Abstract

This document specifies a new architecture for the forwarding of multicast data packets. It provides optimal forwarding of multicast packets through a "multicast domain". However, it does not require a protocol for explicitly building multicast distribution trees, nor does it require intermediate nodes to maintain any per-flow state. This architecture is known as "Bit Index Explicit Replication" (BIER). When a multicast data packet enters the domain, the ingress router determines the set of egress routers to which the packet needs to be sent. The ingress router then encapsulates the packet in a BIER header. The BIER header contains a bitstring in which each bit represents exactly one egress router in the domain; to forward the packet to a given set of egress routers, the bits corresponding to those routers are set in the BIER header. The procedures for forwarding a packet based on its BIER header are specified in this document. Elimination of the per-flow state and the explicit tree-building protocols results in a considerable simplification.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on March 17, 2018.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
2. The BFR Identifier and BFR-Prefix 6
3. Encoding BFR Identifiers in BitStrings 7
4. Layering .. 10
 4.1. The Routing Underlay 10
 4.2. The BIER Layer 11
 4.3. The Multicast Flow Overlay 12
5. Advertising BFR-ids and BFR-Prefixes 12
6. BIER Intra-Domain Forwarding Procedures 14
 6.1. Overview 14
 6.2. BFR Neighbors 16
 6.3. The Bit Index Routing Table 16
 6.4. The Bit Index Forwarding Table 17
 6.5. The BIER Forwarding Procedure 18
 6.6. Examples of BIER Forwarding 20
 6.6.1. Example 1 21
 6.6.2. Example 2 22
 6.7. Equal Cost Multi-path Forwarding 24
 6.7.1. Non-deterministic ECMP 24
 6.7.2. Deterministic ECMP 25
 6.8. Prevention of Loops and Duplicates 27
 6.9. When Some Nodes do not Support BIER 28
 6.10. Use of Different BitStringLengths within a Domain .. 30
 6.10.1. BitStringLength Compatibility Check 32
 6.10.2. Handling BitStringLength Mismatches 33
 6.10.3. Transitioning from One BitStringLength to Another 34
1. Introduction

This document specifies a new architecture for the forwarding of multicast data packets. The architecture provides optimal forwarding of multicast data packets through a "multicast domain". However, it does not require the use of a protocol for explicitly building multicast distribution trees, and it does not require intermediate nodes to maintain any per-flow state. This architecture is known as "Bit Index Explicit Replication" (BIER).

A router that supports BIER is known as a "Bit-Forwarding Router" (BFR). The BIER control plane protocols (see Section 4.2) run within a "BIER domain", allowing the BFRs within that domain to exchange the information needed for them to forward packets to each other using BIER.

A multicast data packet enters a BIER domain at a "Bit-Forwarding Ingress Router" (BFIR), and leaves the BIER domain at one or more "Bit-Forwarding Egress Routers" (BFERs). A BFR that receives a multicast data packet from another BFR in the same BIER domain, and forwards the packet to another BFR in the same BIER domain, will be known as a "transit BFR" for that packet. A single BFR may be a BFIR for some multicast traffic while also being a BFER for some multicast traffic and a transit BFR for some multicast traffic. In fact, for a given packet, a BFR may be a BFIR and/or a transit BFR and/or (one of) the BFER(s) for that packet.

A BIER domain may contain one or more sub-domains. Each BIER domain MUST contain at least one sub-domain, the "default sub-domain" (also denoted "sub-domain zero"). If a BIER domain contains more than one sub-domain, each BFR in the domain MUST be provisioned to know the set of sub-domains to which it belongs. Each sub-domain is identified by a sub-domain-id in the range [0, 255].

For each sub-domain to which a given BFR belongs, if the BFR is capable of acting as a BFIR or a BFER, it MUST be provisioned with a "BFR-id" that is unique within the sub-domain. A BFR-id is a small
unstructured positive integer. For instance, if a particular BIER sub-domain contains 1,374 BFRs, each one could be given a BFR-id in the range 1-1374.

If a given BFR belongs to more than one sub-domain, it may (though it need not) have a different BFR-id for each sub-domain.

When a multicast packet arrives from outside the domain at a BFIR, the BFIR determines the set of BFERs to which the packet will be sent. The BFIR also determines the sub-domain in which the packet will be sent. Determining the sub-domain in which a given packet will be sent is known as "assigning the packet to a sub-domain". Procedures for choosing the sub-domain to which a particular packet is assigned are outside the scope of this document. However, once a particular packet has been assigned to a particular sub-domain, it remains assigned to that sub-domain until it leaves the BIER domain. That is, the sub-domain to which a packet is assigned MUST NOT be changed while the packet is in flight through the BIER domain.

Once the BFIR determines sub-domain and the set of BFERs for a given packet, the BFIR encapsulates the packet in a "BIER header". The BIER header contains a bit string in which each bit represents a single BFR-id. To indicate that a particular BFER is to receive a given packet, the BFIR sets the bit corresponding to that BFER's BFR-id in the sub-domain to which the packet has been assigned. We will use term "BitString" to refer to the bit string field in the BIER header. We will use the term "payload" to refer to the packet that has been encapsulated. Thus a "BIER-encapsulated" packet consists of a "BIER header" followed by a "payload".

The number of BFERs to which a given packet can be forwarded is limited only by the length of the BitString in the BIER header. Different deployments can use different BitString lengths. We will use the term "BitStringLength" to refer to the number of bits in the BitString. It is possible that some deployment will have more BFERs in a given sub-domain than there are bits in the BitString. To accommodate this case, the BIER encapsulation includes both the BitString and a "Set Identifier" (SI). It is the BitString and the SI together that determine the set of BFERs to which a given packet will be delivered:

- by convention, the least significant (rightmost) bit in the BitString is "bit 1", and the most significant (leftmost) bit is "bit BitStringLength".

- if a BIER-encapsulated packet has an SI of n, and a BitString with bit k set, then the packet must be delivered to the BFER whose
BFR-id (in the sub-domain to which the packet has been assigned) is \(n \times \text{BitStringLength} + k \).

For example, suppose the BIER encapsulation uses a \(\text{BitStringLength} \) of 256 bits. By convention, the least significant (rightmost) bit is "bit 1", and the most significant (leftmost) bit is "bit 256". Suppose that a given packet has been assigned to sub-domain 0, and needs to be delivered to three BFERs, where those BFERs have BFR-ids in sub-domain 0 of 13, 126, and 235 respectively. The BFIR would create a BIER encapsulation with the SI set to zero, and with bits 13, 126, and 235 of the BitString set. (All other bits of the BitString would be clear.) If the packet also needs to be sent to a BFER whose BFR-id is 257, the BFIR would have to create a second copy of the packet, and the BIER encapsulation would specify an SI of 1, and a BitString with bit 1 set and all the other bits clear.

It is generally advantageous to assign the BFR-ids of a given sub-domain so that as many BFERs as possible can be represented in a single bit string.

Suppose a BFR, call it BFR-A, receives a packet whose BIER encapsulation specifies an SI of 0, and a BitString with bits 13, 26, and 235 set. Suppose BFR-A has two BFR neighbors, BFR-B and BFR-C, such that the best path to BFERs 13 and 26 is via BFR-B, but the best path to BFER 235 is via BFR-C. Then BFR-A will replicate the packet, sending one copy to BFR-B and one copy to BFR-C. However, BFR-A will clear bit 235 in the BitString of the packet copy it sends to BFR-B, and will clear bits 13 and 26 in the BitString of the packet copy it sends to BFR-C. As a result, BFR-B will forward the packet only towards BFERs 13 and 26, and BFR-C will forward the packet only towards BFER 235. This ensures that each BFER receives only one copy of the packet.

Detailed procedures for forwarding a BIER-encapsulated packet through a BIER domain can be found in Section 6.

With this forwarding procedure, a multicast data packet can follow an optimal path from its BFIR to each of its BFERs. Further, since the set of BFERs for a given packet is explicitly encoded into the BIER header, the packet is not sent to any BFER that does not need to receive it. This allows for optimal forwarding of multicast traffic. This optimal forwarding is achieved without any need for transit BFRs to maintain per-flow state, or to run a multicast tree-building protocol.

The idea of encoding the set of egress nodes into the header of a multicast packet is not new. For example, [Boivie_Feldman] proposes to encode the set of egress nodes as a set of IP addresses, and
proposes mechanisms and procedures that are in some ways similar to those described in the current document. However, since BIER encodes each BFR-id as a single bit in a bit string, it can represent up to 128 BFERs in the same number of bits that it would take to carry the IPv6 address of a single BFER. Thus BIER scales to a much larger number of egress nodes per packet.

BIER does not require that each transit BFR look up the best path to each BFER that is identified in the BIER header; the number of lookups required in the forwarding path for a single packet can be limited to the number of neighboring BFRs; this can be much smaller than the number of BFERs. See Section 6 (especially Section 6.4) for details.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

2. The BFR Identifier and BFR-Prefix

Each BFR MUST be assigned a single "BFR-Prefix" for each sub-domain to which it belongs. A BFR’s BFR-Prefix MUST be an IP address (either IPv4 or IPv6) of the BFR. It is RECOMMENDED that the BFR-prefix be a loopback address of the BFR.

If a BFR belongs to more than one sub-domain, it may (though it need not) have a different BFR-prefix in each sub-domain.

All BFR-Prefixes used within a given sub-domain MUST belong to the same address family (either IPv4 or IPv6).

The BFR-prefix of a given BFR in a given sub-domain MUST be routable in that sub-domain. Whether a particular BFR-Prefix is routable in a given sub-domain depends on the "routing underlay" associated with that sub-domain. The notion of "routing underlay" is described in Section 4.1.

A "BFR Identifier" (BFR-id) is a number in the range \([1,65535]\). Within a given sub-domain, every BFR that may need to function as a BFIR or BFER MUST have a single BFR-id, which identifies it uniquely within that sub-domain. A BFR that does not need to function as a BFIR or BFER in a given sub-domain does not need to have a BFR-id in that sub-domain.

The value 0 is not a legal BFR-id.

The procedure for assigning a particular BFR-id to a particular BFR is outside the scope of this document. However, it is RECOMMENDED
that the BFR-ids for each sub-domain be assigned "densely" from the
numbering space, as this will result in a more efficient encoding
(see Section 3). That is, if there are 256 or fewer BFERs, it is
RECOMMENDED to assign all the BFR-ids from the range [1,256]. If
there are more than 256 BFERs, but less than 512, it is RECOMMENDED
to assign all the BFR-ids from the range [1,512], with as few "holes"
as possible in the earlier range. However, in some deployments, it
may be advantageous to depart from this recommendation; this is
discussed further in Section 3.

In some deployments, it may not be possible to support (in a given
sub-domain) the full range of 65535 BFR-ids. For example, if the
BFRs in a given sub-domain only support 16 SIs and if they only
support BitStringLengths of 256 or less, then only 16*256=4096
BFR-ids can be supported in that sub-domain.

3. Encoding BFR Identifiers in BitStrings

To encode a BFR-id in a BIER data packet, one must convert the BFR-id
to an SI and a BitString. This conversion depends upon the parameter
we are calling "BitStringLength". The conversion is done as follows. If
the BFR-id is N, then

- SI is the integer part of the quotient (N-1)/BitStringLength
- The BitString has one bit position set. If the low-order bit is
 bit 1, and the high-order bit is bit BitStringLength, the bit
 position that represents BFR-id N is
 ((N-1) modulo BitStringLength)+1.

If several different BFR-ids all resolve to the same SI, then all
those BFR-ids can be represented in a single BitString. The
BitStrings for all of those BFR-ids are combined using a bitwise
logical OR operation.

Within a given BIER domain (or even within a given BIER sub-domain),
different values of BitStringLength may be used. Each BFR MUST be
provisioned to know the following:

- the BitStringLength ("Imposition BitStringLength") and sub-domain
 ("Imposition sub-domain") to use when it imposes (as a BFIR) a
 BIER encapsulation on a particular set of packets, and

- the BitStringLengths ("Disposition BitStringLengths") that it will
 process when (as a BFR or BFER) it receives packets from a
 particular sub-domain.
It is not required that a BFIR use the same Imposition BitStringLength or the same Imposition sub-domain for all packets on which it imposes the BIER encapsulation. However, if a particular BFIR is provisioned to use a particular Imposition BitStringLength and a particular Imposition sub-domain when imposing the encapsulation on a given set of packets, all other BFRs with BFR-ids in that sub-domain SHOULD be provisioned to process received BIER packets with that BitStringLength (i.e., all other BFRs with BFR-ids in that sub-domain SHOULD be provisioned with that BitStringLength as a Disposition BitStringLength for that sub-domain. Exceptions to this rule MAY be made under certain conditions; this is discussed in Section 6.10.

