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Abstract

   This document specifies a method, TCP-CCC, to combine the congestion
   controls of multiple TCP connections between the same pair of hosts.
   This can have several performance benefits, and it makes it possible
   to precisely assign a share of the congestion window to the
   connections based on priorities.  This document also addresses the
   problem that TCP connections between the same pair of hosts may not
   share the same path.  We discuss methods to detect if, or enforce
   that connections traverse a common bottleneck.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 4, 2017.
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   This document is subject to BCP 78 and the IETF Trust’s Legal
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   include Simplified BSD License text as described in Section 4.e of
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1.  Introduction

   When multiple TCP connections between the same host pair compete on
   the same bottleneck, they often incur more delay and losses than a
   single TCP connection.  Moreover, it is often not possible to
   precisely divide the available capacity among the connections.  To
   address this problem, this document presents TCP-CCC, a method to
   combine the congestion controls of multiple TCP connections between
   the same pair of hosts.  This can have several performance benefits:

   o  Reduced average loss and queuing delay (because the competition
      between the encapsulated TCP connections is avoided)

   o  Assign a precise capacity share based on a priority.
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   o  Even in the absence of prioritization, better fairness between the
      TCP connections.

   o  No need for new connections to slow start up to a reasonable cwnd
      value that ongoing connections already have: a connection can
      immediately be assigned its share of the aggregate’s total cwnd.
      This can significantly reduce the completion time of short
      connections.

   All of these benefits only play out when there are more than one TCP
   connections.  Some of the benefits in the list above are more
   significant when some transfers are short.  This makes the usage of
   TCP-CCC especially attractive in situations where some transfers are
   short.

   We discuss methods to determine if connections traverse the same
   bottleneck as well as methods to ensure this.  To this end, we
   propose a light-weight, dynamically configured TCP-in-UDP (TiU)
   encapsulation scheme.  TiU is optional, as our coupled congestion
   control strategy is applicable wherever overlapping TCP flows must
   follow the same path (such as when routed over a VPN tunnel).

2.  Coupled Congestion Control

   For each TCP connection c, the algorithm described below receives
   cwnd and ssthresh as input and stores the following information:

   o  the Connection ID.

   o  a priority P(c) -- e.g., an integer value in the range from 1
      (unimportant) to 10 (very important).

   o  The previously used cwnd used by the connection c, ccc_cwnd(c).

   o  The previously used ssthresh used by the connection c,
      ccc_ssthresh(c).

   Three global variables sum_cwnd, sum_ssthresh and sum_p are used to
   represent the sum of all the ccc_cwnd values, ccc_sshtresh values and
   priorities of all TCP connections, respectively. sum_cwnd and
   sum_ssthresh are used to update the cwnd and ssthresh values for all
   connections.

   This algorithm emulates the behavior of a single TCP connection by
   choosing one connection as the connection that dictates the increase
   / decrease behavior for the aggregate.  We call it the "Coordinating
   Connection" (CoCo).  The algorithm was designed to be as simple as
   possible.  Below, abbreviations are used to refer to the phases of
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   TCP congestion control as defined in [RFC5681]: SS refers to Slow
   Start, CA refers to Congestion Avoidance and FR refers to Fast
   Recovery.

   For simplicity, this algorithm refrains from changing cwnd when a
   connection is in FR.  SS should not happen as long as ACKs arrive.
   Hence, the algorithm ensures that the aggregate’s behavior is only
   dictated by SS when all connections are in the SS phase.  We use a
   bit array, ssbits, with a bit for each connection in the group.  We
   set the bit if the connection state is SS due to an RTO.

   (1)  When a connection c starts, it adds its priority P(c) to sum_p.
        If it is the very first connection, it sets sum_cwnd to its own
        cwnd.  After that, the connection’s globally known cwnd and
        ssthresh values (ccc_cwnd(c) and ccc_ssthresh(c)) are updated,
        and the connection updates its own cwnd and ssthresh values to
        be equal to ccc_cwnd(c) and ccc_ssthresh(c).

   ccc_P(c) = P
   sum_P = sum_P + P
   sum_cwnd sum_cwnd + cwnd
   ccc_cwnd(c) P = sum_cwnd / sum_P
   ccc_ssthresh(c) = ssthresh
   if sum_ssthresh > 0 then
       ccc_ssthresh(c) P = sum_ssthresh / sum_P
   end if
   // Update c’s own cwnd and ssthresh for immediate use:
   Send ccc_cwnd(c) and ccc_ssthresh(c) to c

