
Internet Congestion Control Research Group M. Welzl
Internet-Draft S. Islam
Intended status: Experimental K. Hiorth
Expires: May 4, 2017 University of Oslo
 J. You
 Huawei
 October 31, 2016

 TCP-CCC: single-path TCP congestion control coupling
 draft-welzl-tcp-ccc-00

Abstract

 This document specifies a method, TCP-CCC, to combine the congestion
 controls of multiple TCP connections between the same pair of hosts.
 This can have several performance benefits, and it makes it possible
 to precisely assign a share of the congestion window to the
 connections based on priorities. This document also addresses the
 problem that TCP connections between the same pair of hosts may not
 share the same path. We discuss methods to detect if, or enforce
 that connections traverse a common bottleneck.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2017.

Welzl, et al. Expires May 4, 2017 [Page 1]

Internet-Draft TCP-CCC October 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Coupled Congestion Control 3
 3. Ensuring a Common Bottleneck 6
 3.1. Encapsulation . 7
 3.1.1. TCP in UDP . 7
 3.1.2. Other Methods . 14
 4. Related Work . 14
 5. Implementation Status . 15
 6. IANA Considerations . 15
 7. Security Considerations 15
 8. Acknowledgements . 16
 9. References . 16
 9.1. Normative References 16
 9.2. Informative References 16
 Authors’ Addresses . 19

1. Introduction

 When multiple TCP connections between the same host pair compete on
 the same bottleneck, they often incur more delay and losses than a
 single TCP connection. Moreover, it is often not possible to
 precisely divide the available capacity among the connections. To
 address this problem, this document presents TCP-CCC, a method to
 combine the congestion controls of multiple TCP connections between
 the same pair of hosts. This can have several performance benefits:

 o Reduced average loss and queuing delay (because the competition
 between the encapsulated TCP connections is avoided)

 o Assign a precise capacity share based on a priority.

Welzl, et al. Expires May 4, 2017 [Page 2]

Internet-Draft TCP-CCC October 2016

 o Even in the absence of prioritization, better fairness between the
 TCP connections.

 o No need for new connections to slow start up to a reasonable cwnd
 value that ongoing connections already have: a connection can
 immediately be assigned its share of the aggregate’s total cwnd.
 This can significantly reduce the completion time of short
 connections.

 All of these benefits only play out when there are more than one TCP
 connections. Some of the benefits in the list above are more
 significant when some transfers are short. This makes the usage of
 TCP-CCC especially attractive in situations where some transfers are
 short.

 We discuss methods to determine if connections traverse the same
 bottleneck as well as methods to ensure this. To this end, we
 propose a light-weight, dynamically configured TCP-in-UDP (TiU)
 encapsulation scheme. TiU is optional, as our coupled congestion
 control strategy is applicable wherever overlapping TCP flows must
 follow the same path (such as when routed over a VPN tunnel).

2. Coupled Congestion Control

 For each TCP connection c, the algorithm described below receives
 cwnd and ssthresh as input and stores the following information:

 o the Connection ID.

 o a priority P(c) -- e.g., an integer value in the range from 1
 (unimportant) to 10 (very important).

 o The previously used cwnd used by the connection c, ccc_cwnd(c).

 o The previously used ssthresh used by the connection c,
 ccc_ssthresh(c).

 Three global variables sum_cwnd, sum_ssthresh and sum_p are used to
 represent the sum of all the ccc_cwnd values, ccc_sshtresh values and
 priorities of all TCP connections, respectively. sum_cwnd and
 sum_ssthresh are used to update the cwnd and ssthresh values for all
 connections.

 This algorithm emulates the behavior of a single TCP connection by
 choosing one connection as the connection that dictates the increase
 / decrease behavior for the aggregate. We call it the "Coordinating
 Connection" (CoCo). The algorithm was designed to be as simple as
 possible. Below, abbreviations are used to refer to the phases of

Welzl, et al. Expires May 4, 2017 [Page 3]

Internet-Draft TCP-CCC October 2016

 TCP congestion control as defined in [RFC5681]: SS refers to Slow
 Start, CA refers to Congestion Avoidance and FR refers to Fast
 Recovery.

 For simplicity, this algorithm refrains from changing cwnd when a
 connection is in FR. SS should not happen as long as ACKs arrive.
 Hence, the algorithm ensures that the aggregate’s behavior is only
 dictated by SS when all connections are in the SS phase. We use a
 bit array, ssbits, with a bit for each connection in the group. We
 set the bit if the connection state is SS due to an RTO.

