I nt ernet Congestion Control Research G oup M Wl zl

I nternet-Draft S. Islam

I ntended status: Experinental K. Horth

Expires: May 4, 2017 Uni versity of Gslo
J. You
Huawei

Cct ober 31, 2016

TCP-CCC. single-path TCP congestion control coupling
draft-wel zl -t cp-ccc-00

Abst ract

Thi s docunent specifies a method, TCP-CCC, to conbine the congestion
controls of nmultiple TCP connections between the sane pair of hosts.
This can have several perfornmance benefits, and it nmakes it possible
to precisely assign a share of the congestion wi ndow to the
connections based on priorities. This document al so addresses the
probl em that TCP connections between the sane pair of hosts may not
share the sane path. W discuss nethods to detect if, or enforce
that connections traverse a conmon bottl eneck

Requi renment s Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute

wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on May 4, 2017.

wel zl, et al. Expires May 4, 2017 [Page 1]

Internet-Draft TCP- CCC Cct ober 2016

Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction 2
2. Coupl ed Congestion Control 3
3. Ensuring a Conmon Bottl eneck 6
3.1. Encapsul ation . 7
3.1.1. TCP in UDP e 7
3.1.2. Oher Methods 14

4. Related Work 14
5. Inplenentation Status . 15
6. | ANA Considerations .. 15
7. Security Considerations 15
8. Acknowl edgements 16
9. References 16
9.1. Normative References 16
9.2. Informative References 16
Aut hors’ Addresses .. 19

1. Introduction

When multiple TCP connecti ons between the sane host pair conpete on
the same bottleneck, they often incur nore delay and | osses than a
single TCP connection. Mbreover, it is often not possible to

preci sely divide the avail abl e capacity anong the connections. To
address this problem this docunent presents TCP-CCC, a nethod to
conbi ne the congestion controls of nultiple TCP connecti ons between
the same pair of hosts. This can have several perfornmance benefits:

0 Reduced average | oss and queui ng del ay (because the conpetition
bet ween the encapsul ated TCP connections is avoi ded)

0 Assign a precise capacity share based on a priority.

wel zl, et al. Expires May 4, 2017 [Page 2]

Internet-Draft TCP- CCC Cct ober 2016

0 Even in the absence of prioritization, better fairness between the
TCP connecti ons.

0 No need for new connections to slow start up to a reasonable cwnd
val ue that ongoi ng connections al ready have: a connection can
i medi ately be assigned its share of the aggregate’'s total cwnd.
This can significantly reduce the conpletion time of short
connecti ons.

Al'l of these benefits only play out when there are nore than one TCP
connections. Sonme of the benefits in the |ist above are nore
significant when sone transfers are short. This makes the usage of
TCP-CCC especially attractive in situations where sonme transfers are
short.

We di scuss nethods to deternmine if connections traverse the sanme
bottl eneck as well as nmethods to ensure this. To this end, we
propose a |light-weight, dynam cally configured TCP-in-UDP (TiU)
encapsul ati on schene. TiU is optional, as our coupled congestion
control strategy is applicable wherever overl apping TCP fl ows nust
follow the same path (such as when routed over a VPN tunnel).

2. Coupl ed Congestion Contro

For each TCP connection c, the al gorithm described bel ow recei ves
cwnd and ssthresh as input and stores the follow ng information

o the Connection ID.

o a priority P(c) -- e.g., an integer value in the range from1l
(uninportant) to 10 (very inportant).

o The previously used cwnd used by the connection c, ccc_cwnd(c).

0 The previously used ssthresh used by the connection c,
ccc_ssthresh(c).

Three gl obal variables sum cwnd, sum ssthresh and sump are used to
represent the sumof all the ccc_cwnd val ues, ccc_sshtresh val ues and
priorities of all TCP connections, respectively. sumcwnd and

sum ssthresh are used to update the cwnd and ssthresh val ues for al
connecti ons.

This algorithmenul ates the behavior of a single TCP connection by
choosi ng one connection as the connection that dictates the increase
/| decrease behavior for the aggregate. W call it the "Coordinating
Connection" (CoCo). The algorithmwas designed to be as sinple as
possi ble. Below, abbreviations are used to refer to the phases of

wel zl, et al. Expires May 4, 2017 [Page 3]

Internet-Draft TCP- CCC Cct ober 2016

TCP congestion control as defined in [RFC5681]: SS refers to Sl ow
Start, CA refers to Congestion Avoidance and FR refers to Fast
Recovery.

