Yang Data Model for TE Topologies
draft-ietf-teas-yang-te-topo-05

Xufeng Liu (Ericsson)
Vishnu Pavan Beeram (Juniper Networks)
Igor Bryskin (Huawei Technologies)
Tarek Saad (Cisco)
Himanshu Shah (Ciena)
Oscar Gonzalez De Dios (Telefonica)

Contributors:
Sergio Belotti (Alcatel-Lucent)
Diete Beller (Alcatel-Lucent)
Summary of Changes

- Draft re-organization.
- Added support for multi-layer topology.
- Added support for protection on tunnel termination point.
- Added support for label restrictions on connectivity matrix.
- Added support for topology optimization options.
- Enhanced support for inter-domain topology.
Draft Re-organization

- Moved shared type definitions to ietf-te-types.yang in draft-ietf-teas-yang-te.
 - To share type definitions by multiple models.
 - Kept draft-ietf-teas-yang-te-topo-05 technology agnostic.
- Extended ietf-teas-yang-te-topo to cover SR topology and SR TE topology
 - Submitted draft-liu-teas-yang-sr-te-topo.
 - Will describe more at end of this presentation.
Added Support for Multi-layer Topology

- **Transitional link**
 - Connects link termination points at different layers.

- **Modeling abstraction**
 - Added switch-layer attributes to TE Link Termination Point.
 - Added a flag to TE Link to indicate transitional.

```
augment /nw:networks/nw:network/nw:node:
  +--rw te!
    +--rw tunnel-termination-point* [tunnel-tp-id]
      +--rw tunnel-tp-id    binary
      +--rw config
        |   +--rw switching-capability?     identityref
        |   +--rw encoding?                 identityref
      +--ro state
        +--ro switching-capability?     identityref
        +--ro encoding?                 identityref

augment /nw:networks/nw:network/nt:link:
  +--rw te!
    +--rw config
      |   +--rw te-link-attributes
      |     +--rw interface-switching-capability* [switching-capability]
      |     |   +--rw switching-capability                   identityref
      |     |   +--rw encoding?                             identityref
      |     |   +--rw max-lsp-bandwidth* [priority]
      +--ro state
        +--ro is-transitional?                    empty
```

“Layer 1” at one end, “Layer 2” at other end.
Transitional Link

- **Tunnel Termination Point (TTP)**
- **Server Link Termination Point (S-LTP)**
- **Client Link Termination Point (C-LTP)**

Network diagram showing the relationships between TTPs, S-LTPs, and C-LTPs, with logical sub-nodes and layer transformation.
Added Support for Multi-layer Topology

- Inter layer lock
 - Describes client-server layer adaptation relationships

- Modeling abstraction
 - Added inter-layer-lock-id to TE Tunnel Termination Point.

```yaml
augment /nw:networks/nw:network/nw:node:
  +--rw te!
    +--rw te-node-id   te-node-id
    +--rw tunnel-termination-point* [tunnel-tp-id]
      +--rw tunnel-tp-id   binary
      +--rw config
        |  +--rw inter-layer-lock-id?   uint32
        |  +--rw termination-capability* [link-tp]
        |  |  +--rw link-tp    leafref
        +--ro state
          +--ro inter-layer-lock-id?   uint32
          +--ro termination-capability* [link-tp]
          |  +--ro link-tp    leafref

augment /nw:networks/nw:network/nw:node/nt:termination-point:
  +--rw te!
    +--rw te-tp-id   te-tp-id
    +--rw config
      |  +--rw schedules
      |  |  +--rw schedule* [schedule-id]
      |  |  +--rw interface-switching-capability* [switching-capability]
      |  +--rw inter-layer-lock-id   uint32
      +--ro state
        +--ro schedules
        |  +--ro schedule* [schedule-id]
        |  +--ro inter-layer-lock-id?   uint32
        +--ro schedules
```
Inter-layer Lock

- Tunnel Termination Point (TTP)
- Server Link Termination Point (S-LTP)
- Client Link Termination Point (C-LTP)

- Describes client-server layer adaptation relationship.
- It is an association of M client layer LTPs and N server layer TTPs.
- Each association is uniquely identified by an inter-layer lock ID.