When a BIER encapsulation is specified, the specification MUST define a default BitStringLength for the encapsulation. Every BFIR supporting that encapsulation MUST be capable of being provisioned with that default BitStringLength as its Imposition BitStringLength. Every BFR and BFER supporting that encapsulation MUST be capable of being provisioned with that default BitStringLength as a Disposition BitStringLength.

The specification of a BIER encapsulation MAY also allow the use of other BitStringLengths.

If a BFR is capable of being provisioned with a given value of BitStringLength as an Imposition BitStringLength, it MUST also be capable of being provisioned with that same value as one of its Disposition BitStringLengths. It SHOULD be capable of being provisioned with all legal smaller values of BitStringLength as both Imposition and Disposition BitStringLength.

In order to support transition from one BitStringLength to another, every BFR MUST be capable of being provisioned to simultaneously use two different Disposition BitStringLengths.

A BFR MUST support SI values in the range \([0,15]\), and MAY support SI values in the range \([0,255]\). ("Supporting the values in a given range" means, in this context, that any value in the given range is legal, and will be properly interpreted.) Note that for a given BitStringLength, the total number of BFR-ids that can be represented is the product of the BitStringLength and the number of supported SIs. For example, if a deployment uses (in a given sub-domain) a BitStringLength of 64 and supports 256 SIs, that deployment can only support 16384 BFR-ids in that sub-domain. Even a deployment that supports 256 SIs will not be able to support 65535 BFR-ids unless it uses a BitStringLength of at least 256.
When a BFIR determines that a multicast data packet, assigned to a given sub-domain, needs to be forwarded to a particular set of destination BFERs, the BFIR partitions that set of BFERs into subsets, where each subset contains the target BFERs whose BFR-ids in the given sub-domain all resolve to the same SI. Call these the "SI-subsets" for the packet. Each SI-subset can be represented by a single BitString. The BFIR creates a copy of the packet for each SI-subset. The BIER encapsulation is then applied to each packet. The encapsulation specifies a single SI for each packet, and contains the BitString that represents all the BFR-ids in the corresponding SI-subset. Of course, in order to properly interpret the BitString, it must be possible to infer the sub-domain-id from the encapsulation as well.

Suppose, for example, that a BFIR determines that a given packet needs to be forwarded to three BFERs, whose BFR-ids (in the appropriate sub-domain) are 27, 235, and 497. The BFIR will have to forward two copies of the packet. One copy, associated with SI=0, will have a BitString with bits 27 and 235 set. The other copy, associated with SI=1, will have a BitString with bit 241 set.

In order to minimize the number of copies that must be made of a given multicast packet, it is RECOMMENDED that the BFR-ids used in a given sub-domain be assigned "densely" (see Section 2) from the numbering space. This will minimize the number of SIs that have to be used in that sub-domain. However, depending upon the details of a particular deployment, other assignment methods may be more advantageous. Suppose, for example, that in a certain deployment, every multicast flow is either intended for the "east coast" or for the "west coast". In such a deployment, it would be advantageous to assign BFR-ids so that all the "west coast" BFR-ids fall into the same SI-subset, and so that all the "east coast" BFR-ids fall into the same SI-subset.

When a BFR receives a BIER data packet, it will infer the SI from the encapsulation. The set of BFERs to which the packet needs to be forwarded can then be inferred from the SI and the BitString.

In some of the examples given later in this document, we will use a BitStringLength of 4, and will represent a BFR-id in the form "SI:xyzw", where SI is the Set Identifier of the BFR-id (assuming a BitStringLength of 4), and xyzw is a string of 4 bits. A BitStringLength of 4 is used only in the examples; we would not expect actual deployments to have such a small BitStringLength.

It is possible that several different forms of BIER encapsulation will be developed. If so, the particular encapsulation that is used in a given deployment will depend on the type of network.
infrastructure that is used to realize the BIER domain. Details of the BIER encapsulation(s) will be given in companion documents. An encapsulation for use in MPLS networks is described in [MPLS_BIER_ENCAPS]; that document also describes a very similar encapsulation that can be used in non-MPLS networks.

4. Layering

It is helpful to think of the BIER architecture as consisting of three layers: the "routing underlay", the "BIER layer", and the "multicast flow overlay".

4.1. The Routing Underlay

The "routing underlay" establishes "adjacencies" between pairs of BFRs, and determines one or more "best paths" from a given BFR to a given set of BFRs. Each such path is a sequence of BFRs <BFR(k), BFR(k+1), ..., BFR(k+n)> such that BFR(k+j) is "adjacent" to BFR(k+j+1) (for 0\leq j<n).

At a given BFR, say BFR-A, for every IP address that is the address of a BFR in the BIER domain, the routing underlay will map that IP address into a set of one or more "equal cost" adjacencies. If a BIER data packet has to be forwarded by BFR-A to a given BFER, say BFER-B, the packet will follow the path from BFR-A to BFER-B that is determined by the routing underlay.

It is expected that in a typical deployment, the routing underlay will be the default topology that the Interior Gateway Protocol (IGP), e.g., OSPF, uses for unicast routing. In that case, the underlay adjacencies are just the OSPF adjacencies. A BIER data packet traveling from BFR-A to BFER-B will follow the path that OSPF has selected for unicast traffic from BFR-A to BFER-B.

If one wants to have multicast traffic from BFR-A to BFER-B travel a path that is different from the path used by the unicast traffic from A to B, one can use a different underlay. For example, if multi-topology OSPF is being used, one OSPF topology could be used for unicast traffic, and the other for multicast traffic. (Each topology would be considered to be a different underlay.) Alternatively, one could deploy a routing underlay that creates a multicast-specific tree of some sort. Then BIER could be used to forward multicast data packets along the multicast-specific tree, while unicast packets follow the "ordinary" OSPF best path. (In a case like this, many multicast flows could be traveling along a single tree, and the BitString carried by a particular packet would identify those nodes of the tree that need to receive that packet.) It is even possible to have multiple routing underlays used by BIER, as long as one can...
infer from a data packet’s BIER encapsulation which underlay is being used for that packet.

If multiple routing underlays are used in a single BIER domain, each BIER sub-domain MUST be associated with a single routing underlay. (Though multiple sub-domains may be associated with the same routing underlay.) A BFR that belongs to multiple sub-domains MUST be provisioned to know which routing underlay is used by each sub-domain. By default (i.e., in the absence of any provisioning to the contrary), each sub-domain uses the default topology of the unicast IGP as the routing underlay.

In scenarios where EBGP is used as the IGP, the underlay adjacencies, by default, are the BGP adjacencies.

Specification of the protocol and procedures of the routing underlay is outside the scope of this document.

4.2. The BIER Layer

The BIER layer consists of the protocol and procedures that are used in order to transmit a multicast data packet across a BIER domain, from its BFIR to its BFERs. This includes the following components:

- Protocols and procedures that a given BFR uses to advertise, to all other BFRs in the same BIER domain:
 * its BFR-prefix;
 * its BFR-id in each sub-domain for which it has been provisioned with a BFR-id;
 * the set of Disposition BitStringLengths it has been provisioned to use for each sub-domain;
 * optionally, information about the routing underlay associated with each sub-domain.

- The procedures used by a BFIR to impose a BIER header on a multicast data packet.

- The procedures for forwarding BIER-encapsulated packets, and for modifying the BIER header during transit.

- The procedures used by a BFER to decapsulate a BIER packet and properly dispatch it.
4.3. The Multicast Flow Overlay

The "multicast flow overlay" consists of the set of protocols and procedures that enable the following set of functions.

- When a BFIR receives a multicast data packet from outside the BIER domain, the BFIR must determine the set of BFERs for that packet. This information is provided by the multicast flow overlay.
- When a BFER receives a BIER-encapsulated packet from inside the BIER domain, the BFER must determine how to further forward the packet. This information is provided by the multicast flow overlay.

For example, suppose the BFIR and BFERs are Provider Edge (PE) routers providing Multicast Virtual Private Network (MVPN) service. The multicast flow overlay consists of the protocols and procedures described in [RFC6513] and [RFC6514]. The MVPN signaling described in those RFCs enables an ingress PE to determine the set of egress PEs for a given multicast flow (or set of flows); it also enables an egress PE to determine the "Virtual Routing and Forwarding Tables" (VRFs) to which multicast packets from the backbone network should be sent. MVPN signaling also has several components that depend on the type of "tunneling technology" used to carry multicast data through the network. Since BIER is, in effect, a new type of "tunneling technology", some extensions to the MVPN signaling are needed in order to properly interface the multicast flow overlay with the BIER layer. These are specified in [BIER-MVPN].

MVPN is just one example of a multicast flow overlay. Protocols and procedures for other overlays will be provided in companion documents. It is also possible to implement the multicast flow overlay by means of a "Software Defined Network" (SDN) controller. Specification of the protocols and procedures of the multicast flow overlay is outside the scope of this document.

5. Advertising BFR-ids and BFR-Prefixes

As stated in Section 2, each BFER is assigned (by provisioning) a BFR-id (for a given BIER sub-domain). Each BFER must advertise these assignments to all the other BFRs in the domain. Similarly, each BFR is assigned (by provisioning) a BFR-prefix (for a given BIER domain), and must advertise this assignment to all the other BFRs in the domain. Finally, each BFR has been provisioned to use a certain set of Disposition BitStringLengths for each sub-domain, and must advertise these to all other BFRs in the domain.
If the BIER domain is also a link state routing IGP domain (i.e., an OSPF or IS-IS domain), the advertisement of the BFR-prefix, <sub-domain-id,BFR-id> and BitStringLength can be done using the advertisement capabilities of the IGP. For example, if a BIER domain is also an OSPF domain, these advertisements can be done using the OSPF "Opaque Link State Advertisement" (Opaque LSA) mechanism. Details of the necessary extensions to OSPF and IS-IS will be provided in companion documents. (See [OSPF_BIER_EXTENSIONS] and [ISIS_BIER_EXTENSIONS].)

If, in a particular deployment, the BIER domain is not an OSPF or ISIS domain, procedures suitable to the deployment must be used to advertise this information. Details of the necessary procedures will be provided in companion documents. For example, if BGP is the only routing algorithm used in the BIER domain, the procedures of [BGP_BIER_EXTENSIONS] may be used.

These advertisements enable each BFR to associate a given <sub-domain-id, BFR-id> with a given BFR-prefix. As will be seen in subsequent sections of this document, knowledge of this association is an important part of the forwarding process.

Since each BFR needs to have a unique (in each sub-domain) BFR-id, two different BFRs will not advertise ownership of the same <sub-domain-id, BFR-id> unless there has been a provisioning error.

- If BFR-A determines that BFR-B and BFR-C have both advertised the same BFR-id for the same sub-domain, BFR-A MUST log an error. Suppose that the duplicate BFR-id is "N". When BFR-A is functioning as a BFIR, it MUST NOT encode the BFR-id value N in the BIER encapsulation of any packet that has been assigned to the given sub-domain, even if it has determined that the packet needs to be received by BFR-B and/or BFR-C.

 This will mean that BFR-B and BFR-C cannot receive multicast traffic at all in the given sub-domain until the provisioning error is fixed. However, that is preferable to having them receive each other’s traffic.

- If BFR-A has been provisioned with BFR-id N for a particular sub-domain, has not yet advertised its ownership of BFR-id N for that sub-domain, but has received an advertisement from a different BFR (say BFR-B) that is advertising ownership of BFR-id N for the same sub-domain, then BFR-A SHOULD log an error, and MUST NOT advertise its own ownership of BFR-id N for that sub-domain as long as the advertisement from BFR-B is extant.
This procedure may prevent the accidental misconfiguration of a new BFR from impacting an existing BFR.

If a BFR advertises that it has a BFR-id of 0 in a particular sub-domain, other BFRs receiving the advertisement MUST interpret that advertisement as meaning that the advertising BFR does not have a BFR-id in that sub-domain.

6. BIER Intra-Domain Forwarding Procedures

This section specifies the rules for forwarding a BIER-encapsulated data packet within a BIER domain. These rules are not intended to specify an implementation strategy; to conform to this specification, an implementation need only produce the same results that these rules produce.

6.1. Overview

This section provides a brief overview of the BIER forwarding procedures. Subsequent sub-sections specify the procedures in more detail.

To forward a BIER-encapsulated packet:

1. Determine the packet’s sub-domain.

2. Determine the packet’s BitStringLength and BitString.

3. Determine the packet’s SI.

4. From the sub-domain, the SI and the BitString, determine the set of destination BFERs for the packet.

5. Using information provided by the routing underlay associated with the packet’s sub-domain, determine the next hop adjacency for each of the destination BFERs.

6. It is possible that the packet’s BitString will have one or more bits that correspond to BFR-ids that are not in use. It is also possible that the packet’s BitString will have one or more bits that correspond to BFERs that are unreachable, i.e., that have no next hop adjacency. In the following, we will consider the "next hop adjacency" for all such bit positions to be the "null" next hop.