For sinmplicity, this algorithmrefrains fromchangi ng cwnd when a
connection is in FR SS should not happen as |ong as ACKs arrive.
Hence, the algorithmensures that the aggregate’s behavior is only
dictated by SS when all connections are in the SS phase. W use a
bit array, ssbits, with a bit for each connection in the group. W
set the bit if the connection state is SS due to an RTO

(1) Wen a connection c starts, it adds its priority P(c) to sump.
If it is the very first connection, it sets sumcwnd to its own
cwnd. After that, the connection’s globally known cwnd and
ssthresh val ues (ccc_cwnd(c) and ccc_ssthresh(c)) are updated,
and t he connection updates its own cwnd and ssthresh values to
be equal to ccc_cwnd(c) and ccc_ssthresh(c).

ccc_P(c) =P
sumP = sumP + P
sum cwnd sum cwnd + cwnd
ccc_cwnd(c) P = sumcwnd / sumP
ccc_ssthresh(c) = ssthresh
if sumssthresh > 0 then
ccc_ssthresh(c) P = sumssthresh / sum P
end if
/1l Update ¢c’s own cwnd and ssthresh for i medi ate use:
Send ccc_cwnd(c) and ccc_ssthresh(c) to ¢

(2) Wen a connection c stops, its entry is renmoved. sump is
recal cul at ed.

if ¢ = CoCo then
Coco = the next connection
end if
sump sump - ccc_P(c)
Renove ccc_P(c), ccc_cwnd(c), ccc_ssthresh(c)

(3) Every time the congestion controller of a connection ¢
cal cul ates a new cwnd, the connection calls UPDATE, which
carries out the tasks listed below to derive the new cwnd and
ssthresh val ues. Wenever the CoCo calls UPDATE, sum cwnd and
sum ssthresh are additionally updated to reflect the current sum
of all stored ccc_cwnd and ccc_ssthresh values. Initially,

wel zl, et al. Expires May 4, 2017 [Page 4]

Internet-Draft TCP- CCC Cct ober 2016

there is only one connection and this connection automatically
becones the CoCo. It updates sumcwnd to its own cwnd and sets
sum ssthresh to 0.

(4) WHEN a non-CoCo connection ¢ CALLS UPDATE......

if(all of the connections including CoCo are in CAbut c is in FR
¢ becones the new CoCo
el se
if(cisin CA or SS)
c's cwnd is assigned its previously stored ccc_cwnd val ue.

(5) WHEN c(CoCo) CALLS UPDATE......

if CoCo == c then
if state == CA and ssbhits(c) == 0 then
if cwnd >= ccc_cwnd(c) then // increased cwnd
sum cwnd = sumcwnd + cwnd - ccc_cwnd(c)
el se
sum cwnd = sumcwnd * cwnd / ccc_cwnd(c)
end if
ccc_cwnd(c) = ccc_P(c) * sumcewnd / sump
ccc_ssthresh(c) ssthresh
if sumssthresh > 0 then
ccc_ssthresh(c) ccc_P(c) * sum ssthresh/sump

end if
else if state == FR then

sum ssthresh = sum cwnd/ 2
else if state == SS then

if c experienced a tinmeout then
sshits(c) =1

end if

if sshits(x) == 1 for all x then
ssbhits(x) =0 // for all x
sum cwnd = sumcwnd * cwnd / ccc_cwnd(c)
ccc_cwnd(c) = ccc_P(c) * sumcecwnd / sump
sum ssthresh = sum cwnd/ 2

el se
CoCo = first connection where ccc_state == SS

end if

end if
end if

(6) After that, if the ccc_state(c) is not equal to FR

wel zl, et al. Expires May 4, 2017 [Page 5]

Internet-Draft TCP- CCC Cct ober 2016

if state !'= FR then
Send ccc_cwnd(c) and ccc_ssthresh(c) to c
end if

When a flow gets a large share of the aggregate i mMmediately after
joining, it can potentially create a burst in the network. W
propose a nechani sm[anrw2016] to clock the packet transm ssion out
by using the ack-clock of TCP. Qur algorithm achieves a form of
"pacing", but it does not rely on any tiners.

When a connection ¢ joins, it turns on the ack-clock feature and
cal cul ates the share of the aggregate, clocked_cwnd c. Below, we
illustrate the ack-clock nechanismthat is used to distribute the
share of the cwnd based on the acknow edgenents received from ot her
flows.

if clocked_cwnd(c) <= 0 then
return // alg. ends; other connections can increase cwnd again
end if
i f nunber_of _acks ¢ % N = 0 then
send a new segnent for connection ¢
cl ocked_cwnd(c)= clocked cwnd(c) - 1
end if
nunber _of _acks(c) = nunber_of acks(c) + 1

3. Ensuring a Conmon Bottl eneck

Qur algorithm as well as EFCM [EFCM, E-TCP [EFCM and the CM

[RFC3124] assune that multiple TCP connections between the same host
pair traverse the sane bottleneck. This is not always true: |oad-
bal anci ng nechani sns such as Link Aggregati on G oup (LAG and Equal -
Cost Multi-Path (ECMP) nay force themto take different paths
[RFC7424]. If this leads to the connections seeing different

bottl enecks, conbining the congestion controllers would incur w ong
behavior. There are, however, several application scenarios where
the single-bottl eneck assunption is correct.

