
6TiSCH M. Vucinic, Ed.
Internet-Draft Inria
Intended status: Standards Track J. Simon
Expires: April 28, 2017 Linear Technology
 K. Pister
 University of California Berkeley
 October 25, 2016

 Minimal Security Framework for 6TiSCH
 draft-vucinic-6tisch-minimal-security-00

Abstract

 This draft describes the minimal mechanisms required to support
 secure initial configuration in a device being added to a 6TiSCH
 network. The goal of this configuration is to set link-layer keys,
 and to establish a secure session between each joining node and the
 JCE who may use that to further configure the joining device.
 Additional security behaviors and mechanisms may be added on top of
 this minimal framework.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 28, 2017.

Vucinic, et al. Expires April 28, 2017 [Page 1]

Internet-Draft vucinic-6tisch-minimal-security October 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 3
 3. Join Overview . 4
 3.1. Step 1 - Enhanced Beacon 5
 3.2. Step 2 - Neighbor Discovery 5
 3.3. Step 3 - Security Handshake 5
 3.3.1. Pre-Shared Key 5
 3.3.2. Asymmetric Keys 5
 3.4. Step 4 - Join Request 6
 3.5. Step 5 - Join Response 6
 4. Protocol Specification 6
 4.1. Proxy Operation of JA 7
 4.1.1. Implementation of origin_info 7
 4.2. OSCOAP Security Context Instantiation 7
 4.3. Implementation of Join Request 8
 4.4. Implementation of Join Response 8
 5. Link-layer requirements 9
 5.1. Well-known beacon authentication key 10
 5.2. Private beacon authentication key 10
 6. Asymmetric Keys . 10
 7. Security Considerations 10
 8. Privacy Considerations 11
 9. IANA Considerations . 12
 10. Acknowledgments . 12
 11. References . 12
 11.1. Normative References 12
 11.2. Informative References 12
 11.3. External Informative References 14
 Appendix A. Example . 14
 Authors’ Addresses . 16

Vucinic, et al. Expires April 28, 2017 [Page 2]

Internet-Draft vucinic-6tisch-minimal-security October 2016

1. Introduction

 When a previously unknown device seeks admission to a 6TiSCH
 [RFC7554] network (to "join"), it first needs to synchronize to the
 network. The device then configures its IPv6 address and
 authenticates itself, and also validates that it is joining the right
 network. At this point it can expect to interact with the network to
 configure its link-layer keying material. Only then may the node
 establish an end-to-end secure session with an Internet host using
 DTLS [RFC6347] or OSCOAP [I-D.ietf-core-object-security]. Once the
 application requirements are known, the device interacts with its
 peers to request additional resources as needed, or to be
 reconfigured as the network changes [I-D.ietf-6tisch-6top-protocol].

 This document describes the mechanisms comprising a minimal feature
 set for a device to join a 6TiSCH network, up to the point where it
 can establish a secure session with an Internet host.

 It presumes a network as described by [RFC7554],
 [I-D.ietf-6tisch-6top-protocol], and [I-D.ietf-6tisch-terminology].
 It assumes the joining device pre-configured with either a:

 o pre-shared key (PSK),
 o raw public key (RPK),
 o or a locally-valid certificate and a trust anchor.

 As the outcome of the join process, the joining device expects one or
 more link-layer key(s) and optionally a temporary network identifier.

2. Terminology

 The reader is expected to be familiar with the terms and concepts
 defined in [I-D.ietf-6tisch-terminology], [RFC7252], and
 [I-D.ietf-core-object-security]. The entities participating in the
 protocol that is specified in this document are:

 o JN: Joining node - the device attempting to join a particular
 6TiSCH network.
 o JCE: Join coordinating entity - central entity responsible for
 authentication and authorization of joining nodes.
 o JA: Join assistant - the device within radio range of the JN that
 generates Enhanced Beacons (EBs) and facilitates end-to-end
 communications between the JN and JCE.