7. Partition the set of destination BFERs such that all the BFERs in a single partition have the same next hop. We will say that each partition is associated with a next hop.
8. For each partition:

 a. Make a copy of the packet.

 b. Clear any bit in the packet’s BitString that identifies a
 BFER that is not in the partition.

 c. Transmit the packet to the associated next hop. (If the next
 hop is the null next hop, the packet is discarded.)

If a BFR receives a BIER-encapsulated packet whose <sub-domain, SI, BitString> triple identifies that BFR itself, then the BFR is also a
BFER for that packet. As a BFER, it must pass the payload to the
multicast flow overlay. If the BitString has bits set for other
BFRs, the packet also needs to be forwarded further within the BIER
domain. If the BF(E)R also forwards one or more copies of the packet
within the BIER domain, the bit representing the BFR’s own BFR-id
MUST be clear in all the copies.

When BIER on a BFER is to pass a packet to the multicast flow
overlay, it of course decapsulates the packet by removing the BIER
header. However, it may be necessary to provide the multicast flow
overlay with contextual information obtained from the BIER
encapsulation. The information that needs to pass between the BIER
layer and the multicast flow overlay is specific to the multicast
flow overlay. Specification of the interaction between the BIER
layer and the multicast flow overlay is outside the scope of this
specification.

If the BIER encapsulation contains a "Time to Live" (TTL) value, this
value is not, by default, inherited by the payload. If a particular
multicast flow overlay needs to know the TTL value, this needs to be
specified in whatever specification defines the interaction between
BIER and that multicast flow overlay.

If the BIER encapsulation contains a Traffic Class field, a Type of
Service field, a Differentiated Services field, or any field of that
sort, the value of that field is not, by default, passed to the
multicast flow overlay. If a particular multicast flow overlay needs
to know the values of such fields, this fact needs to be specified in
whatever specification defines the interaction between BIER and that
multicast flow overlay.

When BIER on a BFER passes a packet to the multicast flow overlay,
the overlay will determine how to further dispatch the packet. If
the packet needs to be forwarded into another BIER domain, then the
BFR will act as a BFER in one BIER domain and as a BFIR in another.
A BIER-encapsulated packet cannot pass directly from one BIER domain
to another; at the boundary between BIER domains, the packet must be
decapsulated and passed to the multicast flow overlay.

Note that when a BFR transmits multiple copies of a packet within a
BIER domain, only one copy will be destined to any given BFER.
Therefore it is not possible for any BIER-encapsulated packet to be
delivered more than once to any BFER.

6.2. BFR Neighbors

The "BFR Neighbors" (BFR-NBRs) of a given BFR, say BFR-A, are those
BFRs that, according to the routing underlay, are adjacencies of
BFR-A. Each BFR-NBR will have a BFR-prefix.

Suppose a BIER-encapsulated packet arrives at BFR-A. From the
packet's encapsulation, BFR-A learns the sub-domain of the packet,
and the BFR-ids (in that sub-domain) of the BFERs to which the packet
is destined. Then using the information advertised per Section 5,
BFR-A can find the BFR-prefix of each destination BFER. Given the
BFR-prefix of a particular destination BFER, say BFER-D, BFR-A learns
from the routing underlay (associated with the packet’s sub-domain)
an IP address of the BFR that is the next hop on the path from BFR-A
to BFER-D. Let’s call this next hop BFR-B. BFR-A must then
determine the BFR-prefix of BFR-B. (This determination can be made
from the information advertised per Section 5.) This BFR-prefix is
the BFR-NBR of BFR-A on the path from BFR-A to BFER-D.

Note that if the routing underlay provides multiple equal cost paths
from BFR-A to BFER-D, BFR-A may have multiple BFR-NBRs for BFER-D.

Under certain circumstances, a BFR may have adjacencies (in a
particular routing underlay) that are not BFRs. Please see
Section 6.9 for a discussion of how to handle those circumstances.

6.3. The Bit Index Routing Table

The Bit Index Routing Table (BIRT) is a table that maps from the
BFR-id (in a particular sub-domain) of a BFER to the BFR-prefix of
that BFER, and to the BFR-NBR on the path to that BFER.

```
  ( A ) ------------ ( B ) ------------ ( C ) ------------ ( D )
    4 (0:1000)        \              \            1 (0:0001)
                     \              \             
                ( E )        3 (0:0100)       ( F )
                                \                2 (0:0010)
```

Figure 1: BIER Topology 1
As an example, consider the topology shown in Figure 1. In this diagram, we represent the BFR-id of each BFR in the SI:xyzw form discussed in Section 3. This topology will result in the BIRT of Figure 2 at BFR-B. The first column shows the BFR-id as a number and also (in parentheses) in the SI:BitString format that corresponds to a BitStringLength of 4. (The actual minimum BitStringLength is 64, but we use 4 in the examples.)

Note that a BIRT is specific to a particular BIER sub-domain.

<table>
<thead>
<tr>
<th>BFR-id (SI:BitString)</th>
<th>BFR-Prefix of Dest BFER</th>
<th>BFR-NBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (0:1000)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1 (0:0001)</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>3 (0:0100)</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>2 (0:0010)</td>
<td>F</td>
<td>C</td>
</tr>
</tbody>
</table>

Figure 2: Bit Index Routing Table at BFR-B

6.4. The Bit Index Forwarding Table

The "Bit Index Forwarding Table" (BIFT) is derived from the BIRT as follows. (Note that a BIFT is specific to a particular sub-domain.)

Suppose that several rows in the BIRT have the same SI and the same BFR-NBR. By taking the logical OR of the BitStrings of those rows, we obtain a bit mask that corresponds to that combination of SI and BFR-NBR. We will refer to this bit mask as the "Forwarding Bit Mask" (F-BM) for that <SI,BFR-NBR> combination.

For example, in Figure 2, we see that two of the rows have the same SI (0) and same BFR-NBR (C). The Bit Mask that corresponds to <SI=0, BFR-NBR-C> is 0011 ("0001" OR'd with "0010").

The BIFT is used to map from the BFR-id of a BFER to the corresponding F-BM and BFR-NBR. For example, Figure 3 shows the BIFT that is derived from the BIRT of Figure 2. Note that BFR-ids 1 and 2 have the same SI and the same BFR-NBR, hence they have the same F-BM.
This Bit Index Forwarding Table (BIFT) is programmed into the data-plane and used to forward packets, applying the rules specified below in Section 6.5.

6.5. The BIER Forwarding Procedure

Below is the procedure that a BFR uses for forwarding a BIER-encapsulated packet.

1. Determine the packet’s SI, BitStringLength, and sub-domain.

2. If the BitString consists entirely of zeroes, discard the packet; the forwarding process has been completed. Otherwise proceed to step 3.

3. Find the position, call it "k", of the least significant (i.e., of the rightmost) bit that is set in the packet’s BitString. (Remember, bits are numbered from 1, starting with the least significant bit.)

4. If bit k identifies the BFR itself, copy the packet, and send the copy to the multicast flow overlay. Then clear bit k in the original packet, and go to step 2. Otherwise, proceed to step 5.

5. Use the value k, together with the SI, sub-domain, and BitStringLength, as the ‘index’ into the BIFT.

6. Extract from the BIFT the F-BM and the BFR-NBR.

7. Copy the packet. Update the copy’s BitString by AND’ing it with the F-BM (i.e., PacketCopy->BitString &= F-BM). Then forward the copy to the BFR-NBR. (If the BFR-NBR is null, the copy is just discarded.) Note that when a packet is forwarded to a particular
BFR-NBR, its BitString identifies only those BFERs that are to be reached via that BFR-NBR.

8. Now update the original packet’s BitString by AND’ing it with the inverse of the F-BM (i.e., Packet->Bitstring &= ¬F-BM). (This clears the bits that identify the BFERs to which a copy of the packet has just been forwarded.) Go to step 2.

This procedure causes the packet to be forwarded to a particular BFR-NBR only once. The number of lookups in the BIFT is the same as the number of BFR-NBRs to which the packet must be forwarded; it is not necessary to do a separate lookup for each destination BFER.

When a packet is sent to a particular BFR-NBR, the BitString is not the only part of the BIER header that needs to be modified. If there is a TTL field in the BIER header, it will need to be decremented. In addition, when either of the encodings of [MPLS_BIER_ENCAPS] is used, the BIFT-id field is likely to require modification, based on signaling from the BFR-NBR to which the packet is being sent. The BIFT-id field of an incoming BIER packet implicitly identifies a Set Identifier, a Sub-Domain and a BitStringLength. If the packet is sent to a particular BFR-NBR, the BIFT-id field must be changed to whatever value that BFR-NBR has advertised for the same Set Identifier, Sub-Domain, and BitStringLength. (If the encapsulation of Section 2.1 of [MPLS_BIER_ENCAPS] is used, this is essentially an MPLS label swap operation.)

Suppose it has been decided (by the above rules) to send a packet to a particular BFR-NBR. If that BFR-NBR is connected via multiple parallel interfaces, it may be desirable to apply some form of load balancing. Load balancing algorithms are outside the scope of this document. However, if the packet’s encapsulation contains an “entropy” field, the entropy field SHOULD be respected; two packets with the same value of the entropy field SHOULD be sent on the same interface (if possible).

In some cases, the routing underlay may provide multiple equal cost paths (through different BFR-NBRs) to a given BFER. This is known as "Equal Cost Multiple Paths" (ECMP). The procedures described in this section must be augmented in order to support load balancing over ECMP. The necessary augmentations can be found in Section 6.7.

In the event that unicast traffic to the BFR-NBR is being sent via a "bypass tunnel" of some sort, the BIER-encapsulated multicast traffic send to the BFR-NBR SHOULD also be sent via that tunnel. This allows any existing "Fast Reroute" schemes to be applied to multicast traffic as well as to unicast traffic.
Some examples of these forwarding procedures can be found in Section 6.6.

The rules given in this section can be represented by the following pseudocode:

```c
void ForwardBitMaskPacket (Packet)
{
    SI=GetPacketSI(Packet);
    Offset=SI*BitStringLength;
    for (Index = GetFirstBitPosition(Packet->BitString); Index ;
            Index = GetNextBitPosition(Packet->BitString, Index)) {
        F-BM = BIFT[Index+Offset]->F-BM;
        if (!F-BM) continue;
        BFR-NBR = BIFT[Index+Offset]->BFR-NBR;
        PacketCopy = Copy(Packet);
        PacketCopy->BitString &= F-BM;
        PacketSend(PacketCopy, BFR-NBR);
        Packet->BitString &= ~F-BM;
    }
}
```

Figure 4: Pseudocode

This pseudocode assumes that at a given BFER, the BFR-NBR entry corresponding to the BFER’s own BFR-id will be the BFER’s own BFR-prefix. It also assumes that the corresponding F-BM has only one bit set, the bit representing the BFER itself. In this case, the "PacketSend" function sends the packet to the multicast flow overlay.

This pseudocode also assumes that the F-BM for the null next hop contains a 1 in a given bit position if and only if that bit position corresponds either to an unused BFR-id or to an unreachable BFER. When the BFR-NBR is null, the "PacketSend" function discards the packet.

6.6. Examples of BIER Forwarding

In this section, we give two examples of BIER forwarding, based on the topology in Figure 1. In these examples, all packets have been assigned to the default sub-domain, all packets have SI=0, and the BitStringLength is 4. Figure 5 shows the BIFT entries for SI=0 only. For compactness, we show the first column of the BIFT, the BFR-id, only as an integer.
BFR-D, BFR-E and BFR-F are BFER’s. BFR-A is the BFIR. Suppose that BFIR-A has learned from the multicast flow overlay that BFER-D is interested in a given multicast flow. If BFIR-A receives a packet of that flow from outside the BIER domain, BFIR-A applies the BIER encapsulation to the packet. The encapsulation must be such that the SI is zero. The encapsulation also includes a BitString, with just bit 1 set and with all other bits clear (i.e., 0001). This indicates that BFER-D is the only BFER that needs to receive the packet. Then BFIR-A follows the procedures of Section 6.5:

- Since the packet’s BitString is 0001, BFIR-A finds that the first bit in the string is bit 1. Looking at entry 1 in its BIFT, BFIR-A determines that the bit mask F-BM is 0111 and the BFR-NBR is BFR-B.
- BFIR-A then makes a copy of the packet, and applies F-BM to the copy: Copy->BitString &= 0111. The copy’s Bitstring is now 0001 (0001 & 0111).
- The copy is now sent to BFR-B.
- BFIR-A then updates the packet’s BitString by applying the inverse of the F-BM: Packet->Bitstring &= ¬F-BM. As a result, the packet’s BitString is now 0000 (0001 & 1000).
- As the packet’s BitString is now zero, the forwarding procedure is complete.

When BFR-B receives the multicast packet from BFR-A, it follows the same procedure. The result is that a copy of the packet, with a BitString of 0001, is sent to BFR-C. BFR-C applies the same
procedures, and as a result sends a copy of the packet, with a BitString of 0001, to BFR-D.