 (1) When a connection c starts, it adds its priority P(c) to sum_p.
 If it is the very first connection, it sets sum_cwnd to its own
 cwnd. After that, the connection’s globally known cwnd and
 ssthresh values (ccc_cwnd(c) and ccc_ssthresh(c)) are updated,
 and the connection updates its own cwnd and ssthresh values to
 be equal to ccc_cwnd(c) and ccc_ssthresh(c).

 ccc_P(c) = P
 sum_P = sum_P + P
 sum_cwnd sum_cwnd + cwnd
 ccc_cwnd(c) P = sum_cwnd / sum_P
 ccc_ssthresh(c) = ssthresh
 if sum_ssthresh > 0 then
 ccc_ssthresh(c) P = sum_ssthresh / sum_P
 end if
 // Update c’s own cwnd and ssthresh for immediate use:
 Send ccc_cwnd(c) and ccc_ssthresh(c) to c

 (2) When a connection c stops, its entry is removed. sum_p is
 recalculated.

 if c = CoCo then
 Coco = the next connection
 end if
 sum_p sum_p - ccc_P(c)
 Remove ccc_P(c), ccc_cwnd(c), ccc_ssthresh(c)

 (3) Every time the congestion controller of a connection c
 calculates a new cwnd, the connection calls UPDATE, which
 carries out the tasks listed below to derive the new cwnd and
 ssthresh values. Whenever the CoCo calls UPDATE, sum_cwnd and
 sum_ssthresh are additionally updated to reflect the current sum
 of all stored ccc_cwnd and ccc_ssthresh values. Initially,

Welzl, et al. Expires May 4, 2017 [Page 4]

Internet-Draft TCP-CCC October 2016

 there is only one connection and this connection automatically
 becomes the CoCo. It updates sum_cwnd to its own cwnd and sets
 sum_ssthresh to 0.

 (4) WHEN a non-CoCo connection c CALLS UPDATE......

 if(all of the connections including CoCo are in CA but c is in FR)
 c becomes the new CoCo.
 else
 if(c is in CA or SS)
 c’s cwnd is assigned its previously stored ccc_cwnd value.

 (5) WHEN c(CoCo) CALLS UPDATE......

 if CoCo == c then
 if state == CA and ssbits(c) == 0 then
 if cwnd >= ccc_cwnd(c) then // increased cwnd
 sum_cwnd = sum_cwnd + cwnd - ccc_cwnd(c)
 else
 sum_cwnd = sum_cwnd * cwnd / ccc_cwnd(c)
 end if
 ccc_cwnd(c) = ccc_P(c) * sum_cwnd / sum_p
 ccc_ssthresh(c) ssthresh
 if sum_ssthresh > 0 then
 ccc_ssthresh(c) ccc_P(c) * sum_ssthresh/sum_p
 end if
 else if state == FR then
 sum_ssthresh = sum_cwnd/2
 else if state == SS then
 if c experienced a timeout then
 ssbits(c) = 1
 end if
 if ssbits(x) == 1 for all x then
 ssbits(x) = 0 // for all x
 sum_cwnd = sum_cwnd * cwnd / ccc_cwnd(c)
 ccc_cwnd(c) = ccc_P(c) * sum_cwnd / sum_p
 sum_ssthresh = sum_cwnd/2
 else
 CoCo = first connection where ccc_state == SS
 end if
 end if
 end if

 (6) After that, if the ccc_state(c) is not equal to FR

Welzl, et al. Expires May 4, 2017 [Page 5]

Internet-Draft TCP-CCC October 2016

 if state != FR then
 Send ccc_cwnd(c) and ccc_ssthresh(c) to c
 end if

 When a flow gets a large share of the aggregate immediately after
 joining, it can potentially create a burst in the network. We
 propose a mechanism [anrw2016] to clock the packet transmission out
 by using the ack-clock of TCP. Our algorithm achieves a form of
 "pacing", but it does not rely on any timers.

 When a connection c joins, it turns on the ack-clock feature and
 calculates the share of the aggregate, clocked_cwnd c. Below, we
 illustrate the ack-clock mechanism that is used to distribute the
 share of the cwnd based on the acknowledgements received from other
 flows.

 if clocked_cwnd(c) <= 0 then
 return // alg. ends; other connections can increase cwnd again
 end if
 if number_of_acks c % N = 0 then
 send a new segment for connection c
 clocked_cwnd(c)= clocked_cwnd(c) - 1
 end if
 number_of_acks(c) = number_of_acks(c) + 1

3. Ensuring a Common Bottleneck

 Our algorithm, as well as EFCM [EFCM], E-TCP [EFCM] and the CM
 [RFC3124] assume that multiple TCP connections between the same host
 pair traverse the same bottleneck. This is not always true: load-
 balancing mechanisms such as Link Aggregation Group (LAG) and Equal-
 Cost Multi-Path (ECMP) may force them to take different paths
 [RFC7424]. If this leads to the connections seeing different
 bottlenecks, combining the congestion controllers would incur wrong
 behavior. There are, however, several application scenarios where
 the single-bottleneck assumption is correct.