   (2)  When a connection c stops, its entry is removed. sum_p is
        recalculated.

   if c = CoCo then
       Coco = the next connection
   end if
   sum_p sum_p - ccc_P(c)
   Remove ccc_P(c), ccc_cwnd(c), ccc_ssthresh(c)

   (3)  Every time the congestion controller of a connection c
        calculates a new cwnd, the connection calls UPDATE, which
        carries out the tasks listed below to derive the new cwnd and
        ssthresh values.  Whenever the CoCo calls UPDATE, sum_cwnd and
        sum_ssthresh are additionally updated to reflect the current sum
        of all stored ccc_cwnd and ccc_ssthresh values.  Initially,
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        there is only one connection and this connection automatically
        becomes the CoCo.  It updates sum_cwnd to its own cwnd and sets
        sum_ssthresh to 0.

   (4)  WHEN a non-CoCo connection c CALLS UPDATE......

   if(all of the connections including CoCo are in CA but c is in FR)
       c becomes the new CoCo.
   else
       if(c is in CA or SS)
           c’s cwnd is assigned its previously stored ccc_cwnd value.

   (5)  WHEN c(CoCo) CALLS UPDATE......

   if CoCo == c then
       if state == CA and ssbits(c) == 0 then
           if cwnd >= ccc_cwnd(c) then // increased cwnd
               sum_cwnd = sum_cwnd + cwnd - ccc_cwnd(c)
           else
               sum_cwnd = sum_cwnd * cwnd / ccc_cwnd(c)
           end if
           ccc_cwnd(c) = ccc_P(c) * sum_cwnd / sum_p
           ccc_ssthresh(c) ssthresh
           if sum_ssthresh > 0 then
               ccc_ssthresh(c) ccc_P(c) * sum_ssthresh/sum_p
           end if
       else if state == FR then
           sum_ssthresh = sum_cwnd/2
       else if state == SS then
           if c experienced a timeout then
               ssbits(c) = 1
           end if
           if ssbits(x) == 1 for all x then
               ssbits(x) = 0 // for all x
               sum_cwnd = sum_cwnd * cwnd / ccc_cwnd(c)
               ccc_cwnd(c) = ccc_P(c) * sum_cwnd / sum_p
               sum_ssthresh = sum_cwnd/2
           else
               CoCo = first connection where ccc_state == SS
           end if
       end if
   end if

   (6)  After that, if the ccc_state(c) is not equal to FR
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   if state != FR then
       Send ccc_cwnd(c) and ccc_ssthresh(c) to c
   end if

   When a flow gets a large share of the aggregate immediately after
   joining, it can potentially create a burst in the network.  We
   propose a mechanism [anrw2016] to clock the packet transmission out
   by using the ack-clock of TCP.  Our algorithm achieves a form of
   "pacing", but it does not rely on any timers.

   When a connection c joins, it turns on the ack-clock feature and
   calculates the share of the aggregate, clocked_cwnd c.  Below, we
   illustrate the ack-clock mechanism that is used to distribute the
   share of the cwnd based on the acknowledgements received from other
   flows.

   if clocked_cwnd(c) <= 0 then
       return // alg. ends; other connections can increase cwnd again
   end if
   if number_of_acks c % N = 0 then
       send a new segment for connection c
       clocked_cwnd(c)= clocked_cwnd(c) - 1
   end if
   number_of_acks(c) = number_of_acks(c) + 1

3.  Ensuring a Common Bottleneck

   Our algorithm, as well as EFCM [EFCM], E-TCP [EFCM] and the CM
   [RFC3124] assume that multiple TCP connections between the same host
   pair traverse the same bottleneck.  This is not always true: load-
   balancing mechanisms such as Link Aggregation Group (LAG) and Equal-
   Cost Multi-Path (ECMP) may force them to take different paths
   [RFC7424].  If this leads to the connections seeing different
   bottlenecks, combining the congestion controllers would incur wrong
   behavior.  There are, however, several application scenarios where
   the single-bottleneck assumption is correct.