At BFER-D, the BIFT entry (not pictured) for BFR-id 1 will specify an F-BM of 0001 and a BFR-NBR of BFR-D itself. This will cause a copy of the packet to be delivered to the multicast flow overlay at BFR-D. The packet’s BitString will be set to 0000, and the packet will not be forwarded any further.

6.6.2. Example 2

This example is similar to Example 1, except that BFIR-A has learned from the multicast flow overlay that both BFER-D and BFER-E are interested in a given multicast flow. If BFIR-A receives a packet of that flow from outside the BIER domain, BFIR-A applies the BIER encapsulation to the packet. The encapsulation must be such that the SI is zero. The encapsulation also includes a BitString with two bits set: bit 1 is set (as in example 1) to indicate that BFR-D is a BFER for this packet, and bit 3 is set to indicate that BFR-E is a BFER for this packet. I.e., the BitString (assuming again a BitStringLength of 4) is 0101. To forward the packet, BFIR-A follows the procedures of Section 6.5:

- Since the packet’s BitString is 0101, BFIR-A finds that the first bit in the string is bit 1. Looking at entry 1 in its BIFT, BFIR-A determines that the bit mask F-BM is 0111 and the BFR-NBR is BFR-B.

- BFIR-A then makes a copy of the packet, and applies the F-BM to the copy: Copy->BitString &= 0111. The copy’s Bitstring is now 0101 (0101 & 0111).

- The copy is now sent to BFR-B.

- BFIR-A then updates the packet’s BitString by applying the inverse of the F-BM: Packet->Bitstring &= ~F-BM. As a result, the packet’s BitString is now 0000 (0101 & 1000).

- As the packet’s BitString is now zero, the forwarding procedure is complete.

When BFR-B receives the multicast packet from BFIR-A, it follows the procedure of Section 6.5, as follows:

- Since the packet’s BitString is 0101, BFR-B finds that the first bit in the string is bit 1. Looking at entry 1 in its BIFT, BFR-B determines that the bit mask F-BM is 0011 and the BFR-NBR is BFR-C.
BFR-B then makes a copy of the packet, and applies the F-BM to the copy: Copy->BitString &= 0011. The copy’s Bitstring is now 0001 (0101 & 0011).

The copy is now sent to BFR-C.

BFR-B then updates the packet’s BitString by applying the inverse of the F-BM: Packet->Bitstring &= F-BM. As a result, the packet’s BitString is now 0100 (0101 & 1100).

Now BFR-B finds the next bit in the packet’s (modified) BitString. This is bit 3. Looking at entry 3 in its BIFT, BFR-B determines that the F-BM is 0100 and the BFR-NBR is BFR-E.

BFR-B then makes a copy of the packet, and applies the F-BM to the copy: Copy->BitString &= 0100. The copy’s Bitstring is now 0100 (0100 & 0100).

The copy is now sent to BFR-E.

BFR-B then updates the packet’s BitString by applying the inverse of the F-BM: Packet->Bitstring &= ¬F-BM. As a result, the packet’s BitString is now 0000 (0100 & 1011).

As the packet’s BitString is now zero, the forwarding procedure is complete.

Thus BFR-B forwards two copies of the packet. One copy of the packet, with BitString 0001, has now been sent from BFR-B to BFR-C. Following the same procedures, BFR-C will forward the packet to BFER-D.

At BFER-D, the BIFT entry (not pictured) for BFR-id 1 will specify an F-BM of 0001 and a BFR-NBR of BFR-D itself. This will cause a copy of the packet to be delivered to the multicast flow overlay at BFR-D. The packet’s BitString will be set to 0000, and the packet will not be forwarded any further.

The other copy of the packet has been sent from BFR-B to BFER-E, with BitString 0100.

At BFER-E, the BIFT entry (not pictured) for BFR-id 3 will specify an F-BM of 0100 and a BFR-NBR of BFR-E itself. This will cause a copy of the packet to be delivered to the multicast flow overlay at BFR-E. The packet’s BitString will be set to 0000, and the packet will not be forwarded any further.
6.7. Equal Cost Multi-path Forwarding

In many networks, the routing underlay will provide multiple equal cost paths from a given BFR to a given BFER. When forwarding multicast packets through the network, it can be beneficial to take advantage of this by load balancing among those paths. This feature is known as "equal cost multiple path forwarding", or "ECMP".

BIER supports ECMP, but the procedures of Section 6.5 must be modified slightly. Two ECMP procedures are defined. In the first (described in Section 6.7.1), the choice among equal-cost paths taken by a given packet from a given BFR to a given BFER depends on (a) the packet’s entropy, and (b) the other BFERs to which that packet is destined. In the second (described in Section 6.7.2), the choice depends only upon the packet’s entropy.

There are tradeoffs between the two forwarding procedures described here. In the procedure of Section 6.7.1, the number of packet replications is minimized. The procedure in Section 6.7.1 also uses less memory in the BFR. In the procedure of Section 6.7.2, the path traveled by a given packet from a given BFR to a given BFER is independent of the other BFERs to which the packet is destined. While the procedures of Section 6.7.2 may cause more replications, they provide a more predictable behavior.

The two procedures described here operate on identical packet formats and will interoperate correctly. However, if deterministic behavior is desired, then all BFRs would need to use the procedure from Section 6.7.2.

6.7.1. Non-deterministic ECMP

Figure 6 shows the operation of non-deterministic ECMP in BIER.
In this example, BFR-B has two equal cost paths to reach BFER-F, one via BFR-C and one via BFR-E. Since the BFR-id of BFER-F is 2, this is reflected in entry 2 of BFR-B’s BIFT. Entry 2 shows that BFR-B has a choice of two BFR-NBRs for BFER-B, and that a different F-BM is associated with each choice. When BFR-B looks up entry 2 in the BIFT, it can choose either BFR-NBR. However, when following the procedures of Section 6.5, it MUST use the F-BM corresponding to the BFR-NBR that it chooses.

How the choice is made is an implementation matter. However, the usual rules for ECMP apply: packets of a given flow SHOULD NOT be split among two paths, and any "entropy" field in the packet’s encapsulation SHOULD be respected.

Note however that by the rules of Section 6.5, any packet destined for both BFER-D and BFER-F will be sent via BFR-C.

6.7.2. Deterministic ECMP

With the procedures of Section 6.7.1, where ECMP paths exist, the path a packet takes to reach any particular BFER depends not only on routing and on the packet’s entropy, but also on the set of other BFERs to which the packet is destined.

For example consider the following scenario in the network of Figure 6.

Figure 6: Example of ECMP

In this example, BFR-B has two equal cost paths to reach BFER-F, one via BFR-C and one via BFR-E. Since the BFR-id of BFER-F is 2, this is reflected in entry 2 of BFR-B’s BIFT. Entry 2 shows that BFR-B has a choice of two BFR-NBRs for BFER-B, and that a different F-BM is associated with each choice. When BFR-B looks up entry 2 in the BIFT, it can choose either BFR-NBR. However, when following the procedures of Section 6.5, it MUST use the F-BM corresponding to the BFR-NBR that it chooses.

How the choice is made is an implementation matter. However, the usual rules for ECMP apply: packets of a given flow SHOULD NOT be split among two paths, and any "entropy" field in the packet’s encapsulation SHOULD be respected.

Note however that by the rules of Section 6.5, any packet destined for both BFER-D and BFER-F will be sent via BFR-C.

6.7.2. Deterministic ECMP

With the procedures of Section 6.7.1, where ECMP paths exist, the path a packet takes to reach any particular BFER depends not only on routing and on the packet’s entropy, but also on the set of other BFERs to which the packet is destined.

For example consider the following scenario in the network of Figure 6.
There is a sequence of packets being transmitted by BFR-A, some of which are destined for both D and F, and some of which are destined only for F.

All the packets in this sequence have the same entropy value, call it "Q".

At BFR-B, when a packet with entropy value Q is forwarded via entry 2 in the BIFT, the packet is sent to E.

Using the forwarding procedure of Section 6.7.1, packets of this sequence that are destined for both D and F are forwarded according to entry 1 in the BIFT, and thus will reach F via the path A-B-C-F. However, packets of this sequence that are destined only for F are forwarded according to entry 2 in the BIFT, and thus will reach F via the path A-B-E-F.

That procedure minimizes the number of packets transmitted by BFR B. However, consider the following scenario:

- Beginning at time t0, the multicast flow in question needs to be received ONLY by BFER-F;
- Beginning at a later time, t1, the flow needs to be received by both BFER-D and BFER-F.
- Beginning at a later time, t2, the no longer needs to be received by D, but still needs to be received by F.

Then from t0 until t1, the flow will travel to F via the path A-B-E-F. From t1 until t2, the flow will travel to F via the path A-B-C-F. And from t2, the flow will again travel to F via the path A-B-E-F.

The problem is that if D repeatedly joins and leaves the flow, the flow's path from B to F will keep switching. This could cause F to receive packets out of order. It also makes troubleshooting difficult. For example, if there is some problem on the E-F link, receivers at F will get good service when the flow is also going to D (avoiding the E-F link), but bad service when the flow is not going to D. Since it is hard to know which path is being used at any given time, this may be hard to troubleshoot. Also, it is very difficult to perform a traceroute that is known to follow the path taken by the flow at any given time.

The source of this difficulty is that, in the procedures of Section 6.7.1, the path taken by a particular flow to a particular BFER depends upon whether there are lower numbered BFERS that are
also receiving the flow. Thus the choice among the ECMP paths is fundamentally non-deterministic.

Deterministic forwarding can be achieved by using multiple BIFTs, such that each row in a BIFT has only one path to each destination, but the multiple ECMP paths to any particular destination are spread across the multiple tables. When a BIER-encapsulated packet arrives to be forwarded, the BFR uses a hash of the BIER Entropy field to determine which BIFT to use, and then the normal BIER forwarding algorithm (as described in Sections 6.5 and 6.6) is used with the selected BIFT.

As an example, suppose there are two paths to destination X (call them X1 and X2), and four paths to destination Y (call them Y1, Y2, Y3, and Y4). If there are, say, four BIFTs, one BIFT would have paths X1 and Y1, one would have X1 and Y2, one would have X2 and Y3, and one would have X2 and Y4. If traffic to X is split evenly among these four BIFTs, the traffic will be split evenly between the two paths to X; if traffic to Y is split evenly among these four BIFTs, the traffic will be split evenly between the four paths to Y.

Note that if there are three paths to one destination and four paths to another, 12 BIFTs would be required in order to get even splitting of the load to each of those two destinations. Of course, each BIFT uses some memory, and one might be willing to have less optimal splitting in order to have fewer BIFTs. How that tradeoff is made is an implementation or deployment decision.

6.8. Prevention of Loops and Duplicates

The BitString in a BIER-encapsulated packet specifies the set of BFERs to which that packet is to be forwarded. When a BIER-encapsulated packet is replicated, no two copies of the packet will ever have a BFER in common. If one of the packet’s BFERs forwards the packet further, that will first clear the bit that identifies itself. As a result, duplicate delivery of packets is not possible with BIER.

As long as the routing underlay provides a loop free path between each pair of BFRs, BIER-encapsulated packets will not loop. Since the BIER layer does not create any paths of its own, there is no need for any BIER-specific loop prevention techniques beyond the forwarding procedures specified in Section 6.5.

If, at some time, the routing underlay is not providing a loop free path between BFIR-A and BFER-B, then BIER encapsulated packets may loop while traveling from BFIR-A to BFER-B. However, such loops will never result in delivery of duplicate packets to BFER-B.
These properties of BIER eliminate the need for the "reverse path
forwarding" (RPF) check that is used in conventional IP multicast
forwarding.

6.9. When Some Nodes do not Support BIER

The procedures of section Section 6.2 presuppose that, within a given
BIER domain, all the nodes adjacent to a given BFR in a given routing
underlay are also BFRs. However, it is possible to use BIER even
when this is not the case, as long as the ingress and egress nodes
are BFRs. In this section, we describe procedures that can be used
if the routing underlay is an SPF-based IGP that computes a shortest
path tree from each node to all other nodes in the domain.

At a given BFR, say BFR B, start with a copy of the IGP-computed
shortest path tree from BFR B to each router in the domain. (This
tree is computed by the SPF algorithm of the IGP.) Let’s call this
copy the "BIER-SPF tree rooted at BFR B." BFR B then modifies this
BIER-SPF tree as follows.

1. BFR B looks in turn at each of B’s child nodes on the BIER-SPF
tree.

2. If one of the child nodes does not support BIER, BFR B removes
that node from the tree. The child nodes of the node that has
just been removed are then re-parented on the tree, so that BFR B
now becomes their parent.

3. BFR B then continues to look at each of its child nodes,
including any nodes that have been re-parented to B as a result
of the previous step.

When all of the child nodes (the original child nodes plus any new
ones) have been examined, B’s children on the BIER-SPF tree will all
be BFRs.

