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Abstract

   This draft describes the minimal mechanisms required to support
   secure initial configuration in a device being added to a 6TiSCH
   network.  The goal of this configuration is to set link-layer keys,
   and to establish a secure session between each joining node and the
   JCE who may use that to further configure the joining device.
   Additional security behaviors and mechanisms may be added on top of
   this minimal framework.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in RFC
   2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 28, 2017.
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Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   When a previously unknown device seeks admission to a 6TiSCH
   [RFC7554] network (to "join"), it first needs to synchronize to the
   network.  The device then configures its IPv6 address and
   authenticates itself, and also validates that it is joining the right
   network.  At this point it can expect to interact with the network to
   configure its link-layer keying material.  Only then may the node
   establish an end-to-end secure session with an Internet host using
   DTLS [RFC6347] or OSCOAP [I-D.ietf-core-object-security].  Once the
   application requirements are known, the device interacts with its
   peers to request additional resources as needed, or to be
   reconfigured as the network changes [I-D.ietf-6tisch-6top-protocol].

   This document describes the mechanisms comprising a minimal feature
   set for a device to join a 6TiSCH network, up to the point where it
   can establish a secure session with an Internet host.

   It presumes a network as described by [RFC7554],
   [I-D.ietf-6tisch-6top-protocol], and [I-D.ietf-6tisch-terminology].
   It assumes the joining device pre-configured with either a:

   o  pre-shared key (PSK),
   o  raw public key (RPK),
   o  or a locally-valid certificate and a trust anchor.

   As the outcome of the join process, the joining device expects one or
   more link-layer key(s) and optionally a temporary network identifier.

2.  Terminology

   The reader is expected to be familiar with the terms and concepts
   defined in [I-D.ietf-6tisch-terminology], [RFC7252], and
   [I-D.ietf-core-object-security].  The entities participating in the
   protocol that is specified in this document are:

   o  JN: Joining node - the device attempting to join a particular
      6TiSCH network.
   o  JCE: Join coordinating entity - central entity responsible for
      authentication and authorization of joining nodes.
   o  JA: Join assistant - the device within radio range of the JN that
      generates Enhanced Beacons (EBs) and facilitates end-to-end
      communications between the JN and JCE.
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3.  Join Overview

   This section describes the steps taken by a joining node (JN) in a
   6TiSCH network.  When a previously unknown device seeks admission to
   a 6TiSCH [RFC7554] network, the following exchange occurs:

   1.  The JN listens for an Enhanced Beacon (EB) frame
       [IEEE802154-2015].  This frame provides network synchronization
       information, and tells the device when it can send a frame to the
       node sending the beacons, which plays the role of Join Assistant
       (JA) for the JN, and when it can expect to receive a frame.
   2.  The JN configures its link-local IPv6 address and advertises it
       to JA.
   3.  The JN sends packets to the JA device in order to securely
       identify itself to the network.  These packets are directed to
       the Join Coordination Entity (JCE), which may be the JA or
       another device.
   4.  The JN receives one or more packets from JCE (via the JA) that
       sets up one or more link-layer keys used to authenticate
       subsequent transmissions to peers.

   From the joining node’s perspective, minimal joining is a local
   phenomenon - the JN only interacts with the JA, and it need not know
   how far it is from the DAG root, or how to route to the JCE.  Only
   after establishing one or more link-layer keys does it need to know
   about the particulars of a 6TiSCH network.

   The handshake is shown as a transaction diagram in Figure 1:

      +-----+               +----------+              +-----------+
      | JCE |               |    JA    |              |     JN    |
      |     |               |          |              |           |
      +-----+               +----------+              +-----------+
         |                        |                            |
         |                        |-----------ENH BEACON (1)-->|
         |                        |                            |
         |                        |<--Neighbor Discovery (2)-->|
         |                        |                            |
         |<--Sec. Handshake (3a)--|---Security Handshake (3)-->|
         |                        |                            |
         |<----Join request (4a)--|---------Join request (4)---|
         |                        |                            |
         |----Join response (5a)--|--------Join response (5)-->|
         |                        |                            |

               Figure 1: Message sequence for join protocol.