Vucinic, et al. Expires April 28, 2017 [Page 3]

Internet-Draft vucinic-6tisch-minimal-security October 2016

3. Join Overview

 This section describes the steps taken by a joining node (JN) in a
 6TiSCH network. When a previously unknown device seeks admission to
 a 6TiSCH [RFC7554] network, the following exchange occurs:

 1. The JN listens for an Enhanced Beacon (EB) frame
 [IEEE802154-2015]. This frame provides network synchronization
 information, and tells the device when it can send a frame to the
 node sending the beacons, which plays the role of Join Assistant
 (JA) for the JN, and when it can expect to receive a frame.
 2. The JN configures its link-local IPv6 address and advertises it
 to JA.
 3. The JN sends packets to the JA device in order to securely
 identify itself to the network. These packets are directed to
 the Join Coordination Entity (JCE), which may be the JA or
 another device.
 4. The JN receives one or more packets from JCE (via the JA) that
 sets up one or more link-layer keys used to authenticate
 subsequent transmissions to peers.

 From the joining node’s perspective, minimal joining is a local
 phenomenon - the JN only interacts with the JA, and it need not know
 how far it is from the DAG root, or how to route to the JCE. Only
 after establishing one or more link-layer keys does it need to know
 about the particulars of a 6TiSCH network.

 The handshake is shown as a transaction diagram in Figure 1:

 +-----+ +----------+ +-----------+
 | JCE | | JA | | JN |
 | | | | | |
 +-----+ +----------+ +-----------+
 | | |
 | |-----------ENH BEACON (1)-->|
 | | |
 | |<--Neighbor Discovery (2)-->|
 | | |
 |<--Sec. Handshake (3a)--|---Security Handshake (3)-->|
 | | |
 |<----Join request (4a)--|---------Join request (4)---|
 | | |
 |----Join response (5a)--|--------Join response (5)-->|
 | | |

 Figure 1: Message sequence for join protocol.

 The details of each step are described in the following sections.

Vucinic, et al. Expires April 28, 2017 [Page 4]

Internet-Draft vucinic-6tisch-minimal-security October 2016

3.1. Step 1 - Enhanced Beacon

 The JN hears an EB from the JA and synchronizes itself to the joining
 schedule using the cells contained in the EB. At this point the JN
 MAY proceed to step 2, or continue to listen for additional EBs. If
 more than one EB is heard, the JN MAY use a metric based on DAG rank
 and received signal level of the EB, or other factors to decide which
 JA to use for the security handshake in step 3. Details on how a JN
 chooses the JA are out of scope of this specification.

3.2. Step 2 - Neighbor Discovery

 At this point, JN forms its link-local IPv6 address based on EUI64
 and MAY further follow the Neighbor Discovery (ND) process described
 in Section 5 of [RFC6775].

3.3. Step 3 - Security Handshake

 The security handshake between JN and JCE uses Ephemeral Diffie-
 Hellman over COSE (EDHOC) [I-D.selander-ace-cose-ecdhe] to establish
 the shared secret used to encrypt the join request and join response.

 The security handshake step is OPTIONAL in case PSKs are used, while
 it is REQUIRED for RPKs and certificates. In case the handshake step
 is omitted, the shared secret used for protection of the join request
 and join response in the next step is the PSK. This means that the
 protocol trades off perfect forward secrecy for reduced traffic load
 between JN and JCE. A consequence is that if the long-term PSK is
 compromised, keying material transferred as part of the join response
 is compromised as well. Physical compromise of the JN, however,
 would also imply the compromise of the same keying material, as it is
 likely to be found in node’s memory.

3.3.1. Pre-Shared Key

 The Diffie-Hellman key exchange and the use of EDHOC is optional,
 when using a pre-shared symmetric key. This cuts down on traffic
 between JCE and JN, but requires pre-configuration of the shared key
 on both devices.

 It is REQUIRED to use unique PSKs for each JN.

3.3.2. Asymmetric Keys

 The Security Handshake step is required, when using asymmetric keys.
 Before conducting the Diffie-Hellman key exchange using EDHOC
 [I-D.selander-ace-cose-ecdhe] the JN and JCE need to receive and

Vucinic, et al. Expires April 28, 2017 [Page 5]

Internet-Draft vucinic-6tisch-minimal-security October 2016

 validate each other’s public key certificate. When RPKs are pre-
 configured at JN and JCE, they can directly proceed to the handshake.

3.4. Step 4 - Join Request

 The join request is sent from the JN to the JA using the slot
 information from the EB, and forwarded to the JCE.