When the BIFT is constructed, B’s child nodes on the BIER-SPF tree
are considered to be the BFR-NBRs. The F-BMs must be computed
appropriately, based on the BFR-NBRs.

B may now have BFR-NBRs that are not "directly connected" to B via
layer 2. To send a packet to one of these BFR-NBRs, B will have to
send the packet through a unicast tunnel. In an MPLS network, this
may be as simple as finding the IGP unicast next hop to the child
node, and pushing on (above the BIER encapsulation header) an MPLS
label that the IGP next hop has bound to an address of the child
node. (This assumes that the packet is using an MPLS-based BIER
encapsulation, such as the one specified in Section 2.1 of
Of course, the BIFT-id in the BIER encapsulation header must be the BIFT-id advertised by the child node for the packet’s Set Index, Sub-Domain, and BitStringLength.

If for some reason the unicast tunnel cannot be an MPLS tunnel, any other kind of tunnel can be used, as long as the encapsulation for that tunnel type has a way of indicating that the payload is a BIER-encapsulated packet.

Note that if a BIER-encapsulated packet is not using an MPLS-based BIER encapsulation, it will not be possible to send it through an MPLS tunnel unless it is known that the tunnel only carries BIER packets. The reason is that MPLS has no "next protocol type" field. This is not a problem if an MPLS-based BIER encapsulation is used, because in that case the BIER encapsulation begins with an MPLS label that identifies the packet as a BIER-encapsulated packet.

Of course, the above is not meant as an implementation technique, just as a functional description.

While the above description assumes that the routing underlay provides an SPF tree, it may also be applicable to other types of routing underlay.

The technique above can also be used to provide "node protection" (i.e., to provide fast reroute around nodes that are believed to have failed). If BFR B has a failed BFR-NBR, B can remove the failed BFR-NBR from the BIER-SPF tree, and can then re-parent the child BFR-NBRs of the failed BFR-NBR so that they appear to be B’s own child nodes on the tree (i.e., so that they appear to be B’s BFR-NBRs). Then the usual BIER forwarding procedures apply. However, getting the packet from B to the child nodes of the failed BFR-NBR is a bit more complicated, as it may require using a unicast bypass tunnel to get around the failed node.

A simpler variant of step 2 above would be the following:

If one of the child nodes does not support BIER, BFR B removes that node from the tree. All BFERs that are reached through that child node are then re-parented on the tree, so that BFR B now becomes their parent.

This variant is simpler because the set of BFERs that are reached through a particular child node of B can be determined from the F-BM in the BIFT. However, if this variant is used, the results are less optimal, because packets will be unicast directly from B to the BFERs that are reachable through the non-BIER child node.
When using a unicast MPLS tunnel to get a packet to a BFR-NBR:

- the TTL of the MPLS label entry representing the tunnel SHOULD be set to a large value, rather than being copied from the TTL value from the BIER encapsulation header, and
- when the tunnel labels are popped off, the TTL from the tunnel labels SHOULD NOT be copied to the BIER encapsulation header.

In other words, the TTL processing for the tunnel SHOULD be as specified in [RFC3443] for "Pipe Model" and "Short Pipe Model" LSPs. The same principle applies if the tunnels are not MPLS tunnels; the BIER packet SHOULD NOT inherit the TTL from the tunnel encapsulation. That way, the TTL of the BIER encapsulation header constrains only the number of BFRs that the packet may traverse, not the total number of hops.

If two BIER packets have the same value in the entropy field of their respective BIER headers, and if both are transmitted through a given tunnel, it is desirable for the tunnel encapsulation to preserve the fact that the two packets have the same entropy.

The material in this section presupposes that a given node is either a BFR or not, and that a BFR supports BIER on all its interfaces. It is however possible that a router will have some line cards that support BIER and some that do not. In such a case, one can think of the router as a "partial-BFR", that supports BIER only on some of its interfaces. If it is desired to deploy such partial-BFRs, one can use the multi-topology features of the IGP to set up a BIER-specific topology. This topology would exclude all the non-BIER-capable interfaces that attach to BFRs. BIER would then have to be run in a sub-domain that is bound to this topology. If unicast tunnels are used to bypass non-BFRs, either the tunnels have to be restricted to this topology, or the tunnel endpoints have to be BFRs that do not have any non-BIER-capable interfaces.

6.10. Use of Different BitStringLengths within a Domain

The procedures of this section apply only when the same encapsulation is used throughout the BIER domain. Consideration of the scenario where both multiple encodings and multiple BitStringLengths are used in a given BIER domain is outside the scope of this document.

It is possible for different BFRs within a BIER domain to be using different Imposition and/or Disposition BitStringLengths. As stated in Section 3:
"if a particular BFIR is provisioned to use a particular Imposition BitStringLength and a particular Imposition sub-domain when imposing the encapsulation on a given set of packets, all other BFRs with BFR-ids in that sub-domain SHOULD be provisioned to process received BIER packets with that BitStringLength (i.e., all other BFRs with BFR-ids in that sub-domain SHOULD be provisioned with that BitStringLength as a Disposition BitStringLength for that sub-domain).

Note that mis-provisioning can result in "black holes". If a BFIR creates a BIER packet with a particular BitStringLength, and if that packet needs to travel through a BFR that cannot process received BIER packets with that BitStringLength, then it may be impossible to forward the packet to all of the BFERs identified in its BIER header. Section 6.10.1 defines a procedure, the "BitStringLength Compatibility Check", that can be used to detect the possibility of such black holes.

However, failure of the BitStringLength Compatibility Check does not necessarily result in the creation of black holes; Section 6.10.2 specifies OPTIONAL procedures that allow BIER forwarding to proceed without black holes, even if the BitStringLength Compatibility Check fails.

If the procedures of Section 6.10.2 are not deployed, but the BitStringLength Compatibility Check fails at some BFIR, the BFIR has two choices:

- Create BIER packets with the provisioned Imposition BitStringLength, even though the packets may not be able to reach all the BFERs identified in their BitStrings

- Use an Imposition BitStringLength that passes the Compatibility Check (assuming that there is one), even if this is not the provisioned Imposition BitStringLength.

Section 6.10.1 discusses the implications of making one or the other of these choices.

There will be times when an operator wishes to change the BitStringLengths used in a particular BIER domain. Section 6.10.3 specifies a simple procedure that can be used to transition a BIER domain from one BitStringLength to another.
6.10.1. BitStringLength Compatibility Check

When a BFIR needs to encapsulate a packet, the BFIR first assigns the packet to a sub-domain. Then the BFIR chooses an Imposition BitStringLength L for the packet. The choice of Imposition BitStringLength is by provisioning. However, the BFIR should also perform the BitStringLength Compatibility Check defined below.

The combination of Sub-Domain S and Imposition BitStringLength L passes the BitStringLength Compatibility Check if and only if the following condition holds:

Every BFR that has advertised its membership in sub-domain S has also advertised that it is using Disposition BitStringLength L (and possibly other BitStringLengths as well) in that Sub-Domain. (If the MPLS encapsulation (Section 2.1 of [MPLS_BIER_ENCAPS]) is being used, this means that every BFR that is advertising a label for Sub-Domain S is advertising a label for the combination of Sub-Domain S and Disposition BitStringLength L.)

If a BFIR has been provisioned to use a particular Imposition BitStringLength and a particular sub-domain for some set of packets, and if that combination of Imposition BitStringLength and sub-domain does not pass the BitStringLength Compatibility Check, the BFIR SHOULD log this fact as an error. It then has the following choice about what to do with the packets:

1. The BFIR MAY use the provisioned Imposition BitStringLength anyway. If the procedure Paragraph 2 or Paragraph 3 of Section 6.10.2 are deployed, this will not cause black holes, and may actually be the optimal result. It should be understood though that the BFIR cannot determine by signaling whether those procedures have been deployed.

2. If the BFIR is capable of using an Imposition BitStringLength that does pass the BitStringLength Compatibility Check for the particular sub-domain, the BFIR MAY use that Imposition BitStringLength instead.

Which of these two choices to make is itself determined by provisioning.

Note that discarding the packets is not one of the allowable choices. Suppose, for example, that all the BFIRs are provisioned to use Imposition BitStringLength L for a particular sub-domain S, but one BFIR has not been provisioned to use Disposition BitStringLength L for sub-domain S. This will cause the BitStringLength Compatibility Check to fail. If the BFIR sends packets with BitStringLength L and
sub-domain S, the mis-provisioned BFR will not be able to forward
those packets, and thus the packets may only be able to reach a
subset of the BFERs to which they are destined. However, this is
still better than having the BFIRs drop the packets; if the BFIRs
discard the packets, the packets won’t reach any of the BFERs to
which they are destined at all.

If the procedures of Section 6.10.2 have not been deployed, choice 2
might seem like a better option. However, there might not be any
Imposition BitStringLength that a given BFIR can use that also passes
the BitStringLength Compatibility Check. If it is desired to use
choice 2 in a particular deployment, then there should be a "Fallback
Disposition BitStringLength", call it F, such that:

- Every BFR advertises that it uses BitStringLength F as a
 Disposition BitStringLength for every sub-domain, and
- If a BFIR is provisioned to use Imposition BitStringLength X and
 Imposition sub-domain S for a certain class of packets, but the
 BitStringLength Compatibility check fails for the combination of
 BitStringLength X and sub-domain S, then the BFIR will fall back
to using BitStringLength F as the Imposition BitStringLength
 whenever the Imposition sub-domain is S.

It is RECOMMENDED that the value of F be the default BitStringLength
for the encapsulation being used.

6.10.2. Handling BitStringLength Mismatches

Suppose a packet has been BIER-encapsulated with a BitStringLength
value of X, and that the packet has arrived at BFR-A. Now suppose
that according to the routing underlay, the next hop is BFR-B, but
BFR-B is not using X as one of its Disposition BitStringLengths.
What should BFR-A do with the packet? BFR-A has three options. It
MUST do one of the three, but the choice of which procedure to follow
is a local matter. The three options are:

1. BFR-A MAY discard the packet.
2. BFR-A MAY re-encapsulate the packet, using a BIER header whose
 BitStringLength value is supported by BFR-B.

Note that if BFR-B only uses Disposition BitStringLength values
that are smaller than the BitStringLength value of the packet,
this may require creating additional copies of the packet.
Whether additional copies actually have to be created depends
upon the bits that are actually set in the original packet’s
BitString.
3. BFR-A MAY treat BFR-B as if BFR-B did not support BIER at all, and apply the rules of Section 6.9.

Note that there is no signaling that enables a BFR to advertise which of the three options it will use.

Option 2 can be useful if there is a region of the BIER domain where the BFRs are capable of using a long BitStringLength, and a region where the BFRs are only capable of using a shorter BitStringLength.

6.10.3. Transitioning from One BitStringLength to Another

Suppose one wants to migrate the BitStringLength used in a particular BIER domain from one value (X) to another value (Y). The following migration procedure can be used. This procedure allows the BFRs to be reprovisioned one at a time, and does not require a "flag day".

First, upgrade all the BFRs in the domain so that they use both value X and value Y as their Disposition BitStringLengths. Once this is done, reprovision the BFIRs so that they use BitStringLength value Y as the Imposition BitStringLength. Once that is done, one may optionally reprovision all the BFRs so that they no longer use Disposition BitStringLength X.

7. Operational Considerations

BIER offers a radical simplification over current IPMulticast operations; no tree-building control plane, no per-flow forwarding state, no Reverse Path Forwarding (RPF), no Rendezvous Point (RP) etc. BIER packet forwarding/replication is along the unicast paths to each bit position set in the packet, ensuring the encapsulated multicast packets follow the same path as unicast to each set bit in the header. The BIER FIB can be derived from the unicast SPF calculated unicast FIB, or any other forwarding path calculation in or out of band. Each bit will follow this unicast path from the entry point of the BIER domain to edge device with that assigned bit.

Due to these differences, operational expectation from traditional multicast solutions do not apply to a BIER domain. There is no granular per-flow state at each node defining a tree. Monitoring flows at the forwarding plane level, (S,G) entries, is not provided in a BIER node. BIER FIB packet counters may be maintained for BFR-IDs or next-hop neighbors. Any flow based metrics will require deeper packet inspection which is outside of the scope of this document. In this way, BIER is again more like unicast.

It is this reduction in state that allows for one of the key operational benefits of BIER, deterministic convergence. The BIER
FIB can converge immediately after the unicast FIB regardless of how many multicast flows are transiting the links. Careful monitoring of (S,G) utilization is not required within a BIER domain.

7.1. Configuration

A BIER domain requires that each edge node (BFER) be given a unique bit position in the BIER mask (BFR-id). The BFR-id must be configured on each BFER and associated with a unique IP address of that BFER. Any existing manual or automated configuration tools must provide access to BIER specific configuration. The association of the BFR-id with a unique address of the BFER to which it is assigned must also be advertised into the IGP of the BIER domain. This may be implied from the BIER configuration or require IGP specific configuration. This document does not dictate any specific configuration methodology.