   The details of each step are described in the following sections.
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3.1.  Step 1 - Enhanced Beacon

   The JN hears an EB from the JA and synchronizes itself to the joining
   schedule using the cells contained in the EB.  At this point the JN
   MAY proceed to step 2, or continue to listen for additional EBs.  If
   more than one EB is heard, the JN MAY use a metric based on DAG rank
   and received signal level of the EB, or other factors to decide which
   JA to use for the security handshake in step 3.  Details on how a JN
   chooses the JA are out of scope of this specification.

3.2.  Step 2 - Neighbor Discovery

   At this point, JN forms its link-local IPv6 address based on EUI64
   and MAY further follow the Neighbor Discovery (ND) process described
   in Section 5 of [RFC6775].

3.3.  Step 3 - Security Handshake

   The security handshake between JN and JCE uses Ephemeral Diffie-
   Hellman over COSE (EDHOC) [I-D.selander-ace-cose-ecdhe] to establish
   the shared secret used to encrypt the join request and join response.

   The security handshake step is OPTIONAL in case PSKs are used, while
   it is REQUIRED for RPKs and certificates.  In case the handshake step
   is omitted, the shared secret used for protection of the join request
   and join response in the next step is the PSK.  This means that the
   protocol trades off perfect forward secrecy for reduced traffic load
   between JN and JCE.  A consequence is that if the long-term PSK is
   compromised, keying material transferred as part of the join response
   is compromised as well.  Physical compromise of the JN, however,
   would also imply the compromise of the same keying material, as it is
   likely to be found in node’s memory.

3.3.1.  Pre-Shared Key

   The Diffie-Hellman key exchange and the use of EDHOC is optional,
   when using a pre-shared symmetric key.  This cuts down on traffic
   between JCE and JN, but requires pre-configuration of the shared key
   on both devices.

   It is REQUIRED to use unique PSKs for each JN.

3.3.2.  Asymmetric Keys

   The Security Handshake step is required, when using asymmetric keys.
   Before conducting the Diffie-Hellman key exchange using EDHOC
   [I-D.selander-ace-cose-ecdhe] the JN and JCE need to receive and
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   validate each other’s public key certificate.  When RPKs are pre-
   configured at JN and JCE, they can directly proceed to the handshake.

3.4.  Step 4 - Join Request

   The join request is sent from the JN to the JA using the slot
   information from the EB, and forwarded to the JCE.

   The join request is authenticated/encrypted end-to-end using AES-CCM-
   16-64-128 algorithm from [I-D.ietf-cose-msg] and a key derived from
   the shared secret from step 3.  The nonce is derived from the shared
   secret, JN’s EUI64 and a monotonically increasing counter initialized
   to 0 when first starting.

3.5.  Step 5 - Join Response

   The join response is sent from the JCE to the JN through JA that
   serves as a stateless relay.  Packet containing the join response
   travels on the path from JCE to JA using pre-established routes in
   the network.  The JA delivers it to the JN using the slot information
   from the EB.  JA operates as the application-layer proxy and does not
   keep any state to relay the message.  It uses information sent in the
   clear within the join response to decide where to forward to.

   The join response is authenticated/encrypted using AES-CCM-16-64-128
   algorithm from [I-D.ietf-cose-msg] and a key derived from the shared
   secret from step 3.  The nonce is derived from the shared secret,
   JN’s EUI64 and a monotonically increasing counter matching that of
   the join request.

   The join response contains one or more (per-peer) link-layer key(s)
   K2 that the JN will use for subsequent communication.  It optionally
   also contains an IEEE 802.15.4 short-address [IEEE802154-2015]
   assigned to JN by JCE.