 The join request is authenticated/encrypted end-to-end using AES-CCM-
 16-64-128 algorithm from [I-D.ietf-cose-msg] and a key derived from
 the shared secret from step 3. The nonce is derived from the shared
 secret, JN’s EUI64 and a monotonically increasing counter initialized
 to 0 when first starting.

3.5. Step 5 - Join Response

 The join response is sent from the JCE to the JN through JA that
 serves as a stateless relay. Packet containing the join response
 travels on the path from JCE to JA using pre-established routes in
 the network. The JA delivers it to the JN using the slot information
 from the EB. JA operates as the application-layer proxy and does not
 keep any state to relay the message. It uses information sent in the
 clear within the join response to decide where to forward to.

 The join response is authenticated/encrypted using AES-CCM-16-64-128
 algorithm from [I-D.ietf-cose-msg] and a key derived from the shared
 secret from step 3. The nonce is derived from the shared secret,
 JN’s EUI64 and a monotonically increasing counter matching that of
 the join request.

 The join response contains one or more (per-peer) link-layer key(s)
 K2 that the JN will use for subsequent communication. It optionally
 also contains an IEEE 802.15.4 short-address [IEEE802154-2015]
 assigned to JN by JCE.

4. Protocol Specification

 The join protocol in Figure 1 is implemented over Constrained
 Application Protocol (CoAP) [RFC7252]. JN plays the role of a CoAP
 client, JCE the role of a CoAP server, while JA implements CoAP
 forward proxy functionality [RFC7252]. Since JA is likely a
 constrained device, it does not need to implement a cache but rather
 process forwarding-related CoAP options and make requests on behalf
 of JN that is not yet part of the network.

 JN and JCE MUST protect their exchange end-to-end (i.e. through the
 proxy) using Object Security of CoAP (OSCOAP)
 [I-D.ietf-core-object-security].

Vucinic, et al. Expires April 28, 2017 [Page 6]

Internet-Draft vucinic-6tisch-minimal-security October 2016

4.1. Proxy Operation of JA

 JN designates a JA as a proxy by including in the CoAP requests to
 the JA the Proxy-Scheme option with value "coap" (CoAP-to-CoAP
 proxy). JN MUST include the Uri-Host option with its value set to
 the well-known JCE’s alias - "6tisch.jce". JN does not need to learn
 the actual IPv6 address of JCE at any time during the join protocol.
 JA resolves the address by performing a GET request at "/jce"
 resource of its parent in the DODAG.

 Note that the CoAP proxy by default keeps state information in order
 to forward the response towards the originator of the request. This
 state information comprises CoAP token, but the implementations also
 need to keep track of the IPv6 address of the host, as well as the
 corresponding UDP source port number. In the setting where the proxy
 is a constrained device, as in the case of JA, this makes it prone to
 Denial of Service (DoS) attacks, due to the limited memory.

 In order to facilitate a stateless implementation of JA proxying, JN
 shall encode in the CoAP message the information necessary for the JA
 to send the response back - "origin_info". For this purpose, JN uses
 the "Context Identifier (Cid)" parameter of OSCOAP’s security context
 structure. Context Identifier is sent in clear, readable by JA, and
 MUST be echoed back in the response from JCE. This makes it possible
 to implement JA’s CoAP proxy in a stateless manner. It also allows
 JCE to look up the right security context for communication with a
 given JN.

4.1.1. Implementation of origin_info

 The origin_info is implemented as a CBOR [RFC7049] array object
 containing:

 o EUI64: JN’s EUI64 address
 o source_port: JN’s UDP source port
 o token: JN’s CoAP token

 origin_info = [
 EUI64 : bstr,
 source_port : uint,
 token : uint
]

4.2. OSCOAP Security Context Instantiation

 The OSCOAP security context MUST be derived at JN and JCE as per
 Section 3.2 of [I-D.ietf-core-object-security] using HKDF [RFC5869]
 as the key derivation function.

Vucinic, et al. Expires April 28, 2017 [Page 7]

Internet-Draft vucinic-6tisch-minimal-security October 2016

 o Context Identifier (Cid) MUST be the origin_info object wrapped as
 a byte string (bstr).
 o Algorithm MUST be set to AES-CCM-16-64-128 from
 [I-D.ietf-cose-msg]. CoAP messages are therefore protected with
 an 8-byte CCM authentication tag and the algorithm uses 13-byte
 long nonces.
 o Base key (base_key) MUST be the secret generated by the run of
 EDHOC, or the PSK in case EDHOC step was omitted.
 o Sender ID of JN MUST be set to 0x00, while the ID of JCE MUST be
 set to 0x01.