 Sometimes, the network configuration is known, and it is known that
 mechanisms such as ECMP and LAG do not operate on the bottleneck or
 are simply not in use. Alternatively, measurements can infer whether
 flows traverse the same bottleneck [I-D.ietf-rmcat-sbd]. When IPv6
 is available, the TCP connections could be assigned the same IPv6
 flow label. According to [RFC6437], "The usage of the 3-tuple of the
 Flow Label, Source Address, and Destination Address fields enables
 efficient IPv6 flow classification, where only IPv6 main header

Welzl, et al. Expires May 4, 2017 [Page 6]

Internet-Draft TCP-CCC October 2016

 fields in fixed positions are used" - this would be favorable for TCP
 congestion control coupling. However, this [RFC6437] does not make a
 clear recommendation about either using the 3-tuple or 5-tuple (which
 includes the port numbers) - both methods are valid. Thus, whether
 it works to use the flow label as the sole means to put connections
 on the same path depends on router configuration. When it works, it
 is an attractive option because it does not require changing the
 receiver.

 Finally, encapsulating packets with a header that ensures a common
 path is another possibility to make connections traverse the same
 bottleneck. We will discuss encapsulation in the next section.

3.1. Encapsulation

3.1.1. TCP in UDP

3.1.1.1. Introduction

 We want to be able to ensure that TCP congestion control coupling can
 always work, provided that the required code is available at the
 receiver - and be able to efficiently fall back to the standard
 behaviour in case it is not. To achieve this, we present a method,
 TCP-in-UDP (TiU), to encapsulate multiple TCP connections using the
 same UDP port pair.

 TCP-in-UDP (TiU) is based on [Che13]. It differs from it in that:

 o Other than [Che13], TiU encapsulates multiple TCP connections
 using the same UDP port number pair. TCP port numbers are
 preserved; a single well-known UDP port is used for TiU. If TiU
 is implemented in the kernel, this allows using normal TCP
 sockets, where enabling the usage of TiU could be done via a
 socket option, for example.

 o The header format is slightly different to allow representing a
 TCP connection with a few bits that are encoded across the
 original TCP header’s "Reserved" field and the URG (Urgent) flag
 to encode a Connection ID. With this encoding, similar to the
 encapsulation in [Che13], the total TiU header size does not
 exceed the original TCP header size.

 o A (TiU-encapsulated) TCP SYN uses a newly defined TCP option to
 establish the mapping between a Connection ID and the original TCP
 port number pair.

 TiU inherits all the benefits of [Che13] and a preceding similar
 proposal, [Den08]. It enables TCP-CCC coupled congestion control,

Welzl, et al. Expires May 4, 2017 [Page 7]

Internet-Draft TCP-CCC October 2016

 and it adds the potential disadvantage of not being able to benefit
 from ECMP. In short, the benefits and features of TiU that are
 already explained in detail in [Che13] and [Den08] are:

 o To establish direct communication between two devices that are
 both behind NAT gateways, Interactive Connectivity Establishment
 (ICE) [RFC5245] is used to create the necessary mappings in both
 NAT gateways, and ICE can have higher success rates using UDP
 [RFC5128].

 o TCP options, as required for Multipath TCP [RFC6824], for example,
 are expected to work more reliably because middleboxes will be
 less able to interfere with them.

 o Because the packet format allows the first octet to be in the
 range 0x0-0x3 (as is the case for a STUN [RFC5389] packet, where
 the most significant two bits are always zero), the UDP port
 number pair used by TiU can be used to exchange STUN packets with
 a STUN server that is unaware of TiU.

 o Following the method described in [Che13] and [Den08], other
 transport protocols than TCP (e.g., SCTP) could be UDP-
 encapsulated in a similar fashion. With TiU, the same outer UDP
 port number pair could be used for different encapsulated
 protocols at the same time.

 [Che13] also lists a disadvantage of UDP-encapsulating TCP packets:
 because NAT gateways typically use shorter timeouts for UDP port
 mappings than they do for TCP port mappings, long-lived UDP-
 encapsulated TCP connections will need to send more frequent
 keepalive packets than native TCP connections. TiU inherits this
 problem too, although using a single five-tuple for multiple TCP
 connections alleviates it by reducing the chance of experiencing long
 periods of silence.