4.  Protocol Specification

   The join protocol in Figure 1 is implemented over Constrained
   Application Protocol (CoAP) [RFC7252].  JN plays the role of a CoAP
   client, JCE the role of a CoAP server, while JA implements CoAP
   forward proxy functionality [RFC7252].  Since JA is likely a
   constrained device, it does not need to implement a cache but rather
   process forwarding-related CoAP options and make requests on behalf
   of JN that is not yet part of the network.

   JN and JCE MUST protect their exchange end-to-end (i.e. through the
   proxy) using Object Security of CoAP (OSCOAP)
   [I-D.ietf-core-object-security].
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4.1.  Proxy Operation of JA

   JN designates a JA as a proxy by including in the CoAP requests to
   the JA the Proxy-Scheme option with value "coap" (CoAP-to-CoAP
   proxy).  JN MUST include the Uri-Host option with its value set to
   the well-known JCE’s alias - "6tisch.jce".  JN does not need to learn
   the actual IPv6 address of JCE at any time during the join protocol.
   JA resolves the address by performing a GET request at "/jce"
   resource of its parent in the DODAG.

   Note that the CoAP proxy by default keeps state information in order
   to forward the response towards the originator of the request.  This
   state information comprises CoAP token, but the implementations also
   need to keep track of the IPv6 address of the host, as well as the
   corresponding UDP source port number.  In the setting where the proxy
   is a constrained device, as in the case of JA, this makes it prone to
   Denial of Service (DoS) attacks, due to the limited memory.

   In order to facilitate a stateless implementation of JA proxying, JN
   shall encode in the CoAP message the information necessary for the JA
   to send the response back - "origin_info".  For this purpose, JN uses
   the "Context Identifier (Cid)" parameter of OSCOAP’s security context
   structure.  Context Identifier is sent in clear, readable by JA, and
   MUST be echoed back in the response from JCE.  This makes it possible
   to implement JA’s CoAP proxy in a stateless manner.  It also allows
   JCE to look up the right security context for communication with a
   given JN.

4.1.1.  Implementation of origin_info

   The origin_info is implemented as a CBOR [RFC7049] array object
   containing:

   o  EUI64: JN’s EUI64 address
   o  source_port: JN’s UDP source port
   o  token: JN’s CoAP token

       origin_info = [
           EUI64 : bstr,
           source_port : uint,
           token : uint
       ]

4.2.  OSCOAP Security Context Instantiation

   The OSCOAP security context MUST be derived at JN and JCE as per
   Section 3.2 of [I-D.ietf-core-object-security] using HKDF [RFC5869]
   as the key derivation function.
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   o  Context Identifier (Cid) MUST be the origin_info object wrapped as
      a byte string (bstr).
   o  Algorithm MUST be set to AES-CCM-16-64-128 from
      [I-D.ietf-cose-msg].  CoAP messages are therefore protected with
      an 8-byte CCM authentication tag and the algorithm uses 13-byte
      long nonces.
   o  Base key (base_key) MUST be the secret generated by the run of
      EDHOC, or the PSK in case EDHOC step was omitted.
   o  Sender ID of JN MUST be set to 0x00, while the ID of JCE MUST be
      set to 0x01.

   The hash algorithm that instantiates HKDF MUST be SHA-256 [RFC4231].
   The derivation in [I-D.ietf-core-object-security] results in traffic
   keys and static IVs for each side of the conversation.  Nonces are
   constructed by XOR’ing the static IV with current sequence number.
   The context derivation process occurs exactly once.  Implementations
   MUST ensure that multiple CoAP requests to different JCEs result in
   the use of the same OSCOAP context so that sequence numbers are
   properly incremented for each request.  This may happen in a scenario
   where there are multiple 6TiSCH networks present and the JN tries to
   join one network at a time.

4.3.  Implementation of Join Request

   Join Request message SHALL be mapped to a CoAP request:

   o  The request method is GET.
   o  The Proxy-Scheme option is set to "coap".
   o  The Uri-Host option is set to "6tisch.jce".
   o  The Uri-Path option is set to "j".
   o  The object security option SHALL be set according to
      [I-D.ietf-core-object-security] and OSCOAP parameters set as
      described above.