Sonetines, the network configuration is known, and it is known that
mechani sms such as ECMP and LAG do not operate on the bottl eneck or
are sinply not in use. Alternatively, nmeasurenents can infer whether
flows traverse the sane bottleneck [I-D.ietf-rncat-sbd]. Wen |IPv6
is avail able, the TCP connections could be assigned the same | Pv6
flow |l abel. According to [RFC6437], "The usage of the 3-tuple of the
FIl ow Label, Source Address, and Destination Address fields enables
efficient 1Pv6 flow classification, where only | Pv6 nmai n header

wel zl, et al. Expires May 4, 2017 [Page 6]

Internet-Draft TCP- CCC Cct ober 2016

fields in fixed positions are used" - this would be favorable for TCP
congestion control coupling. However, this [RFC6437] does not make a
cl ear recommendati on about either using the 3-tuple or 5-tuple (which
i ncludes the port nunbers) - both nethods are valid. Thus, whether

it works to use the flow | abel as the sole neans to put connections
on the sane path depends on router configuration. Wen it works, it
is an attractive option because it does not require changing the
receiver.

Final |l y, encapsul ating packets with a header that ensures a commobn
path is another possibility to nake connections traverse the sane
bottleneck. We will discuss encapsulation in the next section

3.1. Encapsul ation
3.1.1. TCP in UDP
3.1.1.1. Introduction

We want to be able to ensure that TCP congestion control coupling can
al ways work, provided that the required code is available at the
receiver - and be able to efficiently fall back to the standard
behaviour in case it is not. To achieve this, we present a nethod,
TCP-in-UDP (TiU), to encapsulate nmultiple TCP connections using the
sane UDP port pair.

TCP-in-UDP (TiU) is based on [Chel3]. It differs fromit in that:

0 Oher than [Chel3], Ti U encapsulates nultiple TCP connections
usi ng the same UDP port number pair. TCP port nunbers are
preserved; a single well-known UDP port is used for TiU If TiU
is inplemented in the kernel, this allows using normal TCP
sockets, where enabling the usage of TiU could be done via a
socket option, for exanple.

0 The header format is slightly different to allow representing a
TCP connection with a few bits that are encoded across the
original TCP header’s "Reserved" field and the URG (Urgent) flag
to encode a Connection ID. Wth this encoding, simlar to the
encapsul ation in [Chel3], the total Ti U header size does not
exceed the original TCP header size.

0 A (TiUencapsulated) TCP SYN uses a newy defined TCP option to
establish the mappi ng between a Connection ID and the original TCP
port nunber pair.

TiUinherits all the benefits of [Chel3] and a preceding simlar
proposal, [Den08]. It enables TCP- CCC coupl ed congestion control

wel zl, et al. Expires May 4, 2017 [Page 7]

Internet-Draft TCP- CCC Cct ober 2016

and it adds the potential disadvantage of not being able to benefit
fromECWP. 1In short, the benefits and features of TiU that are
al ready explained in detail in [Chel3] and [Den08] are:

0 To establish direct comunication between two devices that are
bot h behi nd NAT gat eways, Interactive Connectivity Establishnent
(ICE) [RFC5245] is used to create the necessary mappings in both
NAT gat eways, and | CE can have hi gher success rates using UDP
[RFC5128] .

o0 TCP options, as required for Miltipath TCP [RFC6824], for exanpl e,
are expected to work nore reliably because niddl eboxes will be
less able to interfere with them

0 Because the packet format allows the first octet to be in the
range 0x0-0x3 (as is the case for a STUN [RFC5389] packet, where
the nost significant two bits are always zero), the UDP port
nunber pair used by Ti U can be used to exchange STUN packets with
a STUN server that is unaware of TiU

o Follow ng the nethod described in [Chel3] and [Den08], other
transport protocols than TCP (e.g., SCTP) coul d be UDP-
encapsulated in a simlar fashion. Wth TiU, the sane outer UDP
port nunber pair could be used for different encapsul ated
protocol s at the sane tine.

[Chel3] also lists a disadvantage of UDP-encapsul ati ng TCP packets:
because NAT gateways typically use shorter tineouts for UDP port

mappi ngs than they do for TCP port mappings, |long-1lived UDP-

encapsul ated TCP connections will need to send nore frequent
keepal i ve packets than native TCP connections. TiU inherits this
probl em t oo, although using a single five-tuple for nultiple TCP
connections alleviates it by reducing the chance of experiencing |ong
peri ods of silence.

3.1.1.2. Specification

Ti U uses a header that is very simlar to the header format in

[Den08] and [Chel3], where it is explained in greater detail. It
consists of a UDP header that is followed by a slightly altered TCP
header. The UDP source and destination ports are semantically
different from|[Den08] and [Chel3]: TiU uses a single well-known UDP
port, and multiple TCP connections use the sanme UDP port nunber pair.
The encapsul ated TCP header is changed to fit into a UDP packet

wi t hout increasing the MSS; this is achieved by renoving the TCP
source and destination ports, the Urgent Pointer and the (now
unnecessary) TCP checksum Mreover, the order of fields is changed
to nove the Data Offset field to the beginning of the UDP payl oad.

wel zl, et al. Expires May 4, 2017 [Page 8]

Internet-Draft TCP- CCC Cct ober 2016

This allows using it to identify other encapsul ated content such as a
STUN packet: for TCP, the Data Ofset nust be at least 5, i.e. the
nmost-significant four bits of the first octet of the UDP payl oad are
in the range 0x5-0xF, whereas this is not the case for other
protocols (e.g., STUN requires these bits to be 0). The altered TCP
header for TiU is shown bel ow