8. IANA Considerations

This document contains no actions for IANA.

9. Security Considerations

When BIER is paired with a particular multicast flow overlay, it inherits the security considerations of that layer. Similarly, when BIER is paired with a particular routing underlay, it inherits the security considerations of that layer.

If the BIER encapsulation of a particular packet specifies an SI or a BitString other than the one intended by the BFIR, the packet is likely to be misdelivered. If the BIER encapsulation of a packet is modified (through error or malfeasance) in a way other than that specified in this document, the packet may be misdelivered. Some modifications of the BIER encapsulation, e.g., setting every bit in the BitString, may result in (intentional or unintentional) Denial of Service (DoS) attacks.

If a BFIR is compromised, it may impose a BIER encapsulation with all the bits in the BitString set, which would also result in a DoS attack.

Every BFR MUST be provisioned to know which of its interfaces lead to a BIER domain and which do not. BIER-encapsulated packets MUST NOT be accepted from outside the BIER domain. (Reception of BIER-encapsulated packets from outside the BIER domain would create an attack vector for DoS attacks, as an attacker might set all the bits in the BitString.)
If two interfaces lead to different BIER domains, the BFR MUST be provisioned to know that those two interfaces lead to different BIER domains. If the provisioning is not correct, BIER-encapsulated packets from one BIER domain may "leak" into another; this is likely to result in misdelivery of packets.

DoS attacks may also result from incorrect provisioning (through error or malfeasance) of the BFRs.

If the procedures used for advertising BFR-ids and BFR-prefixes are not secure, an attack on those procedures may result in incorrect delivery of BIER-encapsulated packets.

10. Acknowledgements

The authors wish to thank Rajiv Asati, Alia Atlas, John Bettink, Ross Callon (who contributed much of the text on deterministic ECMP), Nagendra Kumar, Christian Martin, Neale Ranns, Greg Shepherd, Albert Tian, Ramji Vaithianathan, XiaoHu Xu and Jeffrey Zhang for their ideas and contributions to this work.

The authors also wish to thank Sue Hares, Victor Kuarsingh, and Dan Romascanu for their reviews of this document.

11. Contributor Addresses

Below is a list of other contributing authors in alphabetical order:

Gregory Cauchie
Bouygues Telecom

Email: gcauchie@bouygues telecom.fr

Mach (Guoyi) Chen
Huawei

Email: mach.chen@huawei.com

Arkadiy Gulko
Thomson Reuters
195 Broadway
New York NY 10007
United States

Email: arkadiy.gulko@thomsonreuters.com
12. References

12.1. Normative References

12.2. Informative References

Authors' Addresses

IJsbrand Wijnands (editor)
Cisco Systems, Inc.
De Kleetlaan 6a
Diegem 1831
Belgium

Email: ice@cisco.com

Eric C. Rosen (editor)
Juniper Networks, Inc.
10 Technology Park Drive
Westford, Massachusetts 01886
United States

Email: erosen@juniper.net

Andrew Dolganow
Nokia
600 March Rd.
Ottawa, Ontario K2K 2E6
Canada

Email: andrew.dolganow@nokia.com

Tony Przygienda
Juniper Networks, Inc.
1194 N. Mathilda Ave.
Sunnyvale, California 94089
United States

Email: prz@juniper.net
Sam K Aldrin
Google, Inc.
1600 Amphitheatre Parkway
Mountain View, California
United States

Email: aldrin.ietf@gmail.com
Encapsulation for Bit Index Explicit Replication in MPLS Networks
draft-ietf-bier-mpls-encapsulation-05

Abstract

Bit Index Explicit Replication (BIER) is an architecture that provides optimal multicast forwarding through a "multicast domain", without requiring intermediate routers to maintain any per-flow state or to engage in an explicit tree-building protocol. When a multicast data packet enters the domain, the ingress router determines the set of egress routers to which the packet needs to be sent. The ingress router then encapsulates the packet in a BIER header. The BIER header contains a bitstring in which each bit represents exactly one egress router in the domain; to forward the packet to a given set of egress routers, the bits corresponding to those routers are set in the BIER header. The details of the encapsulation depend on the type of network used to realize the multicast domain. This document specifies the BIER encapsulation to be used in an MPLS network.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
1. Introduction

[BIER_ARCH] describes a new architecture for the forwarding of multicast data packets. That architecture provides optimal forwarding of multicast data packets through a "multicast domain". However, it does not require any explicit tree-building protocol, and does not require intermediate nodes to maintain any per-flow state. That architecture is known as "Bit Index Explicit Replication" (BIER).

This document will use terminology defined in [BIER_ARCH].

A router that supports BIER is known as a "Bit-Forwarding Router" (BFR). A "BIER domain" is a connected set of Bit-Forwarding Routers (BFRs), each of which has been assigned a BFR-prefix. A BFR-prefix is a routable IP address of a BFR, and is used by BIER to identify a...
BFR. A packet enters a BIER domain at an ingress BFR (BFIR), and leaves the BIER domain at one or more egress BFRs (BFERs). As specified in [BIER_ARCH], each BFR of a given BIER domain is provisioned to be in one or more "sub-domains". In the context of a given sub-domain, each BFIR and BFER must have a BFR-id that is unique within that sub-domain. A BFR-id is just a number in the range [1,65535] that, relative to a BIER sub-domain, identifies a BFR uniquely.

As described in [BIER_ARCH], BIER requires that multicast data packets be encapsulated with a header that provides the information needed to support the BIER forwarding procedures. This information includes the sub-domain to which the packet has been assigned, a Set-Id (SI), a BitString, and a BitStringLength. Together these values identify the set of BFERs to which the packet must be delivered.

This document is applicable when a given BIER domain is both an IGP domain and an MPLS network. In this environment, the BIER encapsulation consists of two components:

- an MPLS label (which we will call the "BIER-MPLS label"); this label appears at the bottom of a packet’s MPLS label stack.
- a BIER header, as specified in Section 3.

Following the BIER header is the "payload". The payload may be an IPv4 packet, an IPv6 packet, an ethernet frame, an MPLS packet, or an OAM packet. If it is an MPLS packet, then an MPLS label stack immediately follows the BIER header. The top label of this MPLS label stack may be either a downstream-assigned label [RFC3032] or an upstream-assigned label [RFC5331]. The BIER header contains information (the Next Protocol field) identifying the type of the payload.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

2. The BIER-MPLS Label

As stated in [BIER_ARCH], when a BIER domain is also an IGP domain, IGP extensions can be used by each BFR to advertise the BFR-id and BFR-prefix. The extensions for OSPF are given in [OSPF_BIER_EXTENSIONS]. The extensions for ISIS are given in [ISIS_BIER_EXTENSIONS].

When a particular BIER domain is both an IGP domain and an MPLS network, we assume that each BFR will also use IGP extensions to
advertise a set of one or more "BIER-MPLS" labels. When the domain contains a single sub-domain, a given BFR needs to advertise one such label for each combination of SI and BitStringLength. If the domain contains multiple sub-domains, a BFR needs to advertise one such label per SI per BitStringLength for each sub-domain.

The BIER-MPLS labels are locally significant (i.e., unique only to the BFR that advertises them) downstream-assigned MPLS labels. Penultimate hop popping MUST NOT be applied to a BIER-MPLS label.

Suppose for example that there is a single sub-domain (the default sub-domain), that the network is using a BitStringLength of 256, and that all BFERs in the sub-domain have BFR-ids in the range [1,512]. Since each BIER BitString is 256 bits long, this requires the use of two SIs: SI=0 and SI=1. So each BFR will advertise, via IGP extensions, two MPLS labels for BIER: one corresponding to SI=0 and one corresponding to SI=1. The advertisements of these labels will also bind each label to the default sub-domain and to the BitStringLength 256.

As another example, suppose a particular BIER domain contains 2 sub-domains (sub-domain 0 and sub-domain 1), supports 2 BitStringLengths (256 and 512), and contains 1024 BFRs. A BFR that is provisioned for both sub-domains, and that supports both BitStringLengths, would have to advertise the following set of BIER-MPLS labels:

L1: corresponding to sub-domain 0, BitStringLength 256, SI 0.
L2: corresponding to sub-domain 0, BitStringLength 256, SI 1.
L3: corresponding to sub-domain 0, BitStringLength 256, SI 2.
L4: corresponding to sub-domain 0, BitStringLength 256, SI 3.
L5: corresponding to sub-domain 0, BitStringLength 512, SI 0.
L6: corresponding to sub-domain 0, BitStringLength 512, SI 1.
L7: corresponding to sub-domain 1, BitStringLength 256, SI 0.
L8: corresponding to sub-domain 1, BitStringLength 256, SI 1.
L9: corresponding to sub-domain 1, BitStringLength 256, SI 2.
L10: corresponding to sub-domain 1, BitStringLength 256, SI 3.
L11: corresponding to sub-domain 1, BitStringLength 512, SI 0.
L12: corresponding to sub-domain 1, BitStringLength 512, SI 1.

The above example should not be taken as implying that the BFRs need to advertise 12 individual labels. For instance, instead of advertising a label for <sub-domain 1, BitStringLength 512, SI 0> and a label for <sub-domain 1, BitStringLength 512, SI 1>, a BFR could advertise a contiguous range of labels (in this case, a range containing exactly two labels) corresponding to <sub-domain 1, BitStringLength 512>. The first label in the range could correspond to SI 0, and the second to SI 1. The precise mechanism for generating and forming the advertisements is outside the scope of this document. See [OSPF_BIER_EXTENSIONS] and [ISIS_BIER_EXTENSIONS].

Note that, in practice, labels only have to be assigned if they are going to be used. If a particular BIER domain supports BitStringLengths 256 and 512, but some sub-domain, say sub-domain 1, only uses BitStringLength 256, then it is not necessary to assign labels that correspond to the combination of sub-domain 1 and BitStringLength 512.

When a BFR receives an MPLS packet, and the next label to be processed is one of its BIER-MPLS labels, it will assume that a BIER header (see Section 3) immediately follows the stack. It will also infer the packet’s sub-domain, SI, and BitStringLength from the label. The packet’s "incoming TTL" (see below) is taken from the TTL field of the label stack entry that contains the BIER-MPLS label.

The BFR MUST perform the MPLS TTL processing correctly. If the packet is forwarded to one or more BFR adjacencies, the BIER-MPLS label carried by the forwarded packet MUST have a TTL field whose value is one less than that of the incoming TTL.

Of course, if the incoming TTL is 1, the packet MUST be treated as a packet whose TTL has been exceeded. The packet MUST NOT be forwarded, but it MAY be passed to other layers for processing (e.g., to cause an ICMP message to be generated, and/or to invoke BIER-specific traceroute procedures, and/or to invoke other OAM procedures.)

3. BIER Header

The BIER header is shown in Figure 1. This header appears after the end of the MPLS label stack, immediately after the MPLS-BIER label.
Figure 1: BIER Header

First nibble:

The first 4 bits of the header are set to 0101; this ensures that the BIER header will not be confused with an IP header or with the header of a pseudowire packet. If a BFR receives a BIER packet with any other value in the first nibble, it SHOULD discard the packet and log an error.

Ver:

This 4-bit field identifies the version of the BIER header. This document specifies version 0 of the BIER header. If a packet is received by a particular BFR, and that BFR does not support the specified version of the BIER header, the BFR MUST discard the packet and log an error.

The value 0xF is reserved for experimental use; that value MUST NOT be assigned by any future IETF document or by IANA.

Len:

This 4-bit field encodes the length in bits of the BitString.

Note: When parsing the BIER header, a BFR MUST infer the length of the BitString from the BIER-MPLS label, not from the value of this field. This field is present only to enable off-line tools (such as LAN analyzers) to parse the BIER header.

If \(k \) is the length of the BitString, the value of this field is \(\log_2(k)-5 \). However, only certain values are supported:

1: 64 bits
2: 128 bits
3: 256 bits
4: 512 bits
5: 1024 bits
6: 2048 bits
7: 4096 bits

The value of this field MUST NOT be set to any value other than those listed above. A received packet containing another value in this field SHOULD be discarded, and an error logged. If the value in this field is other than what is expected based on the BIER-MPLS label, the packet SHOULD be discarded and an error logged.

Entropy:

This 20-bit field specifies an "entropy" value that can be used for load balancing purposes. The BIER forwarding process may do equal cost load balancing, but the load balancing procedure MUST choose the same path for any two packets have the same entropy value.

If a BFIR is encapsulating (as the payload) MPLS packets that have entropy labels, the BFIR MUST ensure that if two such packets have the same MPLS entropy label, they also have the same value of the BIER entropy field.

BitString:

The BitString that, together with the packet’s SI, identifies the destination BFERs for this packet. Note that the SI for the packet is inferred from the BIER-MPLS label that precedes the BIER header.

OAM:

These two bits are used for the passive performance measurement marking method described in [PPM].