3.1.1.2. Specification

 TiU uses a header that is very similar to the header format in
 [Den08] and [Che13], where it is explained in greater detail. It
 consists of a UDP header that is followed by a slightly altered TCP
 header. The UDP source and destination ports are semantically
 different from [Den08] and [Che13]: TiU uses a single well-known UDP
 port, and multiple TCP connections use the same UDP port number pair.
 The encapsulated TCP header is changed to fit into a UDP packet
 without increasing the MSS; this is achieved by removing the TCP
 source and destination ports, the Urgent Pointer and the (now
 unnecessary) TCP checksum. Moreover, the order of fields is changed
 to move the Data Offset field to the beginning of the UDP payload.

Welzl, et al. Expires May 4, 2017 [Page 8]

Internet-Draft TCP-CCC October 2016

 This allows using it to identify other encapsulated content such as a
 STUN packet: for TCP, the Data Offset must be at least 5, i.e. the
 most-significant four bits of the first octet of the UDP payload are
 in the range 0x5-0xF, whereas this is not the case for other
 protocols (e.g., STUN requires these bits to be 0). The altered TCP
 header for TiU is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Length | Checksum |
 +-+
 | Data | Conn |C|E|C|A|P|R|S|F| |
 | Offset| ID |W|C|I|C|S|S|Y|I| Window |
 | | |R|E|D|K|H|T|N|N| |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
 | (Optional) Options |
 +-+

 Figure 1: Encapsulated TCP-in-UDP Header Format (the first 8 bytes
 are the UDP header)

 Different from [Den08] and [Che13], the least-significant four bits
 of the first octet and a bit that replaces the URG bit in the next
 octet together form a five-bit "Connection ID" (Conn ID). TiU
 maintains the port numbers of the TCP connections that it
 encapsulates; the Connection ID is a way to encode the port number
 information with a few unused header bits. It uniquely identifies a
 port number pair of a TCP connection that is encapsulated with TiU.
 Using these five bits, TiU can combine up to 32 TCP connections with
 one UDP port number pair.

 The TiU-TCP SYN and SYN/ACK packets look slightly little different,
 because they need to establish the mapping between the Connection ID
 and the port numbers that are used by TiU-encapsulated TCP
 connections:

Welzl, et al. Expires May 4, 2017 [Page 9]

Internet-Draft TCP-CCC October 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Length | Checksum |
 +-+
 | Data |Re- |C|E| |A|P|R|S|F| |
 | Offset|served |W|C|0|C|S|S|Y|I| Window |
 | | |R|E| |K|H|T|N|N| |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
 | Encapsulated Source Port | Encapsulated Destination Port |
 +-+
 | Options |
 +-+

 Figure 2: Encapsulated TCP-in-UDP SYN and SYN/ACK Packet Header
 Format

 The Encapsulated Source Port and Encapsulated Destination Port are
 the port numbers of the TCP connection. To create this header, an
 implementation can simply swap the position of the original TCP
 header’s port number fields with the position of the Data Offset /
 Reserved / Flags / Window fields.

 Every TiU SYN or TiU SYN-ACK packet also carries at least the TiU-
 Setup TCP option. This option contains a Connection ID number. On a
 SYN packet, it is the Connection ID that the sender intends to use in
 future packets to represent the Encapsulated Source Port and
 Encapsulated Destination Port. On a SYN/ACK packet, it confirms that
 such usage is accepted by the recipient of the SYN. A special value
 of 255 is used to signify an error, upon which TiU will no longer be
 used (i.e., the next packet is expected to be a non-encapsulated TCP
 packet). The TiU-Setup TCP option is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Kind | Length | ExID |
 +-+
 | Connection ID |
 +-+-+-+-+-+-+-+-+

 Figure 3: TiU Setup TCP Option

Welzl, et al. Expires May 4, 2017 [Page 10]

Internet-Draft TCP-CCC October 2016

 The option follows the format for Experimental TCP Options defined in
 [RFC6994]. It has Kind=253, Length=5, an ExID that is with value TBD
 (see Section 6) and the Connection ID. The Connection ID is an 8-bit
 field for easier parsing, but only values 0-31 are valid Connection
 IDs (because the Connection ID in non - SYN or SYN/ACK TiU packets is
 only 5 bit long).

3.1.1.3. Protocol Operation and Implementation Notes

 There can be several ways to implement TCP-in-UDP. The following
 gives an overview of how a TiU implementation can operate. This
 description matches the implementation described in Section 5.