0 1 2 3
01234567890123456789012345678901
B i e S T e e S e e e SR S S S S i et oI SN S Rl S e S S e i et o
| Sour ce Port | Destination Port |
R e i e i i e T R S S e il sl S I R S S e S e s
| Length | Checksum |
B e e s i i o e S e e sl sl s TR S S S S S S S
| Data | Conn |ClE C A PR S F |
| Ofset| | IWCQ 1|C SIS Y] W ndow |
I I |RIEID K HTINN I
R e i e i i e T R S S e il sl S I R S S e S e s
| Sequence Nunber |
B e e s i i o e S e e sl sl s TR S S S S S S S
| Acknowl edgnent Nunber |
B i e S T e e S e e e SR S S S S i et oI SN S Rl S e S S e i et o
| (Optional) Options |
R e i e i i e T R S S e il sl S I R S S e S e s

Figure 1: Encapsul ated TCP-i n- UDP Header Format (the first 8 bytes
are the UDP header)

Different from[Den08] and [Chel3], the |l east-significant four bits
of the first octet and a bit that replaces the URG bit in the next
octet together forma five-bit "Connection ID'" (Conn ID). TiU

mai ntai ns the port numbers of the TCP connections that it

encapsul ates; the Connection IDis a way to encode the port nunber
information with a few unused header bits. It uniquely identifies a
port nunber pair of a TCP connection that is encapsulated with Ti U
Using these five bits, TiU can conmbine up to 32 TCP connections with
one UDP port numnber pair.

The Ti U-TCP SYN and SYN ACK packets look slightly little different,
because they need to establish the mappi ng between the Connection ID
and the port nunbers that are used by Ti U-encapsul ated TCP

connecti ons:

wel zl, et al. Expires May 4, 2017 [Page 9]

Internet-Draft TCP- CCC Cct ober 2016

Acknow
B o o ok ok S S S e e Rk ol ol T I S e e e e e e i

Encapsul at ed Source Port Encapsul ated Destination Port |
B e i i S e S i e S T S R S e o o T S s

Options |

I i i S i i I S R e Sl N N

+
ment Nunber
+

0 1 2 3
01234567890123456789012345678901
B o o ks s S S e i el T R e S S e o o o o o =
[Source Port [Destination Port [
B e i T i i S S R S S e i et ot E S S e S e s S
| Length | Checksum |
R e R e i i o i B S O e e e i i b NI R D S R S S o S e o
| Data |Re- | G E[|APR S| F| _ I
| Ofset|served |WCO0|C SIS|Y]I] W ndow |
I I IRIEl [KIHTINN I
B e i T i i S S R S S e i et ot E S S e S e s S
[Sequence Nunber |
R e o e et I NI S S R O R o T e el (NI S i ol
I I
+

I

+

I

+

Fi gure 2: Encapsul ated TCP-in-UDP SYN and SYN ACK Packet Header
For mat

The Encapsul ated Source Port and Encapsul ated Destination Port are
the port nunbers of the TCP connection. To create this header, an
i mpl ementation can sinply swap the position of the original TCP
header’s port nunber fields with the position of the Data Ofset /
Reserved / Flags / Wndow fields.

Every TiU SYN or Ti U SYN-ACK packet also carries at least the Ti U
Setup TCP option. This option contains a Connection |ID nunber. On a
SYN packet, it is the Connection ID that the sender intends to use in
future packets to represent the Encapsul ated Source Port and

Encapsul ated Destination Port. On a SYN ACK packet, it confirms that
such usage is accepted by the recipient of the SYN. A special value
of 255 is used to signify an error, upon which TiUwll no |onger be
used (i.e., the next packet is expected to be a non-encapsul ated TCP
packet). The Ti U Setup TCP option is defined as foll ows:

0 1 2 3
01234567890123456789012345678901
T T R e e e e s S e e ik i NI SR
| Kind [Length [ExI D [
B i sl o e S e e S S T sl st it S SRR R R S SR o S S it S SR
| Connection ID |

S R

Figure 3: TiU Setup TCP Option

wel zl, et al. Expires May 4, 2017 [Page 10]

Internet-Draft TCP- CCC Cct ober 2016

The option follows the format for Experinmental TCP Options defined in
[RFC6994]. It has Kind=253, Length=5, an ExID that is with value TBD
(see Section 6) and the Connection ID. The Connection IDis an 8-bit
field for easier parsing, but only values 0-31 are valid Connection

| Ds (because the Connection IDin non - SYN or SYN ACK Ti U packets is
only 5 bit 1ong).

3.1.1.3. Protocol Operation and | nplenentation Notes
There can be several ways to inplenent TCP-in-UDP. The follow ng
gi ves an overview of how a Ti U inplenmentation can operate. This
description nmatches the inplenmentation described in Section 5.