4.4.  Implementation of Join Response

   If OSCOAP processing is a success, Join Response message SHALL be a
   CoAP response:

   o  The response Code is 2.05 (Content).
   o  The payload is a CBOR array containing, in order:

      *  COSE Key Set [I-D.ietf-cose-msg].  Each key in the Key Set
         SHALL be a symmetric key.  A key that is present in the Key Set
         and does not have an identifier is assumed to be "K2" link-
         layer key from [I-D.ietf-6tisch-minimal].  Parameter "kid" of
         the COSE Key structure SHALL be used to denote pair-wise keys
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         if present, where the value SHALL be set to the address of the
         corresponding peer.
      *  Optional byte string representing IEEE 802.15.4 short address
         assigned to JN.  If the length of the byte string is different
         than 2 bytes, the implementation SHOULD ignore it.

       payload = [
           COSE_KeySet,
           ? short_address : bstr,
       ]

   In case JCE determines that JN is not supposed to join the network
   (e.g. by failing to find an appropriate security context), it should
   respond with a 4.01 Unauthorized error.  Upon reception of a 4.01
   Unauthorized, JN SHALL attempt to join the next advertised 6TiSCH
   network.  If all join attempts have failed at JN, JN SHOULD signal to
   the user by an out-of-band mechanism the presence of an error
   condition.

5.  Link-layer requirements

   All frames in a 6TiSCH network MUST use link-layer frame security.
   The frame security options MUST include frame authentication, and MAY
   include frame encryption.

   In order for the JN to be able to validate that the Enhanced Beacon
   frame is coming from a 6TiSCH network, EB frames are authenticated at
   the link layer using CCM* per [IEEE802154-2015].  Link-layer frames
   are protected with a 16-byte key, and a 13-byte nonce constructed
   from current Absolute Slot Number (ASN) and the source (the JA for
   EBs) address, as shown in Figure 2:

               +-------------------------------------------+
               |  Address (8B or 00-padded 2B) | ASN (5B)  |
               +-------------------------------------------+

               Figure 2: Link-layer CCM* nonce construction

   The JN uses the initial key K1 [I-D.ietf-6tisch-minimal] until it is
   configured with a new link-layer key K2 as described above.  JA
   SHOULD secure/verify DATA and ACKNOWLEDGMENT frames destined/
   originated at JN with K1 only during the duration of the join
   process.  How JA learns whether the join process is ongoing is out of
   scope of this specification.

   As the EB itself does not contain security information, where the
   link key is known, an attacker may craft a frame that appears to be a
   valid EB, since the JN can neither know the ASN a priori nor verify
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   the address of the JA.  This permits a Denial of Service (DoS) attack
   at the JN.  Beacon authentication keys are discussed in Section 5.1
   and Section 5.2.

5.1.  Well-known beacon authentication key

   For zero-touch operation, where any 6TiSCH device can attempt to join
   any 6TiSCH network out of the box, a well-known EB link-layer key
   MUST be used.  The value of this key is specified in
   [I-D.ietf-6tisch-minimal].

5.2.  Private beacon authentication key

   Some pre-configuration MAY be done when the device is manufactured or
   designated for a specific network (i.e. the network is one-touch) or
   a network operator may not wish to allow arbitrary devices to try to
   join.  A private (per-vendor, or per-installation) EB link-layer key
   MAY be used in place of a well-known key to create a private network.

6.  Asymmetric Keys

   Certificates or pre-configured RPKs may be used to exchange public
   keys between the JN and JCE.  The key pair is generated using
   elliptic curve secp256r1, and the certificate containing the public
   key is signed using ECDSA.  The certificate itself may be a compact
   representation of an X.509 certificate, or a full X.509 certificate.
   Compact representation of X.509 certificates is out of scope of this
   specification.  The certificate is signed by a root CA whose
   certificate is installed on all nodes participating in a particular
   6TiSCH network, allowing each node to validate the certificate of the
   JCE or JN as appropriate.

