FECFRAME version 2 Adding convolutional FEC codes support to the FEC Framework

Vincent Roca, Inria, France Ali Begen, Networked Media, Turkey <u>https://datatracker.ietf.org/doc/draft-roca-tsvwg-fecframev2/</u>

July 2016, IETF96, Berlin

Note well

- we, authors of -01 version, didn't try to patent any of the material included in this presentation/I-D
- we, authors of -01 version, are not reasonably aware of patents on the subject that may be applied for by our employer
- if you believe some aspects may infringe IPR you are aware of, then fill in an IPR disclosure and please, let us know

FECFRAME [RFC 6363]

 a follow-up of the "Forward Error Correction (FEC) Framework", A.K.A. FECFRAME

<u>RFC 6363</u>, M. Watson, A. Begen, V. Roca, October 2011
Oproduced by the FECFRAME IETF WG
Ogoal of FECFRAME is to add AL-FEC protection to real-time unicast or multicast flows in a flexible way

Oalready part of 3GPP (e)MBMS standards

FECFRAME target use-case example

 3GPP Multimedia Broadcast/Multicast Service (MBMS) are perfect for scalable delivery

Oeverybody's interested by the same content at the same time at the same place

OFLUTE/ALC ⇒ files (largely deployed)OFECFRAME ⇒ streaming (deployment should begin soon)

Oend-to-end latency DOES matter!

Architecture

• a shim layer to add reliability to real-time flows in a flexible way

Block FEC codes... (1)

...versus Convolutional FEC codes (2)

Why updating FECFRAME? (1)

block FEC codes add latency to everybody

- Ono matter your reception conditions
- Odue to FEC blocks
- find a balance between added latency and robustness!

Why updating FECFRAME? (2)

issue solved with convolutional FEC codes

• good reception conditions: near zero latency ©

 bad reception conditions: some latency but unless very close to decoding limits, latency is still significantly inferior to that of block codes

simulations, CR=2/3 (decoding limit PLR=33.3%)

Updating [RFC6363]

no fundamental issue no change to existing mechanisms it's incremental, not disruptive!

• it DOES NOT break legacy receivers

 legacy receivers see an unsupported FEC Scheme in the SDP description and ignore the source + repair flows
by sending both FECFRAMEv1 and v2 source + repair flows, all the terminals will be satisfied

• it is called version 2...

 ...but there is no version number in FECFRAME and FEC Schemes

Running code is almost here...

(non-public) FECFRAME implementation available

OI did it (Vincent)

Ointeroperability tests successful

Ocommercialized by http://expway.com

• FECFRAMEv2 implementation in progress...

Ohopefuly ready for IETF 97

Owill rely on our (non-public) convolutional FEC codec already available

What else?

problem position I-D exists

In NetWork Coding Research Group for historical reasons <u>https://datatracker.ietf.org/doc/draft-roca-nwcrg-fecframev2-problem-position/</u>

TODO: propose an equivalent to [RFC5052]...
Oexplain how to design FEC Schemes for conv. codes

 TODO: propose convolutional FEC Schemes in the future

Oe.g., for RLC-like codes (very simple)... and others