server  dynamic based on handshake RTT – DCTCP or Compound TCP

• Linux kernel  CUBIC. We are evaluating a prototype (not in shipping code)

• High throughput vs. queueing delay. Loss / ECN / delay machine learning.

• http://web.mit.edu/remy/

• http://web.mit.edu/remy/TCPexMachina.pdf

10

http://web.mit.edu/remy/
http://web.mit.edu/remy/TCPexMachina.pdf


Q&A

11