7.  Security Considerations

   In case PSKs are used, this document mandates that JN and JCE are
   pre-configured with unique keys.  The uniqueness of generated nonces
   is guaranteed under the assumption of unique EUI64 identifiers for
   each JN.  Note that the address of the JCE does not take part in
   nonce construction.  Therefore, even under the assumption of a PSK
   shared by a group of nodes, the nonces constructed as part of the
   different responses are unique.  The design differentiates between
   nonces constructed for requests and nonces constructed for responses
   by different sender identifiers (0x00 for JN and 0x01 for JCE).

   Being a stateless relay, JA blindly forwards the join traffic into
   the network.  While the exchange between JN and JA takes place over a
   shared cell, join traffic is forwarded using dedicated cells on the
   JA to JCE path.  In case of distributed scheduling, the join traffic
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   may therefore cause intermediate nodes to request additional
   bandwidth.  Because the relay operation of JA is implemented at the
   application layer, JA is the only hop on the JA-6LBR path that can
   distinguish join traffic from regular IP traffic in the network.  It
   is therefore permitted to implement rate limiting at JA.

   The shared nature of the "minimal" cell used for join traffic makes
   the network prone to DoS attacks by congesting the JA with bogus
   radio traffic.  As such an attacker is limited by emitted radio
   power, redundancy in the number of deployed JAs alleviates the issue
   and also gives JN a possibility to use the best available link for
   join.  How a network node decides to become a JA is out of scope of
   this specification.

   Because the well-known beacon authentication key does not provide any
   security, it is feasible for an attacker to generate EBs that will
   get accepted at JN.  At the time of the join, JN has no means of
   verifying the content in the EB and has to accept it at "face value".
   As the join response message in such cases will either fail the
   security check or time out, JN may implement a blacklist in order to
   filter out undesired beacons and try to join the next seemingly valid
   network.  The blacklist alleviates the issue but is effectively
   limited by the node’s available memory.  Such bogus beacons will
   prolong the join time of JN and so the time spent in "minimal"
   [I-D.ietf-6tisch-minimal] duty cycle mode.  The permitted practice is
   to use a private, per-installation beacon authentication key.

8.  Privacy Considerations

   This specification relies on the uniqueness of EUI64 that is
   transferred in clear as part of the security context identifier.
   Privacy implications of using such long-term identifier are discussed
   in [RFC7721] and comprise correlation of activities over time,
   location tracking, address scanning and device-specific vulnerability
   exploitation.  Since the join protocol is executed rarely compared to
   the network lifetime, long-term threats that arise from using EUI64
   are minimal.  In addition, the join response message contains an
   optional short address which can be assigned by JCE to JN.  Short
   address is independent of the long-term identifier EUI64 and is
   encrypted in the response.  For that reason, it is not possible to
   correlate the short address with the EUI64 used during the join.  Use
   of short addresses once the join protocol completes mitigates the
   aforementioned privacy risks.  In addition, EDHOC may be used for
   identity protection during the join protocol by generating a random
   context identifier in place of the EUI64
   [I-D.selander-ace-cose-ecdhe].
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9.  IANA Considerations

   There is no IANA action required for this document.

10.  Acknowledgments

   The work on this document has been partially supported by the
   European Union’s H2020 Programme for research, technological
   development and demonstration under grant agreement No 644852,
   project ARMOUR.

   The authors are grateful to Thomas Watteyne and Goeran Selander for
   reviewing the draft.  The authors would also like to thank Francesca
   Palombini and Ludwig Seitz for participating in the discussions that
   have helped shape the document.

11.  References

11.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <http://www.rfc-editor.org/info/rfc7252>.

   [RFC7049]  Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
              October 2013, <http://www.rfc-editor.org/info/rfc7049>.