 The hash algorithm that instantiates HKDF MUST be SHA-256 [RFC4231].
 The derivation in [I-D.ietf-core-object-security] results in traffic
 keys and static IVs for each side of the conversation. Nonces are
 constructed by XOR’ing the static IV with current sequence number.
 The context derivation process occurs exactly once. Implementations
 MUST ensure that multiple CoAP requests to different JCEs result in
 the use of the same OSCOAP context so that sequence numbers are
 properly incremented for each request. This may happen in a scenario
 where there are multiple 6TiSCH networks present and the JN tries to
 join one network at a time.

4.3. Implementation of Join Request

 Join Request message SHALL be mapped to a CoAP request:

 o The request method is GET.
 o The Proxy-Scheme option is set to "coap".
 o The Uri-Host option is set to "6tisch.jce".
 o The Uri-Path option is set to "j".
 o The object security option SHALL be set according to
 [I-D.ietf-core-object-security] and OSCOAP parameters set as
 described above.

4.4. Implementation of Join Response

 If OSCOAP processing is a success, Join Response message SHALL be a
 CoAP response:

 o The response Code is 2.05 (Content).
 o The payload is a CBOR array containing, in order:

 * COSE Key Set [I-D.ietf-cose-msg]. Each key in the Key Set
 SHALL be a symmetric key. A key that is present in the Key Set
 and does not have an identifier is assumed to be "K2" link-
 layer key from [I-D.ietf-6tisch-minimal]. Parameter "kid" of
 the COSE Key structure SHALL be used to denote pair-wise keys

Vucinic, et al. Expires April 28, 2017 [Page 8]

Internet-Draft vucinic-6tisch-minimal-security October 2016

 if present, where the value SHALL be set to the address of the
 corresponding peer.
 * Optional byte string representing IEEE 802.15.4 short address
 assigned to JN. If the length of the byte string is different
 than 2 bytes, the implementation SHOULD ignore it.

 payload = [
 COSE_KeySet,
 ? short_address : bstr,
]

 In case JCE determines that JN is not supposed to join the network
 (e.g. by failing to find an appropriate security context), it should
 respond with a 4.01 Unauthorized error. Upon reception of a 4.01
 Unauthorized, JN SHALL attempt to join the next advertised 6TiSCH
 network. If all join attempts have failed at JN, JN SHOULD signal to
 the user by an out-of-band mechanism the presence of an error
 condition.

5. Link-layer requirements

 All frames in a 6TiSCH network MUST use link-layer frame security.
 The frame security options MUST include frame authentication, and MAY
 include frame encryption.

 In order for the JN to be able to validate that the Enhanced Beacon
 frame is coming from a 6TiSCH network, EB frames are authenticated at
 the link layer using CCM* per [IEEE802154-2015]. Link-layer frames
 are protected with a 16-byte key, and a 13-byte nonce constructed
 from current Absolute Slot Number (ASN) and the source (the JA for
 EBs) address, as shown in Figure 2:

 +---+
 | Address (8B or 00-padded 2B) | ASN (5B) |
 +---+

 Figure 2: Link-layer CCM* nonce construction

 The JN uses the initial key K1 [I-D.ietf-6tisch-minimal] until it is
 configured with a new link-layer key K2 as described above. JA
 SHOULD secure/verify DATA and ACKNOWLEDGMENT frames destined/
 originated at JN with K1 only during the duration of the join
 process. How JA learns whether the join process is ongoing is out of
 scope of this specification.

 As the EB itself does not contain security information, where the
 link key is known, an attacker may craft a frame that appears to be a
 valid EB, since the JN can neither know the ASN a priori nor verify

Vucinic, et al. Expires April 28, 2017 [Page 9]

Internet-Draft vucinic-6tisch-minimal-security October 2016

 the address of the JA. This permits a Denial of Service (DoS) attack
 at the JN. Beacon authentication keys are discussed in Section 5.1
 and Section 5.2.

5.1. Well-known beacon authentication key

 For zero-touch operation, where any 6TiSCH device can attempt to join
 any 6TiSCH network out of the box, a well-known EB link-layer key
 MUST be used. The value of this key is specified in
 [I-D.ietf-6tisch-minimal].