 A goal of TiU is to achieve congestion control coupling with a simple
 implementation that minimizes changes to existing code. It is thus
 recommendable to implement TiU in the kernel, as a change to the
 existing kernel TCP code. The changes fall in two basic categories:

 o Encapsulation and decapsulation: this is code that should, in the
 simplest case, operate just before a TCP segment is transmitted.
 Based on e.g. a socket option that enables/disables TiU, the TCP
 segment is changed into the TiU header format (Figure 1). In case
 it is a TCP SYN or TCP SYN/ACK packet, the header format is
 defined as in Figure 2, and the TiU-Setup TCP option is appended.
 This packet is then transmitted. For decapsulation, the reverse
 mechanism applies, upon reception of a UDP packet that uses
 destination port XXX (TBD, see Section 6). Both hosts keep a list
 of encapsulated TCP port numbers and their corresponding
 Connection IDs. In case a SYN packet requests using a Connection
 ID that is already reserved, an error (Connection ID value 255 in
 the TiU Setup TCP option) must be signified to the other end in a
 TiU-encapsulated TCP SYN/ACK, and encapsulation must be disabled
 on all further TCP packets. Similarly, when receiving a TiU SYN/
 ACK with an error, a TCP sender must stop encapsulating TCP
 packets.

 The TCP port number space usage on the host is left unchanged: the
 original code can reserve TCP ports as it always did. Except for the
 TiU encapsulation compressing the port numbers into a Connection ID
 field, TCP ports should be used similar to normal TCP operation. A
 TCP port that is in use by a TiU-encapsulated TCP connection must
 therefore not be made available to non-encapsulated TCP connections,
 and vice versa.

 For each TCP connection, two variables must be configured: 1) TiU-
 ENABLE, which is a boolean, deciding whether to use TiU or not, and
 2) Priority, which is a value, e.g. from 1 to 10, that is used by the
 coupled congestion control algorithm to assign an appropriate share

Welzl, et al. Expires May 4, 2017 [Page 11]

Internet-Draft TCP-CCC October 2016

 of the total cwnd to the connection. Priority values are local and
 their range does not matter for this algorithm: the algorithm works
 with a flow’s priority portion of the sum of all priority values.
 The configuration of the two per-connection variables can be
 implemented in various ways, e.g. through an API option.

 With these code changes in place, TiU can operate as follows,
 assuming no previous TiU connections have been made between a
 specific host pair and a client tries to connect to a server:

 o An application uses an API option to request TiU operation. The
 kernel then sends out a TiU TCP SYN that contains a TiU-Setup TCP
 option. This packet header contains the encapsulated TCP port
 numbers (source port A and destination port B) and the Connection
 ID X.

 o The server listens on UDP port XXX (TBD, see Section 6). Upon
 receiving a packet on this port, it knows that it is a TiU packet
 and decodes it, handing the resulting TCP packet over to "normal"
 TCP processing. The TiU-Setup TCP option allows the server to
 associate future TiU packets containing Connection ID X with ports
 A and B. The server sends its response as a TiU SYN-ACK.

 o TCP operates as normal from here on, but packets are TiU-
 encapsulated before sending them out and decapsulated upon
 reception, using Connection ID X. Both hosts associate TiU
 packets carrying Connection ID X with a local identifier that
 matches ports A and B, just like they would associate non-
 encapsulated TCP packets with the same local identifier when
 seeing ports A and B in the TCP header.

 o If an application on either side of the TiU connection wants to
 connect to a destination host on the other side and requests TiU
 operation, the kernel sends out another TiU TCP SYN, this time
 containing a different TCP source port number and either the same
 or a different destination port number (C and D), and a TiU-Setup
 TCP option with Connection ID Y. From now on, packets carrying
 Connection ID Y will be associated with ports C and D on both
 hosts. Otherwise, TiU operation continues as described above.

 o Now, because there are two or more connections available between
 the same host pair, coupled congestion control begins to operate
 for all outgoing TiU packets (see Section 2 for details). This is
 a local operation, applying the priority values that were
 configured to use for the TiU-encapsulated TCP connections.