A goal of TiUis to achieve congestion control coupling with a sinple

i mpl ementation that m ninmzes changes to existing code. 1t is thus
recomendabl e to inplenent TiUin the kernel, as a change to the
exi sting kernel TCP code. The changes fall in two basic categories:

o0 Encapsul ation and decapsul ation: this is code that should, in the
simpl est case, operate just before a TCP segment is transmtted.
Based on e.g. a socket option that enables/disables TiU, the TCP
segnent is changed into the TiU header format (Figure 1). 1In case
it is a TCP SYN or TCP SYN ACK packet, the header format is
defined as in Figure 2, and the Ti U-Setup TCP option is appended.
This packet is then transmitted. For decapsul ation, the reverse
mechani sm appl i es, upon reception of a UDP packet that uses
destination port XXX (TBD, see Section 6). Both hosts keep a |ist
of encapsul ated TCP port nunbers and their correspondi ng
Connection IDs. In case a SYN packet requests using a Connection
IDthat is already reserved, an error (Connection |ID value 255 in
the TiU Setup TCP option) nmust be signified to the other end in a
Ti U-encapsul ated TCP SYN ACK, and encapsul ati on nust be di sabl ed
on all further TCP packets. Simlarly, when receiving a TiU SYN
ACK with an error, a TCP sender nust stop encapsul ating TCP
packets.

The TCP port nunber space usage on the host is |eft unchanged: the
original code can reserve TCP ports as it always did. Except for the
Ti U encapsul ati on conpressing the port nunmbers into a Connection ID
field, TCP ports should be used simlar to nornal TCP operation. A
TCP port that is in use by a Ti U-encapsul ated TCP connection nust

t heref ore not be made avail abl e to non-encapsul ated TCP connecti ons,
and vice versa

For each TCP connection, two variables nust be configured: 1) Ti U
ENABLE, which is a bool ean, deciding whether to use TiU or not, and
2) Priority, whichis a value, e.g. from1l to 10, that is used by the
coupl ed congestion control algorithmto assign an appropriate share

wel zl, et al. Expires May 4, 2017 [Page 11]

Internet-Draft TCP- CCC Cct ober 2016

of the total cwnd to the connection. Priority values are local and
their range does not matter for this algorithm the al gorithm works
with a flows priority portion of the sumof all priority val ues.
The configuration of the two per-connection variables can be

i npl emented in various ways, e.g. through an APl option

Wth these code changes in place, TiU can operate as foll ows,
assunmi ng no previous Ti U connections have been nmade between a
specific host pair and a client tries to connect to a server

0 An application uses an APl option to request Ti U operation. The
kernel then sends out a TiU TCP SYN that contains a Ti U-Setup TCP
option. This packet header contains the encapsul ated TCP port
nunbers (source port A and destination port B) and the Connection
ID X

0 The server listens on UDP port XXX (TBD, see Section 6). Upon
receiving a packet on this port, it knows that it is a Ti U packet
and decodes it, handing the resulting TCP packet over to "nornal"
TCP processing. The Ti U Setup TCP option allows the server to
associate future Ti U packets containing Connection ID X with ports
A and B. The server sends its response as a Ti U SYN-ACK

0 TCP operates as nornmal fromhere on, but packets are Ti U
encapsul ated before sending them out and decapsul at ed upon
reception, using Connection ID X. Both hosts associate TiU
packets carrying Connection ID X with a local identifier that
mat ches ports A and B, just |ike they woul d associ ate non-
encapsul ated TCP packets with the same | ocal identifier when
seeing ports A and B in the TCP header

o If an application on either side of the Ti U connection wants to
connect to a destination host on the other side and requests Ti U
operation, the kernel sends out another TiU TCP SYN, this tine
containing a different TCP source port nunber and either the sane
or a different destination port nunber (C and D), and a Ti U-Setup
TCP option with Connection ID Y. Fromnow on, packets carrying
Connection ID Y will be associated with ports C and D on both
hosts. Oherw se, TiU operation continues as descri bed above.

o Now, because there are two or nore connections avail abl e between
the sane host pair, coupled congestion control begins to operate
for all outgoing TiU packets (see Section 2 for details). This is
a |l ocal operation, applying the priority values that were
configured to use for the Ti U-encapsul ated TCP connecti ons.

Unless it is known that UDP packets with destination port nunber XXX
(TBD, see Section 6) can be used wi thout problens on the path between

wel zl, et al. Expires May 4, 2017 [Page 12]

Internet-Draft TCP- CCC Cct ober 2016

two conmuni cating hosts, it is advisable for TiU inplenmentations to
contain nmethods to fall back to non-encapsul ated ("raw') TCP
communi cati on. Such fall-back nmust be supported for the case of
Connection ID collisions anyway. M ddl eboxes have been known to
track TCP connections [Hondall], and falling back to comruni cation
with raw TCP packets wi thout ever using a raw TCP SYN - SYN ACK
handshake nmay | ead to problens with such devices. The follow ng
met hod i s recormended to efficiently fall back to raw TCP

conmmuni cat i on:

o0 After sending out a TiU SYN packet, additionally send a raw TCP
SYN packet .