5.2. Private beacon authentication key

 Some pre-configuration MAY be done when the device is manufactured or
 designated for a specific network (i.e. the network is one-touch) or
 a network operator may not wish to allow arbitrary devices to try to
 join. A private (per-vendor, or per-installation) EB link-layer key
 MAY be used in place of a well-known key to create a private network.

6. Asymmetric Keys

 Certificates or pre-configured RPKs may be used to exchange public
 keys between the JN and JCE. The key pair is generated using
 elliptic curve secp256r1, and the certificate containing the public
 key is signed using ECDSA. The certificate itself may be a compact
 representation of an X.509 certificate, or a full X.509 certificate.
 Compact representation of X.509 certificates is out of scope of this
 specification. The certificate is signed by a root CA whose
 certificate is installed on all nodes participating in a particular
 6TiSCH network, allowing each node to validate the certificate of the
 JCE or JN as appropriate.

7. Security Considerations

 In case PSKs are used, this document mandates that JN and JCE are
 pre-configured with unique keys. The uniqueness of generated nonces
 is guaranteed under the assumption of unique EUI64 identifiers for
 each JN. Note that the address of the JCE does not take part in
 nonce construction. Therefore, even under the assumption of a PSK
 shared by a group of nodes, the nonces constructed as part of the
 different responses are unique. The design differentiates between
 nonces constructed for requests and nonces constructed for responses
 by different sender identifiers (0x00 for JN and 0x01 for JCE).

 Being a stateless relay, JA blindly forwards the join traffic into
 the network. While the exchange between JN and JA takes place over a
 shared cell, join traffic is forwarded using dedicated cells on the
 JA to JCE path. In case of distributed scheduling, the join traffic

Vucinic, et al. Expires April 28, 2017 [Page 10]

Internet-Draft vucinic-6tisch-minimal-security October 2016

 may therefore cause intermediate nodes to request additional
 bandwidth. Because the relay operation of JA is implemented at the
 application layer, JA is the only hop on the JA-6LBR path that can
 distinguish join traffic from regular IP traffic in the network. It
 is therefore permitted to implement rate limiting at JA.

 The shared nature of the "minimal" cell used for join traffic makes
 the network prone to DoS attacks by congesting the JA with bogus
 radio traffic. As such an attacker is limited by emitted radio
 power, redundancy in the number of deployed JAs alleviates the issue
 and also gives JN a possibility to use the best available link for
 join. How a network node decides to become a JA is out of scope of
 this specification.

 Because the well-known beacon authentication key does not provide any
 security, it is feasible for an attacker to generate EBs that will
 get accepted at JN. At the time of the join, JN has no means of
 verifying the content in the EB and has to accept it at "face value".
 As the join response message in such cases will either fail the
 security check or time out, JN may implement a blacklist in order to
 filter out undesired beacons and try to join the next seemingly valid
 network. The blacklist alleviates the issue but is effectively
 limited by the node’s available memory. Such bogus beacons will
 prolong the join time of JN and so the time spent in "minimal"
 [I-D.ietf-6tisch-minimal] duty cycle mode. The permitted practice is
 to use a private, per-installation beacon authentication key.

8. Privacy Considerations

 This specification relies on the uniqueness of EUI64 that is
 transferred in clear as part of the security context identifier.
 Privacy implications of using such long-term identifier are discussed
 in [RFC7721] and comprise correlation of activities over time,
 location tracking, address scanning and device-specific vulnerability
 exploitation. Since the join protocol is executed rarely compared to
 the network lifetime, long-term threats that arise from using EUI64
 are minimal. In addition, the join response message contains an
 optional short address which can be assigned by JCE to JN. Short
 address is independent of the long-term identifier EUI64 and is
 encrypted in the response. For that reason, it is not possible to
 correlate the short address with the EUI64 used during the join. Use
 of short addresses once the join protocol completes mitigates the
 aforementioned privacy risks. In addition, EDHOC may be used for
 identity protection during the join protocol by generating a random
 context identifier in place of the EUI64
 [I-D.selander-ace-cose-ecdhe].

Vucinic, et al. Expires April 28, 2017 [Page 11]

Internet-Draft vucinic-6tisch-minimal-security October 2016

9. IANA Considerations

 There is no IANA action required for this document.