   [I-D.ietf-cose-msg]
              Schaad, J., "CBOR Object Signing and Encryption (COSE)",
              draft-ietf-cose-msg-20 (work in progress), October 2016.

   [I-D.ietf-core-object-security]
              Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
              "Object Security of CoAP (OSCOAP)", draft-ietf-core-
              object-security-00 (work in progress), October 2016.

11.2.  Informative References

Vucinic, et al.          Expires April 28, 2017                [Page 12]



Internet-Draft       vucinic-6tisch-minimal-security        October 2016

   [RFC7554]  Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using
              IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the
              Internet of Things (IoT): Problem Statement", RFC 7554,
              DOI 10.17487/RFC7554, May 2015,
              <http://www.rfc-editor.org/info/rfc7554>.

   [RFC6775]  Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C.
              Bormann, "Neighbor Discovery Optimization for IPv6 over
              Low-Power Wireless Personal Area Networks (6LoWPANs)",
              RFC 6775, DOI 10.17487/RFC6775, November 2012,
              <http://www.rfc-editor.org/info/rfc6775>.

   [RFC6347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
              January 2012, <http://www.rfc-editor.org/info/rfc6347>.

   [RFC5869]  Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
              Key Derivation Function (HKDF)", RFC 5869,
              DOI 10.17487/RFC5869, May 2010,
              <http://www.rfc-editor.org/info/rfc5869>.

   [RFC4231]  Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-
              224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",
              RFC 4231, DOI 10.17487/RFC4231, December 2005,
              <http://www.rfc-editor.org/info/rfc4231>.

   [RFC7721]  Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
              Considerations for IPv6 Address Generation Mechanisms",
              RFC 7721, DOI 10.17487/RFC7721, March 2016,
              <http://www.rfc-editor.org/info/rfc7721>.

   [I-D.ietf-6tisch-minimal]
              Vilajosana, X. and K. Pister, "Minimal 6TiSCH
              Configuration", draft-ietf-6tisch-minimal-16 (work in
              progress), June 2016.

   [I-D.ietf-6tisch-6top-protocol]
              Wang, Q. and X. Vilajosana, "6top Protocol (6P)", draft-
              ietf-6tisch-6top-protocol-02 (work in progress), July
              2016.

   [I-D.ietf-6tisch-terminology]
              Palattella, M., Thubert, P., Watteyne, T., and Q. Wang,
              "Terminology in IPv6 over the TSCH mode of IEEE
              802.15.4e", draft-ietf-6tisch-terminology-07 (work in
              progress), March 2016.

Vucinic, et al.          Expires April 28, 2017                [Page 13]



Internet-Draft       vucinic-6tisch-minimal-security        October 2016

   [I-D.selander-ace-cose-ecdhe]
              Selander, G., Mattsson, J., and F. Palombini, "Ephemeral
              Diffie-Hellman Over COSE (EDHOC)", draft-selander-ace-
              cose-ecdhe-02 (work in progress), July 2016.

11.3.  External Informative References

   [IEEE802154-2015]
              IEEE standard for Information Technology, "IEEE Std
              802.15.4-2015 Standard for Low-Rate Wireless Personal Area
              Networks (WPANs)", December 2015.

Appendix A.  Example

   Figure 3 illustrates a join protocol exchange in case PSKs are used.
   JN instantiates the OSCOAP context and derives the traffic keys and
   nonces from the PSK.  It uses the instantiated context to protect the
   CoAP request addressed with Proxy-Scheme option and well-known host
   name of JCE in the Uri-Host option.  The example assumes a JA that is
   already aware of JCE’s IPv6 address and does not need to resolve the
   well-known "6tisch.jce" host name.  Triggered by the presence of
   Proxy-Scheme option, JA forwards the request to the JCE.  Once JCE
   receives the request, it looks up the correct context based on the
   context identifier (cid) field.  It reconstructs OSCOAP’s external
   Additional Authenticated Data (AAD) needed for verification based on:

   o  Version field of the received CoAP header.
   o  Code field of the received CoAP header.
   o  Algorithm being the AES-CCM-16-64-128 from [I-D.ietf-cose-msg].
   o  Request URI reconstructed following
      [I-D.ietf-core-object-security].