 Unless it is known that UDP packets with destination port number XXX
 (TBD, see Section 6) can be used without problems on the path between

Welzl, et al. Expires May 4, 2017 [Page 12]

Internet-Draft TCP-CCC October 2016

 two communicating hosts, it is advisable for TiU implementations to
 contain methods to fall back to non-encapsulated ("raw") TCP
 communication. Such fall-back must be supported for the case of
 Connection ID collisions anyway. Middleboxes have been known to
 track TCP connections [Honda11], and falling back to communication
 with raw TCP packets without ever using a raw TCP SYN - SYN/ACK
 handshake may lead to problems with such devices. The following
 method is recommended to efficiently fall back to raw TCP
 communication:

 o After sending out a TiU SYN packet, additionally send a raw TCP
 SYN packet.

 o After sending out a TiU SYN/ACK packet, additionally send a raw
 TCP SYN/ACK packet.

 o Upon receiving a TiU SYN packet, after responding with a TiU SYN/
 ACK packet and raw TCP SYN/ACK packet, immediately store the
 encapsulated port numbers and Connection ID. As long as a TiU
 connection is ongoing, ignore any additional incoming TCP SYN or
 TCP SYN/ACK packets from the same host that carry port numbers
 matching the stored encapsulated port numbers. Otherwise, process
 TCP SYN or TCP SYN/ACK packets as normal.

 This method ensures that the TCP SYN / SYN/ACK handshake is visible
 to middleboxes and allows to immediately switch back to raw TCP
 communication in case of failures. If implemented on both sides as
 described above and no TiU SYN or TiU SYN/ACK packet arrives, yet a
 TCP SYN or TCP SYN/ACK packet does, this can only mean that the other
 host does not support TiU, a UDP packet was dropped, or the UDP and
 TCP packets were reordered in transit. Reordering in the host (e.g.,
 a server responding to a TCP SYN before it responds to a TiU SYN) can
 be a problem for similar methods (e.g. [RFC6555]), but it can be
 eliminated by prescribing the processing order as above.

 Because TCP does not preserve message boundaries and the size of the
 TCP header can vary depending on the options that are used, it is
 also no problem to precede the TCP header in the UDP packet with a
 different header (e.g. PLUS or SPUD [I-D.hildebrand-spud-prototype])
 without exceeding the known MTU limit. When creating a TCP segment,
 a TCP sender needs to consider the length of this header when
 calculating the segment size, just like it would consider the length
 of a TCP option. For this to work, the usage of other headers such
 as PLUS or SPUD in-between the UDP header and the TiU header must
 therefore be known to both the sender-side and receiver-side code
 that processes TiU.

Welzl, et al. Expires May 4, 2017 [Page 13]

Internet-Draft TCP-CCC October 2016

3.1.1.4. Usage Considerations

 TiU cannot work with applications that require the Urgent pointer
 (which is not recommended for use by new applications anyway
 [RFC6093], but should be consider if TiU is implemented in a way that
 allows it to be applied onto existing applications; telnet is a well-
 known example of an application that uses this functionality). It
 can also be used as a method to experimentally test new TCP
 functionality in the presence of middleboxes that would otherwise
 create problems (as some have been known to do [Honda11]).

 Reasons to use TiU include the benefits of [Che13] and [Den08] that
 were discussed in Section 1. TiU has the disadvantage of disabling
 ECMP for the TCP connections that it encapsulates. This can reduce
 the capacity usage of these TCP connections. It has the advantage of
 being able to apply TCP-CCC coupled congestion control, which can
 provide precise congestion window assignment based on a priority.

3.1.2. Other Methods

 There are many possible encapsulation schemes for various use cases.
 For example, Generic UDP Encapsulation (GUE)
 [I-D.draft-ietf-nvo3-gue] allows us to multiplex several TCP
 connections onto a same UDP port number pair. Several encapsulation
 methods transmit layer-2 frames over an IP network - e.g. VXLAN
 [RFC7348] (over UDP/IP) and NvGRE [RFC7637] (over GRE/IP). Because
 Layer-2 networks should be agnostic to the transport connections
 running over them, the path should not depend on the TCP port number
 pair and our algorithm should work. Some care must still be taken:
 for example, for NvGRE, [RFC7637] says: "If ECMP is used, it is
 RECOMMENDED that the ECMP hash is calculated either using the outer
 IP frame fields and entire Key field (32 bits) or the inner IP and
 transport frame fields". If routers do use the inner transport frame
 fields (typically, port numbers) for this hashing, we have the same
 problem even over NvGRE.

4. Related Work

 The TCPMUX mechanism in [RFC1078] multiplexes TCP connections under
 the same outer transport port number; it does however not preserve
 the port numbers of the original TCP connections, and no method to
 couple congestion controls is described in [RFC1078].

 Congestion control coupling follows the style of RTP application
 congestion control coupling in [I-D.ietf-rmcat-coupled-cc] which is
 designed to be easy to implement, and to minimize the number of
 changes that need to be made to the underlying congestion control
 mechanisms. This method was shown to yield several benefits in

Welzl, et al. Expires May 4, 2017 [Page 14]

Internet-Draft TCP-CCC October 2016

 [fse]. TCP-CCC requires slightly deeper changes to TCP’s congestion
 control, making it harder to implement than
 [I-D.ietf-rmcat-coupled-cc], but it is still a much smaller code
 change than the Congestion Manager [RFC3124].