<table>
<thead>
<tr>
<th>TTP1</th>
<th>IL-1</th>
<th>C-LTP-1</th>
<th>IL-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTP2</td>
<td>IL-2, IL-3</td>
<td>C-LTP-2</td>
<td>IL-1</td>
</tr>
<tr>
<td>TTP3</td>
<td>IL-2</td>
<td>C-LTP-3</td>
<td>IL-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C-LTP-4</td>
<td>IL-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C-LTP-5</td>
<td>IL-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C-LTP-6</td>
<td>IL-3</td>
</tr>
</tbody>
</table>
Added Support for Protection on Tunnel Termination Point

Tunnel Termination Point to Support Protection

- Added attribute `protection-type` to specify the type of protection that the TTP is capable of, as specified in RFC4872.

```yang
augment /nw:networks/nw:network/nw:node:
  +--rw te!
    +--rw tunnel-termination-point* [tunnel-tp-id]
      +--rw tunnel-tp-id binary
      +--rw config
        |  +--rw protection-type? identityref
        +--ro state
          +--ro protection-type? identityref

protection-type value range:
- lsp-prot-unprotected
- lsp-prot-reroute-extra
- lsp-prot-reroute
- lsp-prot-1-for-n
- lsp-prot-unidir-1-to-1
- lsp-prot-bidir-1-to-1
```
Added Support for Label Restrictions on Connectivity Matrix

- **Tunnel Termination Point (TTP)**
- **Server Link Termination Point (S-LTP)**
- **Client Link Termination Point (C-LTP)**

Inclusive Labels: 101, 102, 103, 111, 112

Exclusive Labels: 100 .. 199
Added Support for Label Restrictions on Connectivity Matrix

- RFC7579 specifies label constraints on connectivity matrix.
 - Inclusion and exclusion.
 - Simple label, label range, and label set.

```yaml
augment /nw:networks/nw:network/nw:node:
   +--rw te!
      +--rw config
         |   +--rw te-node-attributes
         |      +--rw connectivity-matrix* [id]
         |      |   +--rw id                         uint32
         |      |   +--rw label-restriction* [inclusive-exclusive label-start]
         |      |     +--rw inclusive-exclusive   enumeration
         |      |     +--rw label-start           te-types:generalized-label
         |      |     +--rw label-end?            te-types:generalized-label
         |      |     +--rw range-bitmap?         binary
      +--ro state
         |   +--ro te-node-attributes
         |      +--ro connectivity-matrix* [id]
         |      |   +--ro id                         uint32
         |      |   +--ro label-restriction* [inclusive-exclusive label-start]
         |      |     +--ro inclusive-exclusive   enumeration
         |      |     +--ro label-start           te-types:generalized-label
         |      |     +--ro label-end?            te-types:generalized-label
         |      |     +--ro range-bitmap?         binary
```
Added Support for Topology Optimization Options

- The optimization objectives may be different for different situations, and may change over time [RFC3272].
- Added attribute `optimization-criterion` to specify the optimization options.

```
augment /nw:networks/nw:network:
  +--rw te!
    +--rw provider-id te-types:te-global-id
    +--rw client-id te-types:te-global-id
    +--rw te-topology-id te-types:te-topology-id
    +--rw config
      |  +--rw optimization-criterion? identityref
      +--ro state
        +--ro optimization-criterion? Identityref

optimization-criterion value range:
- not-optimized
- cost
- delay
```
Enhanced Support for Inter-domain Topology

Domain TE topologies renamed and merged into client’s native TE topology

Domain 1 TE topology

Domain 2 TE topology
Topology Abstractions for Inter-domain Topology

Domain 1 abstract TE topology 1

Domain 2 abstract TE topology 1

Domain 1 abstract TE topology 2

Domain 2 abstract TE topology 2
Multiple Merged Native TE Topologies

Client’s merged TE topology 2

Client’s merged TE topology 3
Modeling Support for Inter-domain Topology

- Specify remote TE node ID and TE link ID.
- Specify inter-domain plug ID.

```yaml
augment /nw:networks/nw:network/nt:link:
  +--rw te!
    +--rw config
      |  +--rw te-link-attributes
      |     +--rw schedules
      |     |  +--rw schedule* [schedule-id]
      |     +--rw external-domain
      |     |  +--rw remote-te-node-id? te-types:te-node-id
      |     |  +--rw remote-te-link-tp-id? te-types:te-tp-id
      |     |  +--rw plug-id? uint32
      |     +--rw is-abstract? empty
    +--ro state
      +--ro te-link-attributes
      |  +--ro schedules
      |     +--ro schedule* [schedule-id]
      |     +--ro external-domain
      |     |  +--ro remote-te-node-id? te-types:te-node-id
      |     |  +--ro remote-te-link-tp-id? te-types:te-tp-id
      |     |  +--ro plug-id? uint32
      |     +--ro is-abstract? empty
```
Topology Abstractions for Inter-domain Topology