0 After sending out a Ti U SYN ACK packet, additionally send a raw
TCP SYN ACK packet .

o Upon receiving a Ti U SYN packet, after responding with a Ti U SYN
ACK packet and raw TCP SYN ACK packet, inmediately store the
encapsul ated port nunbers and Connection ID. As long as a Ti U
connection is ongoing, ignore any additional incomng TCP SYN or
TCP SYN ACK packets fromthe sanme host that carry port nunbers
mat chi ng the stored encapsul ated port nunmbers. O herw se, process
TCP SYN or TCP SYN ACK packets as nornal .

This nethod ensures that the TCP SYN / SYN ACK handshake is visible
to m ddl eboxes and allows to i mediately switch back to raw TCP
communi cation in case of failures. |If inplemented on both sides as
descri bed above and no TiU SYN or Ti U SYN ACK packet arrives, yet a
TCP SYN or TCP SYN ACK packet does, this can only nean that the other
host does not support Ti U a UDP packet was dropped, or the UDP and
TCP packets were reordered in transit. Reordering in the host (e.g.,
a server responding to a TCP SYN before it responds to a Ti U SYN) can
be a problemfor simlar nethods (e.g. [RFC6555]), but it can be
elimnated by prescribing the processing order as above.

Because TCP does not preserve nessage boundaries and the size of the
TCP header can vary depending on the options that are used, it is

al so no problemto precede the TCP header in the UDP packet with a
di fferent header (e.g. PLUS or SPUD [I-D. hil debrand-spud- prototype])
wi t hout exceeding the knowmn MU limit. Wen creating a TCP segnent,
a TCP sender needs to consider the | ength of this header when
calculating the segnent size, just like it would consider the length
of a TCP option. For this to work, the usage of other headers such
as PLUS or SPUD i n-between the UDP header and the Ti U header nust
therefore be known to both the sender-side and receiver-side code
that processes Ti U

wel zl, et al. Expires May 4, 2017 [Page 13]

Internet-Draft TCP- CCC Cct ober 2016

3.1.1.4. Usage Considerations

Ti U cannot work with applications that require the Urgent pointer
(which is not recommended for use by new applications anyway

[RFC6093], but should be consider if TiUis inplenented in a way that
allows it to be applied onto existing applications; telnet is a well-
known exanple of an application that uses this functionality). It
can al so be used as a nethod to experinentally test new TCP
functionality in the presence of m ddl eboxes that woul d ot herw se
create problens (as sone have been known to do [Hondall]).

Reasons to use Ti U include the benefits of [Chel3] and [Den08] that
were discussed in Section 1. TiU has the disadvantage of disabling
ECVMP for the TCP connections that it encapsul ates. This can reduce
the capacity usage of these TCP connections. It has the advantage of
being abl e to apply TCP-CCC coupl ed congestion control, which can
provi de preci se congestion w ndow assi gnnment based on a priority.

3.1.2. Oher Methods

There are many possi bl e encapsul ati on schenes for various use cases.
For exanple, Generic UDP Encapsul ati on (GUE)
[I-D.draft-ietf-nvo3-gue] allows us to multiplex several TCP
connections onto a same UDP port nunber pair. Several encapsul ation
met hods transnmit layer-2 frames over an IP network - e.g. VXLAN

[RFC7348] (over UDP/IP) and NVGRE [RFC7637] (over CGRE/IP). Because
Layer-2 networks should be agnostic to the transport connections
runni ng over them the path should not depend on the TCP port nunber
pai r and our algorithm should work. Some care nust still be taken:
for exanple, for NVGRE, [RFC7637] says: "If ECMP is used, it is
RECOMVENDED t hat the ECMP hash is cal cul ated either using the outer
IP frame fields and entire Key field (32 bits) or the inner |IP and
transport frame fields". |If routers do use the inner transport frame
fields (typically, port nunbers) for this hashing, we have the sane
probl em even over NvGRE.

4. Rel ated Work

The TCPMUX nechani smin [RFC1078] nultipl exes TCP connections under
the sane outer transport port nunber; it does however not preserve
the port nunbers of the original TCP connections, and no nethod to
coupl e congestion controls is described in [RFCL078].

Congestion control coupling follows the style of RTP application
congestion control coupling in [I-D.ietf-rntat-coupled-cc] which is
designed to be easy to inplenent, and to mnimze the nunber of
changes that need to be nmade to the underlying congestion contro
mechani snms. This method was shown to yield several benefits in

wel zl, et al. Expires May 4, 2017 [Page 14]

Internet-Draft TCP- CCC Cct ober 2016

[fse]. TCP-CCC requires slightly deeper changes to TCP's congestion
control, nmaking it harder to inplenent than
[I-D.ietf-rncat-coupled-cc], but it is still a much smaller code
change than the Congestion Manager [RFC3124].