   Sometimes, the network configuration is known, and it is known that
   mechanisms such as ECMP and LAG do not operate on the bottleneck or
   are simply not in use.  Alternatively, measurements can infer whether
   flows traverse the same bottleneck [I-D.ietf-rmcat-sbd].  When IPv6
   is available, the TCP connections could be assigned the same IPv6
   flow label.  According to [RFC6437], "The usage of the 3-tuple of the
   Flow Label, Source Address, and Destination Address fields enables
   efficient IPv6 flow classification, where only IPv6 main header

Welzl, et al.              Expires May 4, 2017                  [Page 6]



Internet-Draft                   TCP-CCC                    October 2016

   fields in fixed positions are used" - this would be favorable for TCP
   congestion control coupling.  However, this [RFC6437] does not make a
   clear recommendation about either using the 3-tuple or 5-tuple (which
   includes the port numbers) - both methods are valid.  Thus, whether
   it works to use the flow label as the sole means to put connections
   on the same path depends on router configuration.  When it works, it
   is an attractive option because it does not require changing the
   receiver.

   Finally, encapsulating packets with a header that ensures a common
   path is another possibility to make connections traverse the same
   bottleneck.  We will discuss encapsulation in the next section.

3.1.  Encapsulation

3.1.1.  TCP in UDP

3.1.1.1.  Introduction

   We want to be able to ensure that TCP congestion control coupling can
   always work, provided that the required code is available at the
   receiver - and be able to efficiently fall back to the standard
   behaviour in case it is not.  To achieve this, we present a method,
   TCP-in-UDP (TiU), to encapsulate multiple TCP connections using the
   same UDP port pair.

   TCP-in-UDP (TiU) is based on [Che13].  It differs from it in that:

   o  Other than [Che13], TiU encapsulates multiple TCP connections
      using the same UDP port number pair.  TCP port numbers are
      preserved; a single well-known UDP port is used for TiU.  If TiU
      is implemented in the kernel, this allows using normal TCP
      sockets, where enabling the usage of TiU could be done via a
      socket option, for example.

   o  The header format is slightly different to allow representing a
      TCP connection with a few bits that are encoded across the
      original TCP header’s "Reserved" field and the URG (Urgent) flag
      to encode a Connection ID.  With this encoding, similar to the
      encapsulation in [Che13], the total TiU header size does not
      exceed the original TCP header size.

   o  A (TiU-encapsulated) TCP SYN uses a newly defined TCP option to
      establish the mapping between a Connection ID and the original TCP
      port number pair.

   TiU inherits all the benefits of [Che13] and a preceding similar
   proposal, [Den08].  It enables TCP-CCC coupled congestion control,
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   and it adds the potential disadvantage of not being able to benefit
   from ECMP.  In short, the benefits and features of TiU that are
   already explained in detail in [Che13] and [Den08] are:

   o  To establish direct communication between two devices that are
      both behind NAT gateways, Interactive Connectivity Establishment
      (ICE) [RFC5245] is used to create the necessary mappings in both
      NAT gateways, and ICE can have higher success rates using UDP
      [RFC5128].

   o  TCP options, as required for Multipath TCP [RFC6824], for example,
      are expected to work more reliably because middleboxes will be
      less able to interfere with them.

   o  Because the packet format allows the first octet to be in the
      range 0x0-0x3 (as is the case for a STUN [RFC5389] packet, where
      the most significant two bits are always zero), the UDP port
      number pair used by TiU can be used to exchange STUN packets with
      a STUN server that is unaware of TiU.

   o  Following the method described in [Che13] and [Den08], other
      transport protocols than TCP (e.g., SCTP) could be UDP-
      encapsulated in a similar fashion.  With TiU, the same outer UDP
      port number pair could be used for different encapsulated
      protocols at the same time.

   [Che13] also lists a disadvantage of UDP-encapsulating TCP packets:
   because NAT gateways typically use shorter timeouts for UDP port
   mappings than they do for TCP port mappings, long-lived UDP-
   encapsulated TCP connections will need to send more frequent
   keepalive packets than native TCP connections.  TiU inherits this
   problem too, although using a single five-tuple for multiple TCP
   connections alleviates it by reducing the chance of experiencing long
   periods of silence.