Reserved:

These 10 bits are currently unused. They SHOULD be set to zero upon transmission, and MUST be ignored upon reception.
Proto:

This 4-bit "Next Protocol" field identifies the type of the payload. (The "payload" is the packet or frame immediately following the BIER header.) The protocol field may take any of the following values:

1: MPLS packet with downstream-assigned label at top of stack.

2: MPLS packet with upstream-assigned label at top of stack (see [RFC5331]). If this value of the Proto field is used, the BFR-id of the BFIR must be placed in the BFIR-id field. The BFIR-id provides the "context" in which the upstream-assigned label is interpreted.

3: Ethernet frame.

4: IPv4 packet.

5: OAM packet [BIER-OAM].

6: IPv6 packet.

IANA is requested to set up a registry called "BIER Next Protocol Identifiers", with the above values being assigned initially. Values 0 and 15 are reserved. Values 7-14 are available for assignment according to the Standards Action policy ([RFC5226] and [RFC7120]).

If a BFER receives a BIER packet, but does not recognize (or does not support) the value of the Next Protocol field, the BFER SHOULD discard the packet and log an error.

BFIR-id:

By default, this is the BFR-id of the BFIR, in the sub-domain to which the packet has been assigned. The BFR-id is encoded in the 16-bit field as an unsigned integer in the range [1,65535].

Certain applications may require that the BFIR-id field contain the BFR-id of a BFR other than the BFIR. However, that usage of the BFIR-id field is outside the scope of the current document.

4. Imposing and Processing the BIER Encapsulation

When a BFIR receives a multicast packet from outside the BIER domain, the BFIR carries out the following procedure:
1. By consulting the "multicast flow overlay" [BIER_ARCH], it determines the value of the "Proto" field.

2. By consulting the "multicast flow overlay", it determines the set of BFERs that must receive the packet.

3. If more than one sub-domain is supported, the BFIR assigns the packet to a particular sub-domain. Procedures for determining the sub-domain to which a particular packet should be assigned are outside the scope of this document.

4. The BFIR looks up the BFR-id, in the given sub-domain, of each of those BFERs.

5. The BFIR converts each such BFR-id into (SI, BitString) format, as described in [BIER_ARCH].

6. All such BFR-ids that have the same SI can be encoded into the same BitString. Details of this encoding can be found in [BIER_ARCH]. For each distinct SI that occurs in the list of the packet’s destination BFERs:

a. The BFIR makes a copy of the multicast data packet, and encapsulates the copy in a BIER header (see Section 3). The BIER header contains the BitString that represents all the destination BFERs whose BFR-ids (in the given sub-domain) correspond to the given SI. It also contains the BFIR’s BFIR-id in the sub-domain to which the packet has been assigned.

 N.B.: For certain applications, it may be necessary for the BFIR-id field to contain the BFR-id of a BFR other than the BFIR that is creating the header. Such uses are outside the scope of this document, but may be discussed in future revisions.

 b. The BFIR then applies to that copy the forwarding procedure of [BIER_ARCH]. This may result in one or more copies of the packet (possibly with a modified BitString) being transmitted to a neighboring BFR.

 c. Before transmitting a copy of the packet to a neighboring BFR, the BFIR finds the BIER-MPLS label that was advertised by the neighbor as corresponding to the given SI, sub-domain, and BitStringLength. An MPLS label stack is then prepended to the packet. This label stack [RFC3032] will contain one label, the aforementioned BIER-MPLS label. The "S" bit MUST be set, indicating the end of the MPLS label
stack. The TTL field of this label stack entry is set according to policy. The packet may then be transmitted to the neighboring BFR. (This may result in additional MPLS labels being pushed on the stack. For example, if an RSVP-TE tunnel is used to transmit packets to the neighbor, a label representing that tunnel would be pushed onto the stack.)

When an intermediate BFR is processing a received MPLS packet, and one of the BFR’s own BIER-MPLS labels rises to the top of the label stack, the BFR infers the sub-domain, SI, and BitStringLength from the label. The BFR then follows the forwarding procedures of [BIER_ARCH]. If it forwards a copy of the packet to a neighboring BFR, it first swaps the label at the top of the label stack with the BIER-MPLS label, advertised by that neighbor, that corresponds to the same SI, sub-domain, and BitStringLength. Note that when this swap operation is done, the TTL field of the BIER-MPLS label of the outgoing packet MUST be one less than the "incoming TTL" of the packet, as defined in Section 2.

Thus a BIER-encapsulated packet in an MPLS network consists of a packet that has:

- An MPLS label stack with a BIER-MPLS label at the bottom of the stack.
- A BIER header, as described in Section 3.
- The payload.

The payload may be an IPv4 packet, an IPv6 packet, an ethernet frame, an MPLS packet, or an OAM packet. If it is an MPLS packet, the BIER header is followed by a second MPLS label stack; this stack is separate from the stack that precedes the BIER header. For an example of an application where it is useful to carry an MPLS packet as the BIER payload, see [BIER_MVPN].

5. IANA Considerations

IANA is requested to set up a registry called "BIER Next Protocol Identifiers", with the values indicated in Section 3 being assigned initially. Values 0 and 15 are reserved. Values 7-14 are available for assignment according to the Standards Action policy ([RFC5226], [RFC7120]).
6. Security Considerations

As this document makes use of MPLS, it inherits any security considerations that apply to the use of the MPLS data plane.

As this document makes use of IGP extensions, it inherits any security considerations that apply to the IGP.

The security considerations of [BIER_ARCH] also apply.

7. Acknowledgements

The authors wish to thank Rajiv Asati, John Bettink, Nagendra Kumar, Christian Martin, Neale Ranns, Greg Shepherd, Ramji Vaithianathan, and Jeffrey Zhang for their ideas and contributions to this work.

8. Contributor Addresses

Below is a list of other contributing authors in alphabetical order:
9. References

9.1. Normative References

9.2. Informative References

IJsbrand Wijnands (editor)
Cisco Systems, Inc.
De Kleetlaan 6a
Diegem 1831
Belgium

Email: ice@cisco.com

Eric C. Rosen (editor)
Juniper Networks, Inc.
10 Technology Park Drive
Westford, Massachusetts 01886
United States

Email: erosen@juniper.net

Andrew Dolganow
Nokia
600 March Rd.
Ottawa, Ontario K2K 2E6
Canada

Email: andrew.dolganow@nokia.com
Jeff Tantsura
Ericsson
300 Holger Way
San Jose, California 95134
United States

Email: jeff.tantsura@ericsson.com

Sam K Aldrin
Google, Inc.
1600 Amphitheatre Parkway
Mountain View, California
United States

Email: aldrin.ietf@gmail.com

Israel Meilik
Broadcom

Email: israel@broadcom.com
BIER Ingress Multicast Flow Overlay using Multicast Listener Discovery Protocols
draft-pfister-bier-mld-02

Abstract

This document specifies the ingress part of a multicast flow overlay for BIER networks. Using existing multicast listener discovery protocols, it enables multicast membership information sharing from egress routers, acting as listeners, toward ingress routers, acting as queriers. Ingress routers keep per-egress-router state, used to construct the BIER bit mask associated with IP multicast packets entering the BIER domain.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 4, 2017.

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents
Introduction

The Bit Index Explicit Replication (BIER - [I-D.ietf-bier-architecture]) forwarding technique enables IP multicast transport across a BIER domain. When receiving or originating a packet, ingress routers have to construct a bit mask indicating which BIER egress routers located within the same BIER domain will receive the packet. A stateless approach would consist in forwarding all incoming packets toward all egress routers, which would in turn make a forwarding decision based on local information. But any more efficient approach would require ingress routers to keep some state about egress routers multicast membership information, hence requiring state sharing from egress routers toward ingress routers.

This document specifies how to use the Multicast Listener Discovery protocol version 2 [RFC3810] (resp. the Internet Group Management protocol version 3 [RFC3376]) as the ingress part of a BIER multicast flow overlay (BIER layering is described in [I-D.ietf-bier-architecture]) for IPv6 (resp. IPv4). It enables
multicast membership information sharing from egress routers, acting as listeners, toward ingress routers, acting as queriers. Ingress routers keep per-egress-router state, used to construct the BIER bit mask associated with IP multicast packets entering the BIER domain.

This specification is applicable to both IP version 4 and version 6. It therefore specifies two separate mechanisms operating independently. For the sake of simplicity, the rest of this document uses IPv6 terminology. It can be applied to IPv4 by replacing 'MLDv2' with 'IGMPv3', and following specific requirements when explicitly stated.

2. Terminology

In this document, the key words "MAY", "MUST", "MUST NOT", "RECOMMENDED", and "SHOULD", are to be interpreted as described in [RFC2119].

The terms "Bit-Forwarding Router" (BFR), "Bit-Forwarding Egress Router" (BFER), "Bit-Forwarding Ingress Router" (BFIR), "BFR-id" and "BFR-Prefix" are to be interpreted as described in [I-D.ietf-bier-architecture].

Additionally, the following definitions are used:

BIER Multicast Listener Discovery (BMLD): The modified version of MLD specified in this document.

BMLD Querier: A BFR implementing the Querier part of this specification. A BMLD Node MAY be both a Querier and a Listener.

BMLD Listener: A BFR implementing the Listener part of this specification. A BMLD Node MAY be both a Querier and a Listener.

3. Overview

This document proposes to use the mechanisms described in MLDv2 in order to enable multicast membership information sharing from BFERs toward BFIRs within a given BIER domain. BMLD queries (resp. reports) are sent over BIER toward all BMLD Nodes (resp. BMLD Queriers) using modified MLDv2 messages which IP destination is set to a configured 'all BMLD Nodes' (resp. 'all BMLD Queriers') IP multicast address.

By running MLDv2 instances with per-listener explicit tracking, BMLD Queriers are able to map BMLD Listeners with MLDv2 membership states. This state is then used to construct the set of BFERs associated with each incoming IP multicast data packet.
4. Applicability Statement

BMLD runs on top of a BIER Layer and provides the ingress part of a BIER multicast flow overlay, i.e., it specifies how BFIRs construct the set of BFERs for each ingress IP multicast data packet. The BFER part of the Multicast Flow Overlay is out of scope of this document.

The BIER Layer MUST be able to transport BMLD messages toward all BMLD Queriers and Listeners. Such packets are IP multicast packets with a BFR-Prefix as source address, a multicast destination address, and containing a MLDv2 message.

BMLD only requires state to be kept by Queriers, and is therefore more scalable than PIMv2 [RFC7761] in terms of overall state, but is also likely to be less scalable than PIMv2 in terms of the amount of control traffic and the size of the state that is kept by individual routers.

This specification is applicable to both IP version 4 and version 6. It therefore specifies two separate mechanisms operating independently. For the sake of simplicity, this document uses IPv6 terminology. It can be applied to IPv4 by replacing ‘MLDv2’ with ‘IGMPv3’, and following specific requirements when explicitly stated.

5. Querier and Listener Specifications

Routers desiring to receive IP multicast traffic (e.g., for their own use, or for forwarding) MUST behave as BMLD Listeners. Routers receiving IP multicast traffic from outside the BIER domain, or originating multicast traffic, MUST behave as BMLD Queriers.

BMLD Queriers (resp. BMLD Listeners) MUST act as MLDv2 Queriers (resp. MLDv2 Listeners) as specified in [RFC3810] unless stated otherwise in this section.

5.1. Configuration Parameters

Both Queriers and Listeners MUST operate as BFIRs and BFERs within the BIER domain in order to send and receive BMLD messages. They MUST therefore be configured accordingly, as specified in [I-D.ietf-bier-architecture].

All Listeners MUST be configured with a ‘all BMLD Queriers’ multicast address and the BFR-ids of all the BMLD Queriers. This is used by Listeners to send BMLD reports over BIER toward all Queriers. All Queriers MUST be configured to accept BMLD reports sent to this address.
All Queriers MUST be configured with a ‘all BMLD Nodes’ multicast address and the BFR-ids of all the Queriers and Listeners. This information is used by Queriers to send BMLD queries over BIER toward all BMLD Nodes. All BMLD Nodes MUST be configured to accept BMLD queries sent to this address.

Note that BMLD (unlike MLDv2) makes use of per-instance configured multicast group addresses rather than well-known addresses so that multiple instances of BMLD (using different group addresses) can be run simultaneously within the same BIER domain. Configured group addresses MAY be obtained from allocated IP prefixes using [RFC3306]. One MAY choose to use the well-known MLDv2 addresses in one instance, but different instances MUST use different addresses.

IP packets coming from outside of the BIER domain and having a destination address set to the configured ‘all BMLD Queriers’ or the ‘all BMLD Nodes’ group address MUST be dropped. It is RECOMMENDED that these configured addresses have a limited scope, enforcing this behavior by scope-based filtering on BIER domain’s egress interfaces.

5.2. MLDv2 instances.

BMLD Queriers MUST run a MLDv2 Querier instance with per-host tracking, which means they keep track of the MLDv2 state associated with each BMLD Listener. For that purpose, Listeners are identified by their respective BFR-Prefix, used as IP source address in all BMLD reports.