Combi ni ng congestion controls as TCP-CCC does it has sone
simlarities with Ensenble Sharing in [RFC2140], which however only
concerns initial values of variables used by new connections and does
not share the congestion wi ndow (cwnd). The cwnd variable is shared
across ongoi ng connections in [ETCP] and [EFCM, and the mechani sm
described in Section 2 resenbles the nechanisnms in these works, but
neither [ETCP] nor [EFCM address the problem of ECW

Coupl ed congestion control has al so been specified for Miltipath TCP
[RFC6356]. MPTCP' s coupl ed congestion control conbines the
congestion controls of subflows that may traverse different paths,
wher eas we propose congestion control coupling for flows sharing a
single-path. TCP-CCC builds on the assunption that all its

encapsul ated TCP connections traverse the same path. This nakes the
two met hods for coupled congestion control very different, even
though they both aimat emul ating the behavior of a single TCP
connection in the case where all flows traverse the sane network
bottl eneck. For exanple, a new flow obtaining a a |arger-than-1W
share of the aggregate cwnd woul d be inappropriate for an MPTCP
subf | ow.

5. I nplenentation Status
We have i npl enented TCP-CCC and Ti U encapsul ati on for both the sender
and receiver in the FreeBSD kernel, as a sinple add-on to the TCP
i mpl erentation that is controlled via a socket option

6. | ANA Consi derations
Thi s docunent specifies a new TCP option that uses the shared
experinental options format [RFC6994]. No value has yet been
assigned for ExlD.
This docunment requires a well-known UDP port (referred to as port XXX
in this docunent). Due to the highly experinental nature of TiU
this docunent is being shared with the community to solicit coments
bef ore requesting such a port nunber.

7. Security Considerations

TBD

wel zl, et al. Expires May 4, 2017 [Page 15]

Internet-Draft TCP- CCC Cct ober 2016

8. Acknow edgenents

This work has received funding from Huawei Technol ogi es Co., Ltd.,
and t he European Union’s Horizon 2020 research and i nnovati on
programe under grant agreenment No. 644334 (NEAT). The views
expressed are solely those of the author(s).

9. Ref er ences
9.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, DA 10.17487/
RFC2119, March 1997,
<http://ww. rfc-editor.org/info/rfc2119>.

9.2. Infornmative References

[anrw2016]
Islam S. and M Wl zl, "Start Me Up: Deternining and
Sharing TCP's Initial Congestion Wndow', ACM |RTF, |SOC
Appl i ed Networking Research Workshop 2016 (ANRW 2016)
2016.

[Chel3] Cheshire, S., Graessley, J., and R MCQire,
"Encapsul ati on of TCP and ot her Transport Protocols over
UDP*, Internet-draft draft-cheshire-tcp-over-udp-00, June

2013.

[Den08] Deni s- Cournont, R, "UDP-Encapsul ated Transport
Protocol s, Internet-draft draft-denis-udp-transport-00,
July 2008.

[EFCM Savoric, M, Karl, H, Schlager, M, Poschwatta, T., and

A. Wlisz, "Analysis and performance eval uation of the
EFCM comon congestion controller for TCP connections",
Conput er Networks (2005) , 2005.

[ETCP] Eggert, L., Heidemann, J., and J. Joe, "Effects of

ensenbl e- TCP", ACM SI GCOW Conput er Conmuni cati on Revi ew
(2000) , 2000.

wel zl, et al. Expires May 4, 2017 [Page 16]

Internet-Draft TCP- CCC Cct ober 2016

[fse] Islam S., Welzl, M, Gessing, S., and N. Khadeni,
"Coupl ed Congestion Control for RTP Media", ACM SI GCOW
Capacity Sharing Wrkshop (CSW5 2014) and ACM SI GCOWM CCR
44(4) 2014; extended version avail able as a technical
report from
http://safiquli.at.ifi.uio.nolpaper/fse-tech-report.pdf ,
2014.

[Hondall] Honda, M, Nishida, Y., Raiciu, C, Geenhal gh, A,
Handl ey, M, and H Tokuda, "Is it still possible to
extend TCP?", Proc. of ACM Internet Measurenent Conference
(IMC) 11, Novenber 2011.

[I-D.draft-ietf-nvo3-gue]
Herbert, T., Yong, L., and O Za, "Ceneric UDP
Encapsul ation", Internet-draft draft-ietf-nvo3-gue-05,
Cct ober 2016.

[1-D. hil debrand- spud- pr ot ot ype]
H | debrand, J. and B. Trammell, "Substrate Protocol for
User Datagrans (SPUD) Prototype", draft-hil debrand-spud-
prototype-03 (work in progress), March 2015.

[I-D.ietf-rntat-coupl ed-cc]
Islam S., Welzl, M, and S. @ essing, "Coupled congestion
control for RTP nmedia", draft-ietf-rntat-coupl ed-cc-03
(work in progress), July 2016.

[I-D.ietf-rntat-sbd]
Hayes, D., Ferlin, S., Wlzl, M, and K. Hiorth, "Shared
Bott| eneck Detection for Coupled Congestion Control for
RTP Media.", draft-ietf-rncat-sbd-04 (work in progress),
March 2016.

[RFC1078] Lottor, M, "TCP port service Miltiplexer (TCPMJX)", RFC
1078, DA 10.17487/ RFC1078, Novenber 1988,
<http://wwv rfc-editor.org/info/rfcl078>.

[RFC2140] Touch, J., "TCP Control Bl ock Interdependence”, RFC 2140,
DO 10.17487/ RFC2140, April 1997,
<http://ww.rfc-editor.org/info/rfc2140>.