Domain 1 abstract TE topology 1

- Remote TE Node: S3
- Remote TE Link: 301

Domain 2 abstract TE topology 1

- Link ID:301

Domain 1 abstract TE topology 2

- Remote TE Node: S3
- Remote TE Link: 301

Domain 2 abstract TE topology 2

- Link ID:101
Topology Abstractions for Inter-domain Topology

Domain 1 abstract TE topology 1

S3 --S5 --S8

S9 --S7

Plug ID: 11

Domain 2 abstract TE topology 1

S3 --S5

S4 --S8

S9 --S7

Plug ID: 11

Domain 1 abstract TE topology 2

AN1

Plug ID: 11

Domain 2 abstract TE topology 2

AN1

Plug ID: 11
ID Type Debate

- It is being debated on the YANG data types for the IDs. Need WG consensus.

1. The type for plug ID:
 - uint32
 - URI
 - String

2. More generally, the types for other IDs, including TE Node ID and TE Link ID:
 - More specific types: dotted-quad, uint32
 - URI
ID Type Debate

- Arguments for number type (uint32 or dotted-quad):
 - Compatible to current implementations and RFCs.
 - More efficient to implement (e.g. searching, sorting, and indexing).
 - Easier to advertise.
 - Easier to do automation (e.g. getting the next available value).
 - The model is mostly for machine-to-machine interface. Client software can do the mapping if user friendly formats are needed.
 - No need for parsing and conversion, and no ambiguity for interpretation.

- Arguments for URI:
 - Forward thinking.
 - More human readable.
 - Flexible for conversion to other formats.
Next Steps

- Address review comments.
 - To Do List:
- Request further review.
Yang Data Model for Layer 3 TE Topologies

draft-liu-teas-yang-l3-te-topo-01

Xufeng Liu (Ericsson)
Vishnu Pavan Beeram (Juniper Networks)
Igor Bryskin (Huawei Technologies)
Tarek Saad (Cisco)
Himanshu Shah (Ciena)
Oscar Gonzalez De Dios (Telefonica)
Augmentation Hierarchy

- L3 TE Topology augments L3 Topology and references TE Topology.
- Packet extension module augments ietf-te-topology.
 - Asking feedback on the module name. Options can be:
 - ietf-te-topology-pcs
 - ietf-te-topology-packet
 - ietf-te-topology-mpls
Augmenting L3 Network Topology Model

- Add references to TE topology instances.

```yaml
module: ietf-l3-te-topology
augment /nw:networks/nw:network/nw:network-types/l3t:l3-unicast-igp-topology:
  +--rw l3-te!
augment /nw:networks/nw:network/l3t:igp-topology-attributes:
  +--rw l3-te-topology-attributes
    +--rw network-ref? leafref
augment /nw:networks/nw:network/nw:node/l3t:igp-node-attributes:
  +--rw l3-te-node-attributes
    +--rw node-ref? leafref
    +--rw network-ref? leafref
augment /nw:networks/nw:network/nw:node/nt:termination-point/l3t:igp-termination-point-attributes:
  +--rw l3-te-tp-attributes
    +--rw tp-ref? leafref
    +--rw node-ref? leafref
    +--rw network-ref? leafref
augment /nw:networks/nw:network/nt:link/l3t:igp-link-attributes:
  +--rw l3-te-link-attributes
    +--rw link-ref? leafref
    +--rw network-ref? leafref
```
Augmenting Base TE Topology Model

- Add attributes that are specific to packet switching technology.

```yaml
module: ietf-te-topology-psc
  +--rw packet-switch-capable
  +--rw minimum-lsp-bandwidth? decimal64
  +--rw interface-mtu? Uint16

  +--ro packet-switch-capable
  +--ro minimum-lsp-bandwidth? decimal64
  +--ro interface-mtu? Uint16

  +--ro packet-switch-capable
  +--ro minimum-lsp-bandwidth? decimal64
  +--ro interface-mtu? Uint16

augment /tet:te-link-event/tet:te-link-attributes/tet:interface-switching-capability:
  +---- packet-switch-capable
  +---- minimum-lsp-bandwidth? decimal64
  +---- interface-mtu? uint16
augment /tet:te-link-event/tet:information-source-entry/tet:interface-switching-capability:
  +---- packet-switch-capable
  +---- minimum-lsp-bandwidth? decimal64
  +---- interface-mtu? uint16
```
Next Steps