   Replay protection is ensured by OSCOAP and the tracking of sequence
   numbers at each side.  In the example below, the response contains
   sequence number 7 meaning that there have already been some attempts
   to join under a given context, not coming from the JN.  Once JA
   receives the response, it looks up and decodes the cid field in order
   to decide where to forward it.  JA constructs the CoAP response to JN
   by setting the CoAP token to the value decoded from cid and
   constructs the link-local IPv6 address of JN from the EUI64 address
   found in the cid.  Note that JA does not posses the key to decrypt
   the COSE object present in the payload so the join_response object is
   opaque to it.  The response is matched to the request and verified
   for replay protection at JN using OSCOAP processing rules.  Namely,
   to verify the response JN reconstructs the AAD based on:

   o  Version field of the received CoAP header.
   o  Code field of the received CoAP header.
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   o  Algorithm being the AES-CCM-16-64-128 from [I-D.ietf-cose-msg].
   o  Transaction identifier (Tid) of the corresponding CoAP request.
      Tid contains the context identifier (origin_info object), Sender
      ID (0x00 for JN), and Sender Sequence number (set to 1 in the
      example).

   In addition to AAD, JN also uses the explicit, protected fields in
   the COSE message, present in the payload of the response.  For more
   details, see [I-D.ietf-core-object-security] and [I-D.ietf-cose-msg].

     <--E2E OSCOAP-->
   Client  Proxy Server
     JN     JA     JCE
      |      |      |
      +----->|      |            Code: [0.01] (GET)
      | GET  |      |           Token: 0x8c
      |      |      |    Proxy-Scheme: [coap]
      |      |      |        Uri-Host: [6tisch.jce]
      |      |      | Object-Security: [cid:origin_info, seq:1,
      |      |      |                   {Uri-Path:"j"},
      |      |      |                   <Tag>]
      |      |      |         Payload: -
      |      |      |
      |      +----->|            Code: [0.01] (GET)
      |      | GET  |           Token: 0x7b
      |      |      |        Uri-Host: [6tisch.jce]
      |      |      | Object-Security: [cid:origin_info, seq:1,
      |      |      |                   {Uri-Path:"j"},
      |      |      |                   <Tag>]
      |      |      |         Payload: -
      |      |      |
      |      |<-----+            Code: [2.05] (Content)
      |      | 2.05 |           Token: 0x7b
      |      |      | Object-Security: -
      |      |      |         Payload: [cid: origin_info, seq:7,
      |      |      |                   {join_response}, <Tag>]
      |      |      |
      |<-----+      |            Code: [2.05] (Content)
      | 2.05 |      |           Token: 0x8c
      |      |      | Object-Security: -
      |      |      |         Payload: [cid: origin_info, seq:7,
      |      |      |                   {join_response}, <Tag>]
      |      |      |

   Figure 3: Example of a join protocol exchange with a PSK. {} denotes
         encryption and authentication, [] denotes authentication.
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   Where origin_info and join_response are as follows.

   origin_info:
   [
        h’00170d00060d9f0e’, / JN’s EUI64 /
        49152, / JN’s UDP source port /
        0x8c   / JN’s CoAP token /
   ]

   Encodes to h’834800170d00060d9f0e19c000188c’ with a size of 15 bytes.

   join_response:
   [
       [   / COSE Key Set array with a single key /
           {
               1:4, / key type symmetric /
               -1:h’e6bf4287c2d7618d6a9687445ffd33e6’ / key value /
           }
       ],
       h’af93’ / assigned short address /
   ]

   Encodes to h’8281a201042050e6bf4287c2d7618d6a9687445ffd33e642af93’
   with a size of 26 bytes.
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