BMLD Listeners MUST run a MLDv2 Listener instance expressing their interest in the multicast traffic they are supposed to receive for local use or forwarding.

BMLD Listeners and Queriers MUST NOT run the MLDv1 (IGMPv2 and IGMPv1 for IPv4) backward compatibility procedures.

5.2.1. Sending Queries

BMLD Queries are IP packets sent over BIER by BMLD Queriers:

- Toward all BMLD Nodes (i.e., providing to the BIER Layer the BFR-ids of all BMLD Nodes).

- With the IP destination address set to the ‘all BMLD Nodes’ group address.
5.2.2. Sending Reports

BMLD Reports are IP packets sent over BIER by BMLD Listeners:

- Toward all BMLD Queriers (i.e., providing to the BIER layer the BFR-ids of all BMLD Queriers).
- With the IP destination address set to the ‘all BMLD Queriers’ group address.
- With the IP source address set to the BFR-Prefix of the sender.
- With a TTL value great enough such that the packet can be received by all BMLD Queriers, depending on the underlying BIER layer (whether it decrements the IP TTL or not) and the size of the network. The default value is 64.

5.2.3. Receiving Queries

BMLD Queriers and Listeners MUST check the destination address of all the IP packets that are received or forwarded over BIER whenever their own BIER bit is set in the packet. If the destination address is equal to the ‘all BMLD Nodes’ group address the packet is processed as specified in this section.

If the IPv6 (resp. IPv4) packet contains an ICMPv6 (resp. IGMP) message of type ‘Multicast Listener Query’ (resp. of type ‘Membership Query’), it is processed by the MLDv2 (resp. IGMPv3) instance run by the BMLD Querier. It MUST be dropped otherwise.

During the MLDv2 processing, the packet MUST NOT be checked against the MLDv2 consistency conditions (i.e., the presence of the router alert option, the TTL equaling 1 and, for IPv6 only, the source address being link-local).
5.2.4. Receiving Reports

BMLD Queriers MUST check the destination address of all the IP packets that are received or forwarded over BIER whenever their own BIER bit is set. If the destination address is equal to the ‘all BMLD Queriers’ the packet is processed as specified in this section.

If the IPv6 (resp. IPv4) packet contains an ICMPv6 (resp. IGMP) message of type ‘Multicast Listener Report Message v2’ (resp. ‘Version 3 Membership Report’), it is processed by the MLDv2 (resp. IGMPv3) instance run by the BMLD Querier. It MUST be dropped otherwise.

During the MLDv2 processing, the packet MUST NOT be checked against the MLDv2 consistency conditions (i.e., the presence of the router alert option, the TTL equaling 1 and, for IPv6 only, the source address being link-local).

5.3. Packet Forwarding

BMLD Queriers configure the BIER Layer using the information obtained using BMLD, which associates BMLD Listeners (identified by their BFR-Prefixes) with their respective MLDv2 membership state.

More specifically, the MLDv2 state associated with each BMLD Listener is provided to the BIER layer such that whenever a multicast packet enters the BIER domain, if that packet matches the membership information from a BMLD Listener, its BFR-id is added to the set of BFR-ids the packet should be forwarded to by the BIER-Layer.

6. Security Considerations

BMLD makes use of IP MLDv2 messages transported over BIER in order to configure the BIER Layer of BFIRs. BMLD messages MUST be secured, either by relying on physical or link-layer security, by securing the IP packets (e.g., using IPSec [RFC4301]), or by relying on security features provided by the BIER Layer.

Whenever an attacker would be able to spoof the identity of a router, it could:

- Redirect undesired traffic toward the spoofed router by subscribing to undesired multicast traffic.
- Prevent desired multicast traffic from reaching the spoofed router by unsubscribing to some desired multicast traffic.
7. IANA Considerations

 This specification does not require any action from IANA.

8. References

8.1. Normative References

DOI 10.17487/RFC2113, February 1997,

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,

[RFC3376] Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
Thyagarajan, "Internet Group Management Protocol, Version 3",
RFC 3376, DOI 10.17487/RFC3376, October 2002,

Discovery Version 2 (MLDv2) for IPv6", RFC 3810,
DOI 10.17487/RFC3810, June 2004,

[I-D.ietf-bier-architecture]
Wijnands, I., Rosen, E., Dolganow, A., Przygienda, T., and
S. Aldrin, "Multicast using Bit Index Explicit
Replication", draft-ietf-bier-architecture-05 (work in
progress), October 2016.

8.2. Informative References

(IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,

[RFC2711] Partridge, C. and A. Jackson, "IPv6 Router Alert Option",
RFC 2711, DOI 10.17487/RFC2711, October 1999,

Multicast Addresses", RFC 3306, DOI 10.17487/RFC3306,

Appendix A. Acknowledgements

Comments concerning this document are very welcome.

Authors' Addresses

Pierre Pfister
Cisco Systems
Paris
France

Email: pierre.pfister@darou.fr

IJsbrand Wijnands
Cisco Systems
De Kleetlaan 6a
Diegem 1831
Belgium

Email: ice@cisco.com

Stig Venaas
Cisco Systems
Tasman Drive
San Jose, CA 95134
USA

Email: stig@cisco.com

Markus Stenberg
Helsinki 00930
Finland

Email: markus.stenberg@iki.fi
Abstract

BIER introduces a novel multicast architecture. It does not require a signaling protocol to explicitly build multicast distribution trees, nor does it require intermediate nodes to maintain any per-flow state.

Babel defines a distance-vector routing protocol that operates in a robust and efficient fashion both in wired as well as in wireless mesh networks. This document defines a way to carry necessary BIER signaling information in Babel.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 2 November 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction ... 2
2. Terminology .. 2
3. Conventions Used in This Document 3
4. Advertisement of BIER information 3
 4.1. BIER BFR-prefix and BIER sub-TLV 3
 4.1.1. BIER sub-TLV 3
 4.2. BIER MPLS Encapsulation sub-sub-TLV 4
 4.3. BIER non-MPLS Encapsulation sub-sub-TLV 5
 4.3.1. BIER IPv6 transportation sub-sub-TLV 6
5. Tree types and tunneling 6
6. Security Considerations 6
7. IANA Considerations 6
8. References ... 6
 8.1. Normative References 6
 8.2. Informative References 7
Authors’ Addresses .. 8

1. Introduction

[RFC8279] introduces a novel multicast architecture. It does not require a signaling protocol to explicitly build multicast distribution trees, nor does it require intermediate nodes to maintain any per-flow state. All procedures necessary to support BIER are abbreviated by the "BIER architecture" moniker in this document.

[RFC8966] define a distance-vector routing protocol under the name of "Babel". Babel operates in a robust and efficient fashion both in ordinary wired as well as in wireless mesh networks.

2. Terminology

The terminology of this documents follows [RFC8279] and [RFC8966].
3. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

4. Advertisement of BIER information

In case a router is configured with BIER information, and Babel is the routing protocol used, such a router MAY use Babel protocol to announce the BIER information using the BIER sub-TLV specified below.

4.1. BIER BFR-prefix and BIER sub-TLV

BFR-prefix and according information is carried in a Babel Update TLV per [RFC8966]. A new sub-TLV is defined to convey further BIER information such as BFR-id, sub-domain-id and BSL. Two sub-sub-TLVs are carried as payload of BIER sub-TLV.

The mandatory bit of BIER sub-TLV should be set to 0. If a router cannot recognize a sub-TLV, the router MUST ignore this unknown sub-TLV.

4.1.1. BIER sub-TLV

The BIER sub-TLV format aligns exactly with the definition and restrictions in [RFC8401] , [RFC8444] and [I-D.ietf-bier-ospfv3-extensions]. It is a sub-TLV of Babel update TLV. The prefix MUST NOT be summarized and the according sub-TLV MUST be treated as optional and transitive.

```
+--------+--------+--------+--------+
| Type   | Length | BAR    | IPA    |
|        |        |        | subdomain-id |
|        |        |        | BFR-id |
|        |        |        | sub-sub-TLVs (variable) |
|        |        |        |         |
+--------+--------+--------+--------+
```

Figure 1: BIER sub-TLV
* Type: as indicated in IANA section.

* Length: 1 octet. Include the length of BIER sub-TLV and potential length of the sub-sub-TLVs.

* BAR: BIER Algorithm. Specifies a BIER-specific algorithm used to calculate underlay paths to reach BFERs. Values are allocated from the "BIER Algorithms" registry. 1 octet.

* IPA: IGP Algorithm. Specifies an IGP Algorithm to either modify, enhance, or replace the calculation of underlay paths to reach BFERs as defined by the BAR value. Values are from the IGP Algorithm registry. 1 octet.

* subdomain-id: Unique value identifying the BIER sub-domain. 1 octet.

* BFR-id: A 2 octet field encoding the BFR-id, as documented in [RFC8279]. If no BFR-id has been assigned this field is set to the invalid BFR-id.

4.2. BIER MPLS Encapsulation sub-sub-TLV

The BIER MPLS Encapsulation sub-sub-TLV can be carried by BIER sub-TLV. The format and restrictions are aligned with [RFC8401], [RFC8444] and [I-D.ietf-bier-ospfv3-extensions]. This sub-sub-TLV carries the information for the BIER MPLS encapsulation including the label range for a specific BSL for a certain <MT,SD> pair.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Length |
+-+
| Max SI |BS Len | Label |
+-+

Figure 2: MPLS Encapsulation sub-sub-TLV

* Type: value of 1 indicating MPLS encapsulation.

* Length: 1 octet
* Max SI: Maximum Set Identifier (Section 1 of [RFC8279]) used in the encapsulation for this BIER subdomain for this BitString length, 1 octet. Each SI maps to a single label in the label range. The first label is for SI=0, the second label is for SI=1, etc. If the label associated with the Maximum Set Identifier exceeds the 20-bit range, the sub-sub-TLV MUST be ignored.

* Local BitString Length (BS Len): Encoded BitString length as per [RFC8296], 4 bits.

* Label: First label, 20 bits. The labels are as defined in [RFC8296].

4.3. BIER non-MPLS Encapsulation sub-sub-TLV

The BIER non-MPLS Encapsulation sub-sub-TLV can be carried by BIER sub-TLV. The format and restrictions are aligned with [I-D.ietf-bier-lsr-non-mpls-extensions]. This sub-sub-TLV carries the information for the BIER MPLS encapsulation including the label range for a specific BSL for a certain <MT,SD> pair.

```
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              Type             |             Length            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Max SI    |                  BIFT-id                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|BS Len |                     Reserved                          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: non-MPLS Encapsulation sub-sub-TLV
```

* Type: value of 2 indicating non-MPLS encapsulation.

* Length: 1 octet

* Max SI: Maximum Set Identifier (Section 1 of [RFC8279]) used in the encapsulation for this BIER subdomain for this BitString length, 1 octet. The first BIFT-id is for SI=0, the second BIFT-id is for SI=1, etc. If the BIFT-id associated with the Maximum Set Identifier exceeds the 20-bit range, the sub-sub-TLV MUST be ignored.

* BIFT-id: A 3-octet field, where the 20 rightmost bits represent the first BIFT-id in the BIFT-id range. The 4 leftmost bits MUST be ignored. The "BIFT-id range" is the set of 20-bit values
beginning with the BIFT-id and ending with (BIFT-id + (Max SI)). These BIFT-id’s are used for BIER forwarding as described in [RFC8279] and [RFC8296].

* Local BitString Length (BS Len): Encoded BitString length as per [RFC8296]. 4 bits.

4.3.1. BIER IPv6 transportation sub-sub-TLV

The BIER IPv6 transportation sub-sub-TLV can be carried by BIER non-MPLS Encapsulation sub-sub-TLV. The format and restrictions are aligned with [I-D.ietf-bier-bierin6]. A node that requires IPv6 encapsulation MUST advertise the BIER IPv6 transportation sub-sub-TLV according to local configuration or policy in the BIER domain to request other BFRs to always use IPv6 encapsulation.

The format is the same with the definition in section 4.1, [I-D.ietf-bier-bierin6].

5. Tree types and tunneling

Since Babel is performing a diffusion computation, support for different tree types is not as natural as with link-state protocols. Hence this specification is assuming that normal Babel reachability computation is performed without further modifications.

BIER architecture does not rely on all routers in a domain performing BFR procedures. How to support tunnels that will allow to tunnel BIER across such routers in Babel is for further study.

6. Security Considerations

Security considerations discussed in [RFC8296], [RFC8966] apply to this document

7. IANA Considerations

A new type of Babel update sub-TLV needs to be defined for BIER information advertisement.

8. References

8.1. Normative References

8.2. Informative References

Authors’ Addresses

Zheng(Sandy) Zhang
ZTE Corporation
Email: zhang.zheng@zte.com.cn

Tony Przygienda
Juniper Networks
Email: prz@juniper.net