[RFC3124] Bal akrishnan, H and S. Seshan, "The Congestion Manager",

RFC 3124, DA 10. 17487/ RFC3124, June 2001,
<http://ww. rfc-editor.org/info/rfc3124>.

wel zl, et al. Expires May 4, 2017 [Page 17]

Internet-Draft TCP- CCC Cct ober 2016

[RFC5128] Srisuresh, P., Ford, B., and D. Kegel, "State of Peer-to-
Peer (P2P) Conmuni cation across Network Address
Translators (NATs)", RFC 5128, DA 10.17487/RFC5128, WNarch
2008, <http://ww.rfc-editor.org/info/rfc5128>.

[RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT)
Traversal for Ofer/Answer Protocols", RFC 5245, DO
10. 17487/ RFC5245, April 2010,
<http://ww.rfc-editor.org/info/rfc5245>.

[RFC5389] Rosenberg, J., Mahy, R, Matthews, P., and D. W ng,
"Session Traversal Utilities for NAT (STUN", RFC 5389,
DA 10.17487/ RFC5389, Cctober 2008,
<http://ww. rfc-editor.org/info/rfc5389>.

[RFC5681] Al lman, M, Paxson, V., and E. Blanton, "TCP Congestion
Control", RFC 5681, DO 10.17487/ RFC5681, Septenber 2009,
<http://wwmv rfc-editor.org/info/rfc5681>.

[RFC6093] ©ont, F. and A. Yourtchenko, "On the Inplenentation of the
TCP Urgent Mechani snf, RFC 6093, DO 10.17487/ RFC6093,
January 2011, <http://ww.rfc-editor.org/info/rfc6093>.

[RFC6356] Raiciu, C., Handley, M, and D. Wschik, "Coupled
Congestion Control for Miltipath Transport Protocols", RFC
6356, DA 10.17487/ RFC6356, October 2011,
<http://ww.rfc-editor.org/info/rfc6356>.

[RFC6437] Anmante, S., Carpenter, B., Jiang, S., and J. Rajahal ne,
"I Pv6 Fl ow Label Specification", RFC 6437, DO 10.17487/
RFC6437, November 2011,
<http://ww. rfc-editor.org/info/rfc6437>.

[RFC6555] Wng, D. and A Yourtchenko, "Happy Eyeballs: Success with
Dual - Stack Hosts", RFC 6555, DO 10.17487/ RFC6555, April
2012, <http://ww rfc-editor.org/info/rfc6555>.

[RFC6824] Ford, A, Raiciu, C., Handley, M, and O Bonaventure,
"TCP Extensions for Multipath Operation with Miltiple
Addresses", RFC 6824, DO 10.17487/ RFC6824, January 2013,
<http://wwmv. rfc-editor.org/info/rfc6824>.

[RFC6994] Touch, J., "Shared Use of Experinental TCP Options", RFC

6994, DA 10.17487/ RFC6994, August 2013,
<http://ww.rfc-editor.org/info/rfc6994>,

wel zl, et al. Expires May 4, 2017 [Page 18]

Internet-Draft TCP- CCC Cct ober 2016

[RFC7348] Mahalingam M, Dutt, D., Duda, K, Agarwal, P., Kreeger,
L., Sridhar, T., Bursell, M, and C Wight, "Virtual
eXtensi ble Local Area Network (VXLAN): A Framework for
Overlaying Virtualized Layer 2 Networks over Layer 3
Net wor ks", RFC 7348, DO 10.17487/ RFC7348, August 2014,
<http://wwmv rfc-editor.org/info/rfc7348>.

[RFC7424] Krishnan, R, Yong, L., Ghanwani, A, So, N, and B.
Khasnabi sh, "Mechani sns for Optim zing Link Aggregation
G oup (LAG and Equal - Cost Multipath (ECMP) Conponent Link
Utilization in Networks", RFC 7424, DO 10.17487/ RFC7424,
January 2015, <http://ww.rfc-editor.org/info/rfc7424>,

[RFC7637] Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network
Virtualization Using Generic Routing Encapsul ation", RFC
7637, DA 10.17487/ RFC7637, Septenber 2015,
<http://ww.rfc-editor.org/info/rfc7637>.

Aut hors’ Addr esses
M chael Wl zl

Uni versity of Gslo
PO Box 1080 Bli ndern

Gslo N-0316
Nor way
Email: mchawe@fi. uio.no

Safiqul Islam

Uni versity of GCslo
PO Box 1080 Bli ndern
Cslo N-0316

Nor way

Phone: +47 22 84 08 37
Email: safiquli@fi.uio.no

Kristian H orth
Uni versity of Gslo
PO Box 1080 Bl indern

Gsl o N-0316
Nor way
Email: kristahi @fi.uio.no

wel zl, et al. Expires May 4, 2017 [Page 19]

Internet-Draft TCP- CCC Cct ober 2016

Jianjie You

Huawei

101 Software Avenue, Yuhua District
Nanjing 210012

Chi na

Emai | : youjianji e@uawei.com

wel zl, et al. Expires May 4, 2017 [Page 20]