 Combining congestion controls as TCP-CCC does it has some
 similarities with Ensemble Sharing in [RFC2140], which however only
 concerns initial values of variables used by new connections and does
 not share the congestion window (cwnd). The cwnd variable is shared
 across ongoing connections in [ETCP] and [EFCM], and the mechanism
 described in Section 2 resembles the mechanisms in these works, but
 neither [ETCP] nor [EFCM] address the problem of ECMP.

 Coupled congestion control has also been specified for Multipath TCP
 [RFC6356]. MPTCP’s coupled congestion control combines the
 congestion controls of subflows that may traverse different paths,
 whereas we propose congestion control coupling for flows sharing a
 single-path. TCP-CCC builds on the assumption that all its
 encapsulated TCP connections traverse the same path. This makes the
 two methods for coupled congestion control very different, even
 though they both aim at emulating the behavior of a single TCP
 connection in the case where all flows traverse the same network
 bottleneck. For example, a new flow obtaining a a larger-than-IW
 share of the aggregate cwnd would be inappropriate for an MPTCP
 subflow.

5. Implementation Status

 We have implemented TCP-CCC and TiU encapsulation for both the sender
 and receiver in the FreeBSD kernel, as a simple add-on to the TCP
 implementation that is controlled via a socket option.

6. IANA Considerations

 This document specifies a new TCP option that uses the shared
 experimental options format [RFC6994]. No value has yet been
 assigned for ExID.

 This document requires a well-known UDP port (referred to as port XXX
 in this document). Due to the highly experimental nature of TiU,
 this document is being shared with the community to solicit comments
 before requesting such a port number.

7. Security Considerations

 TBD

Welzl, et al. Expires May 4, 2017 [Page 15]

Internet-Draft TCP-CCC October 2016

8. Acknowledgements

 This work has received funding from Huawei Technologies Co., Ltd.,
 and the European Union’s Horizon 2020 research and innovation
 programme under grant agreement No. 644334 (NEAT). The views
 expressed are solely those of the author(s).

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

9.2. Informative References

 [anrw2016]
 Islam, S. and M. Welzl, "Start Me Up:Determining and
 Sharing TCP’s Initial Congestion Window", ACM, IRTF, ISOC
 Applied Networking Research Workshop 2016 (ANRW 2016) ,
 2016.

 [Che13] Cheshire, S., Graessley, J., and R. McGuire,
 "Encapsulation of TCP and other Transport Protocols over
 UDP", Internet-draft draft-cheshire-tcp-over-udp-00, June
 2013.

 [Den08] Denis-Courmont, R., "UDP-Encapsulated Transport
 Protocols", Internet-draft draft-denis-udp-transport-00,
 July 2008.

 [EFCM] Savoric, M., Karl, H., Schlager, M., Poschwatta, T., and
 A. Wolisz, "Analysis and performance evaluation of the
 EFCM common congestion controller for TCP connections",
 Computer Networks (2005) , 2005.

 [ETCP] Eggert, L., Heidemann, J., and J. Joe, "Effects of
 ensemble-TCP", ACM SIGCOMM Computer Communication Review
 (2000) , 2000.

Welzl, et al. Expires May 4, 2017 [Page 16]

Internet-Draft TCP-CCC October 2016

 [fse] Islam, S., Welzl, M., Gjessing, S., and N. Khademi,
 "Coupled Congestion Control for RTP Media", ACM SIGCOMM
 Capacity Sharing Workshop (CSWS 2014) and ACM SIGCOMM CCR
 44(4) 2014; extended version available as a technical
 report from
 http://safiquli.at.ifi.uio.no/paper/fse-tech-report.pdf ,
 2014.

 [Honda11] Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A.,
 Handley, M., and H. Tokuda, "Is it still possible to
 extend TCP?", Proc. of ACM Internet Measurement Conference
 (IMC) ’11, November 2011.

 [I-D.draft-ietf-nvo3-gue]
 Herbert, T., Yong, L., and O. Zia, "Generic UDP
 Encapsulation", Internet-draft draft-ietf-nvo3-gue-05,
 October 2016.

 [I-D.hildebrand-spud-prototype]
 Hildebrand, J. and B. Trammell, "Substrate Protocol for
 User Datagrams (SPUD) Prototype", draft-hildebrand-spud-
 prototype-03 (work in progress), March 2015.