10. Acknowledgments

 The work on this document has been partially supported by the
 European Union’s H2020 Programme for research, technological
 development and demonstration under grant agreement No 644852,
 project ARMOUR.

 The authors are grateful to Thomas Watteyne and Goeran Selander for
 reviewing the draft. The authors would also like to thank Francesca
 Palombini and Ludwig Seitz for participating in the discussions that
 have helped shape the document.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [I-D.ietf-cose-msg]
 Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 draft-ietf-cose-msg-20 (work in progress), October 2016.

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security of CoAP (OSCOAP)", draft-ietf-core-
 object-security-00 (work in progress), October 2016.

11.2. Informative References

Vucinic, et al. Expires April 28, 2017 [Page 12]

Internet-Draft vucinic-6tisch-minimal-security October 2016

 [RFC7554] Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using
 IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the
 Internet of Things (IoT): Problem Statement", RFC 7554,
 DOI 10.17487/RFC7554, May 2015,
 <http://www.rfc-editor.org/info/rfc7554>.

 [RFC6775] Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C.
 Bormann, "Neighbor Discovery Optimization for IPv6 over
 Low-Power Wireless Personal Area Networks (6LoWPANs)",
 RFC 6775, DOI 10.17487/RFC6775, November 2012,
 <http://www.rfc-editor.org/info/rfc6775>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <http://www.rfc-editor.org/info/rfc5869>.

 [RFC4231] Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-
 224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",
 RFC 4231, DOI 10.17487/RFC4231, December 2005,
 <http://www.rfc-editor.org/info/rfc4231>.

 [RFC7721] Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
 Considerations for IPv6 Address Generation Mechanisms",
 RFC 7721, DOI 10.17487/RFC7721, March 2016,
 <http://www.rfc-editor.org/info/rfc7721>.

 [I-D.ietf-6tisch-minimal]
 Vilajosana, X. and K. Pister, "Minimal 6TiSCH
 Configuration", draft-ietf-6tisch-minimal-16 (work in
 progress), June 2016.

 [I-D.ietf-6tisch-6top-protocol]
 Wang, Q. and X. Vilajosana, "6top Protocol (6P)", draft-
 ietf-6tisch-6top-protocol-02 (work in progress), July
 2016.

 [I-D.ietf-6tisch-terminology]
 Palattella, M., Thubert, P., Watteyne, T., and Q. Wang,
 "Terminology in IPv6 over the TSCH mode of IEEE
 802.15.4e", draft-ietf-6tisch-terminology-07 (work in
 progress), March 2016.

Vucinic, et al. Expires April 28, 2017 [Page 13]

Internet-Draft vucinic-6tisch-minimal-security October 2016

 [I-D.selander-ace-cose-ecdhe]
 Selander, G., Mattsson, J., and F. Palombini, "Ephemeral
 Diffie-Hellman Over COSE (EDHOC)", draft-selander-ace-
 cose-ecdhe-02 (work in progress), July 2016.

11.3. External Informative References

 [IEEE802154-2015]
 IEEE standard for Information Technology, "IEEE Std
 802.15.4-2015 Standard for Low-Rate Wireless Personal Area
 Networks (WPANs)", December 2015.

Appendix A. Example

 Figure 3 illustrates a join protocol exchange in case PSKs are used.
 JN instantiates the OSCOAP context and derives the traffic keys and
 nonces from the PSK. It uses the instantiated context to protect the
 CoAP request addressed with Proxy-Scheme option and well-known host
 name of JCE in the Uri-Host option. The example assumes a JA that is
 already aware of JCE’s IPv6 address and does not need to resolve the
 well-known "6tisch.jce" host name. Triggered by the presence of
 Proxy-Scheme option, JA forwards the request to the JCE. Once JCE
 receives the request, it looks up the correct context based on the
 context identifier (cid) field. It reconstructs OSCOAP’s external
 Additional Authenticated Data (AAD) needed for verification based on:

 o Version field of the received CoAP header.
 o Code field of the received CoAP header.
 o Algorithm being the AES-CCM-16-64-128 from [I-D.ietf-cose-msg].
 o Request URI reconstructed following
 [I-D.ietf-core-object-security].