- Request further review.
- Ask for WG adoption.
Yang Data Model for SR and SR TE Topologies

draft-liu-teas-yang-sr-te-topo-00

Xufeng Liu (Ericsson)
Vishnu Pavan Beeram (Juniper Networks)
Igor Bryskin (Huawei Technologies)
Tarek Saad (Cisco)
Himanshu Shah (Ciena)
Stephane Litkowski (Orange)
SR (Segment Routing) Topology

- Augment layer 3 network topology model.
SR Topology Structure

- Define a new network-type “sr”.
- Add network-wide SRGB.

```yaml
module: ietf-l3-unicast-igp-topology
augment /nw:networks/nw:network/nw:network-types:
  +--rw l3-unicast-igp-topology!
    +--rw srt:sr!

augment /nw:networks/nw:network:
  +--rw igp-topology-attributes
    +--rw name?      string
    +--rw flag*      flag-type
    +--rw srt:sr
      +--rw srt:config
        +--rw srt:srgb* [lower-bound upper-bound]
          +--rw srt:lower-bound   uint32
          +--rw srt:upper-bound   uint32
```
SR Topology Structure

- Augment node to add per-node attributes.

```
augment /nw:networks/nw:network/nw:node:
  +--rw igp-node-attributes
  |    +--rw name?      inet:domain-name
  |    +--rw flag*     flag-type
  |    +--rw router-id* inet:ip-address
  |    +--rw prefix*   [prefix]
  |    |    +--rw prefix  inet:ip-prefix
  |    |    +--rw metric? uint32
  |    |    +--rw flag*  flag-type
  |    |    +--rw srt:sr!
  |    |    |    +--rw srt:value-type?  enumeration
  |    |    |    +--rw srt:start-sid  uint32
  |    |    |    +--rw srt:range?  uint32
  |    |    |    +--rw srt:last-hop-behavior?  enumeration {sid-last-hop-behavior}?
  |    |    |    +--rw srt:is-local? boolean
  |    |    |    +--rw srt:algorithm? sr-algorithm
  |    +--rw srt:srgb*  [lower-bound upper-bound]
  |    |    +--rw srt:lower-bound  uint32
  |    |    +--rw srt:upper-bound  uint32
  |    +--rw srt:capabilities
  |    |    +--rw srt:transport-planes*  [transport-plane]
  |    |    |    +--rw srt:transport-plane  identityref
  |    |    |    +--rw srt:segment-stack-push-limit? uint8
  |    |    |    +--rw srt:readable-label-stack-depth? uint8
  |    +--ro srt:state
  |    |    +--ro srt:information-source?  enumeration
  |    |    +--ro srt:information-source-state
  |    |    |    +--ro srt:credibility-preference? uint16
  |    +--ro srt:capabilities
  |    |    +--ro srt:transport-planes*  [transport-plane]
  |    |    |    +--ro srt:transport-plane  identityref
  |    |    |    +--ro srt:segment-stack-push-limit? uint8
  |    |    |    +--ro srt:readable-label-stack-depth? uint8
```
SR Topology Structure

- Augment link to add per-link attributes.

```
augment /nw:networks/nw:network/nt:link:
  +--rw igp-link-attributes
  |   +--rw name?     string
  |   +--rw flag*     flag-type
  |   +--rw metric?   uint32
  +--rw srt:sr
     |   +--rw srt:config
     |       |   +--rw srt:sid?              uint32
     |       |   +--rw srt:value-type?       enumeration
     |       |   +--rw srt:is-local?         boolean
     |       |   +--ro srt:is-part-of-set?   boolean
     |       |   +--ro srt:is-on-lan?        boolean
     +--ro srt:state
        |   +--ro srt:information-source?   enumeration
        +--ro srt:information-source-state
           +--ro srt:credibility-preference?   uint16
```
SR (Segment Routing) TE Topology

- Multiple inheritance:
 - Is both SR topology and layer 3 TE topology model.
 - Uses multiple network types: “l3-te” and “sr”.

Diagram:
- SR Topology (ietf-sr-topology)
- Layer 3 TE Topology (ietf-l3-te-topology)
- SR TE Topology
Next Steps

- Work with authors of draft-ietf-spring-sr-yang to share YANG types.
- Add support for protection on link.
- Add support for link bundle.