 [I-D.ietf-rmcat-coupled-cc]
 Islam, S., Welzl, M., and S. Gjessing, "Coupled congestion
 control for RTP media", draft-ietf-rmcat-coupled-cc-03
 (work in progress), July 2016.

 [I-D.ietf-rmcat-sbd]
 Hayes, D., Ferlin, S., Welzl, M., and K. Hiorth, "Shared
 Bottleneck Detection for Coupled Congestion Control for
 RTP Media.", draft-ietf-rmcat-sbd-04 (work in progress),
 March 2016.

 [RFC1078] Lottor, M., "TCP port service Multiplexer (TCPMUX)", RFC
 1078, DOI 10.17487/RFC1078, November 1988,
 <http://www.rfc-editor.org/info/rfc1078>.

 [RFC2140] Touch, J., "TCP Control Block Interdependence", RFC 2140,
 DOI 10.17487/RFC2140, April 1997,
 <http://www.rfc-editor.org/info/rfc2140>.

 [RFC3124] Balakrishnan, H. and S. Seshan, "The Congestion Manager",
 RFC 3124, DOI 10.17487/RFC3124, June 2001,
 <http://www.rfc-editor.org/info/rfc3124>.

Welzl, et al. Expires May 4, 2017 [Page 17]

Internet-Draft TCP-CCC October 2016

 [RFC5128] Srisuresh, P., Ford, B., and D. Kegel, "State of Peer-to-
 Peer (P2P) Communication across Network Address
 Translators (NATs)", RFC 5128, DOI 10.17487/RFC5128, March
 2008, <http://www.rfc-editor.org/info/rfc5128>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, DOI
 10.17487/RFC5245, April 2010,
 <http://www.rfc-editor.org/info/rfc5245>.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 DOI 10.17487/RFC5389, October 2008,
 <http://www.rfc-editor.org/info/rfc5389>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <http://www.rfc-editor.org/info/rfc5681>.

 [RFC6093] Gont, F. and A. Yourtchenko, "On the Implementation of the
 TCP Urgent Mechanism", RFC 6093, DOI 10.17487/RFC6093,
 January 2011, <http://www.rfc-editor.org/info/rfc6093>.

 [RFC6356] Raiciu, C., Handley, M., and D. Wischik, "Coupled
 Congestion Control for Multipath Transport Protocols", RFC
 6356, DOI 10.17487/RFC6356, October 2011,
 <http://www.rfc-editor.org/info/rfc6356>.

 [RFC6437] Amante, S., Carpenter, B., Jiang, S., and J. Rajahalme,
 "IPv6 Flow Label Specification", RFC 6437, DOI 10.17487/
 RFC6437, November 2011,
 <http://www.rfc-editor.org/info/rfc6437>.

 [RFC6555] Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with
 Dual-Stack Hosts", RFC 6555, DOI 10.17487/RFC6555, April
 2012, <http://www.rfc-editor.org/info/rfc6555>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

 [RFC6994] Touch, J., "Shared Use of Experimental TCP Options", RFC
 6994, DOI 10.17487/RFC6994, August 2013,
 <http://www.rfc-editor.org/info/rfc6994>.

Welzl, et al. Expires May 4, 2017 [Page 18]

Internet-Draft TCP-CCC October 2016

 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
 eXtensible Local Area Network (VXLAN): A Framework for
 Overlaying Virtualized Layer 2 Networks over Layer 3
 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
 <http://www.rfc-editor.org/info/rfc7348>.

 [RFC7424] Krishnan, R., Yong, L., Ghanwani, A., So, N., and B.
 Khasnabish, "Mechanisms for Optimizing Link Aggregation
 Group (LAG) and Equal-Cost Multipath (ECMP) Component Link
 Utilization in Networks", RFC 7424, DOI 10.17487/RFC7424,
 January 2015, <http://www.rfc-editor.org/info/rfc7424>.

 [RFC7637] Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network
 Virtualization Using Generic Routing Encapsulation", RFC
 7637, DOI 10.17487/RFC7637, September 2015,
 <http://www.rfc-editor.org/info/rfc7637>.

Authors’ Addresses

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Email: michawe@ifi.uio.no

 Safiqul Islam
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 84 08 37
 Email: safiquli@ifi.uio.no

 Kristian Hiorth
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Email: kristahi@ifi.uio.no

Welzl, et al. Expires May 4, 2017 [Page 19]

Internet-Draft TCP-CCC October 2016

 Jianjie You
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing 210012
 China

 Email: youjianjie@huawei.com

Welzl, et al. Expires May 4, 2017 [Page 20]