 Replay protection is ensured by OSCOAP and the tracking of sequence
 numbers at each side. In the example below, the response contains
 sequence number 7 meaning that there have already been some attempts
 to join under a given context, not coming from the JN. Once JA
 receives the response, it looks up and decodes the cid field in order
 to decide where to forward it. JA constructs the CoAP response to JN
 by setting the CoAP token to the value decoded from cid and
 constructs the link-local IPv6 address of JN from the EUI64 address
 found in the cid. Note that JA does not posses the key to decrypt
 the COSE object present in the payload so the join_response object is
 opaque to it. The response is matched to the request and verified
 for replay protection at JN using OSCOAP processing rules. Namely,
 to verify the response JN reconstructs the AAD based on:

 o Version field of the received CoAP header.
 o Code field of the received CoAP header.

Vucinic, et al. Expires April 28, 2017 [Page 14]

Internet-Draft vucinic-6tisch-minimal-security October 2016

 o Algorithm being the AES-CCM-16-64-128 from [I-D.ietf-cose-msg].
 o Transaction identifier (Tid) of the corresponding CoAP request.
 Tid contains the context identifier (origin_info object), Sender
 ID (0x00 for JN), and Sender Sequence number (set to 1 in the
 example).

 In addition to AAD, JN also uses the explicit, protected fields in
 the COSE message, present in the payload of the response. For more
 details, see [I-D.ietf-core-object-security] and [I-D.ietf-cose-msg].

 <--E2E OSCOAP-->
 Client Proxy Server
 JN JA JCE
 | | |
 +----->| | Code: [0.01] (GET)
 | GET | | Token: 0x8c
 | | | Proxy-Scheme: [coap]
 | | | Uri-Host: [6tisch.jce]
 | | | Object-Security: [cid:origin_info, seq:1,
 | | | {Uri-Path:"j"},
 | | | <Tag>]
 | | | Payload: -
 | | |
 | +----->| Code: [0.01] (GET)
 | | GET | Token: 0x7b
 | | | Uri-Host: [6tisch.jce]
 | | | Object-Security: [cid:origin_info, seq:1,
 | | | {Uri-Path:"j"},
 | | | <Tag>]
 | | | Payload: -
 | | |
 | |<-----+ Code: [2.05] (Content)
 | | 2.05 | Token: 0x7b
 | | | Object-Security: -
 | | | Payload: [cid: origin_info, seq:7,
 | | | {join_response}, <Tag>]
 | | |
 |<-----+ | Code: [2.05] (Content)
 | 2.05 | | Token: 0x8c
 | | | Object-Security: -
 | | | Payload: [cid: origin_info, seq:7,
 | | | {join_response}, <Tag>]
 | | |

 Figure 3: Example of a join protocol exchange with a PSK. {} denotes
 encryption and authentication, [] denotes authentication.

Vucinic, et al. Expires April 28, 2017 [Page 15]

Internet-Draft vucinic-6tisch-minimal-security October 2016

 Where origin_info and join_response are as follows.

 origin_info:
 [
 h’00170d00060d9f0e’, / JN’s EUI64 /
 49152, / JN’s UDP source port /
 0x8c / JN’s CoAP token /
]

 Encodes to h’834800170d00060d9f0e19c000188c’ with a size of 15 bytes.

 join_response:
 [
 [/ COSE Key Set array with a single key /
 {
 1:4, / key type symmetric /
 -1:h’e6bf4287c2d7618d6a9687445ffd33e6’ / key value /
 }
],
 h’af93’ / assigned short address /
]

 Encodes to h’8281a201042050e6bf4287c2d7618d6a9687445ffd33e642af93’
 with a size of 26 bytes.

Authors’ Addresses

 Malisa Vucinic (editor)
 Inria
 2 Rue Simone Iff
 Paris 75012
 France

 Email: malisa.vucinic@inria.fr

 Jonathan Simon
 Linear Technology
 32990 Alvarado-Niles Road, Suite 910
 Union City, CA 94587
 USA

 Email: jsimon@linear.com

Vucinic, et al. Expires April 28, 2017 [Page 16]

Internet-Draft vucinic-6tisch-minimal-security October 2016

 Kris Pister
 University of California Berkeley
 490 Cory Hall
 Berkeley, California 94720
 USA

 Email: kpister@eecs.berkeley.edu

Vucinic, et al. Expires April 28, 2017 [Page 17]