3.1.1.2.  Specification

   TiU uses a header that is very similar to the header format in
   [Den08] and [Che13], where it is explained in greater detail.  It
   consists of a UDP header that is followed by a slightly altered TCP
   header.  The UDP source and destination ports are semantically
   different from [Den08] and [Che13]: TiU uses a single well-known UDP
   port, and multiple TCP connections use the same UDP port number pair.
   The encapsulated TCP header is changed to fit into a UDP packet
   without increasing the MSS; this is achieved by removing the TCP
   source and destination ports, the Urgent Pointer and the (now
   unnecessary) TCP checksum.  Moreover, the order of fields is changed
   to move the Data Offset field to the beginning of the UDP payload.
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   This allows using it to identify other encapsulated content such as a
   STUN packet: for TCP, the Data Offset must be at least 5, i.e. the
   most-significant four bits of the first octet of the UDP payload are
   in the range 0x5-0xF, whereas this is not the case for other
   protocols (e.g., STUN requires these bits to be 0).  The altered TCP
   header for TiU is shown below:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          Source Port          |       Destination Port        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |            Length             |           Checksum            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Data | Conn  |C|E|C|A|P|R|S|F|                               |
     | Offset|  ID   |W|C|I|C|S|S|Y|I|            Window             |
     |       |       |R|E|D|K|H|T|N|N|                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Sequence Number                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    Acknowledgment Number                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      (Optional) Options                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Figure 1: Encapsulated TCP-in-UDP Header Format (the first 8 bytes
                            are the UDP header)

   Different from [Den08] and [Che13], the least-significant four bits
   of the first octet and a bit that replaces the URG bit in the next
   octet together form a five-bit "Connection ID" (Conn ID).  TiU
   maintains the port numbers of the TCP connections that it
   encapsulates; the Connection ID is a way to encode the port number
   information with a few unused header bits.  It uniquely identifies a
   port number pair of a TCP connection that is encapsulated with TiU.
   Using these five bits, TiU can combine up to 32 TCP connections with
   one UDP port number pair.

   The TiU-TCP SYN and SYN/ACK packets look slightly little different,
   because they need to establish the mapping between the Connection ID
   and the port numbers that are used by TiU-encapsulated TCP
   connections:
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     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          Source Port          |       Destination Port        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |            Length             |           Checksum            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Data |Re-    |C|E| |A|P|R|S|F|                               |
     | Offset|served |W|C|0|C|S|S|Y|I|            Window             |
     |       |       |R|E| |K|H|T|N|N|                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Sequence Number                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    Acknowledgment Number                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Encapsulated Source Port    | Encapsulated Destination Port |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                            Options                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 2: Encapsulated TCP-in-UDP SYN and SYN/ACK Packet Header
                                  Format

   The Encapsulated Source Port and Encapsulated Destination Port are
   the port numbers of the TCP connection.  To create this header, an
   implementation can simply swap the position of the original TCP
   header’s port number fields with the position of the Data Offset /
   Reserved / Flags / Window fields.

   Every TiU SYN or TiU SYN-ACK packet also carries at least the TiU-
   Setup TCP option.  This option contains a Connection ID number.  On a
   SYN packet, it is the Connection ID that the sender intends to use in
   future packets to represent the Encapsulated Source Port and
   Encapsulated Destination Port.  On a SYN/ACK packet, it confirms that
   such usage is accepted by the recipient of the SYN.  A special value
   of 255 is used to signify an error, upon which TiU will no longer be
   used (i.e., the next packet is expected to be a non-encapsulated TCP
   packet).  The TiU-Setup TCP option is defined as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Kind          |    Length     |     ExID                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Connection ID |
     +-+-+-+-+-+-+-+-+

                      Figure 3: TiU Setup TCP Option
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   The option follows the format for Experimental TCP Options defined in
   [RFC6994].  It has Kind=253, Length=5, an ExID that is with value TBD
   (see Section 6) and the Connection ID.  The Connection ID is an 8-bit
   field for easier parsing, but only values 0-31 are valid Connection
   IDs (because the Connection ID in non - SYN or SYN/ACK TiU packets is
   only 5 bit long).

3.1.1.3.  Protocol Operation and Implementation Notes

   There can be several ways to implement TCP-in-UDP.  The following
   gives an overview of how a TiU implementation can operate.  This
   description matches the implementation described in Section 5.

   A goal of TiU is to achieve congestion control coupling with a simple
   implementation that minimizes changes to existing code.  It is thus
   recommendable to implement TiU in the kernel, as a change to the
   existing kernel TCP code.  The changes fall in two basic categories:

   o  Encapsulation and decapsulation: this is code that should, in the
      simplest case, operate just before a TCP segment is transmitted.
      Based on e.g.  a socket option that enables/disables TiU, the TCP
      segment is changed into the TiU header format (Figure 1).  In case
      it is a TCP SYN or TCP SYN/ACK packet, the header format is
      defined as in Figure 2, and the TiU-Setup TCP option is appended.
      This packet is then transmitted.  For decapsulation, the reverse
      mechanism applies, upon reception of a UDP packet that uses
      destination port XXX (TBD, see Section 6).  Both hosts keep a list
      of encapsulated TCP port numbers and their corresponding
      Connection IDs.  In case a SYN packet requests using a Connection
      ID that is already reserved, an error (Connection ID value 255 in
      the TiU Setup TCP option) must be signified to the other end in a
      TiU-encapsulated TCP SYN/ACK, and encapsulation must be disabled
      on all further TCP packets.  Similarly, when receiving a TiU SYN/
      ACK with an error, a TCP sender must stop encapsulating TCP
      packets.

   The TCP port number space usage on the host is left unchanged: the
   original code can reserve TCP ports as it always did.  Except for the
   TiU encapsulation compressing the port numbers into a Connection ID
   field, TCP ports should be used similar to normal TCP operation.  A
   TCP port that is in use by a TiU-encapsulated TCP connection must
   therefore not be made available to non-encapsulated TCP connections,
   and vice versa.

   For each TCP connection, two variables must be configured: 1) TiU-
   ENABLE, which is a boolean, deciding whether to use TiU or not, and
   2) Priority, which is a value, e.g. from 1 to 10, that is used by the
   coupled congestion control algorithm to assign an appropriate share

Welzl, et al.              Expires May 4, 2017                 [Page 11]



Internet-Draft                   TCP-CCC                    October 2016

   of the total cwnd to the connection.  Priority values are local and
   their range does not matter for this algorithm: the algorithm works
   with a flow’s priority portion of the sum of all priority values.
   The configuration of the two per-connection variables can be
   implemented in various ways, e.g. through an API option.

   With these code changes in place, TiU can operate as follows,
   assuming no previous TiU connections have been made between a
   specific host pair and a client tries to connect to a server:

   o  An application uses an API option to request TiU operation.  The
      kernel then sends out a TiU TCP SYN that contains a TiU-Setup TCP
      option.  This packet header contains the encapsulated TCP port
      numbers (source port A and destination port B) and the Connection
      ID X.

   o  The server listens on UDP port XXX (TBD, see Section 6).  Upon
      receiving a packet on this port, it knows that it is a TiU packet
      and decodes it, handing the resulting TCP packet over to "normal"
      TCP processing.  The TiU-Setup TCP option allows the server to
      associate future TiU packets containing Connection ID X with ports
      A and B.  The server sends its response as a TiU SYN-ACK.

   o  TCP operates as normal from here on, but packets are TiU-
      encapsulated before sending them out and decapsulated upon
      reception, using Connection ID X.  Both hosts associate TiU
      packets carrying Connection ID X with a local identifier that
      matches ports A and B, just like they would associate non-
      encapsulated TCP packets with the same local identifier when
      seeing ports A and B in the TCP header.

   o  If an application on either side of the TiU connection wants to
      connect to a destination host on the other side and requests TiU
      operation, the kernel sends out another TiU TCP SYN, this time
      containing a different TCP source port number and either the same
      or a different destination port number (C and D), and a TiU-Setup
      TCP option with Connection ID Y.  From now on, packets carrying
      Connection ID Y will be associated with ports C and D on both
      hosts.  Otherwise, TiU operation continues as described above.

   o  Now, because there are two or more connections available between
      the same host pair, coupled congestion control begins to operate
      for all outgoing TiU packets (see Section 2 for details).  This is
      a local operation, applying the priority values that were
      configured to use for the TiU-encapsulated TCP connections.

   Unless it is known that UDP packets with destination port number XXX
   (TBD, see Section 6) can be used without problems on the path between
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   two communicating hosts, it is advisable for TiU implementations to
   contain methods to fall back to non-encapsulated ("raw") TCP
   communication.  Such fall-back must be supported for the case of
   Connection ID collisions anyway.  Middleboxes have been known to
   track TCP connections [Honda11], and falling back to communication
   with raw TCP packets without ever using a raw TCP SYN - SYN/ACK
   handshake may lead to problems with such devices.  The following
   method is recommended to efficiently fall back to raw TCP
   communication:

   o  After sending out a TiU SYN packet, additionally send a raw TCP
      SYN packet.

   o  After sending out a TiU SYN/ACK packet, additionally send a raw
      TCP SYN/ACK packet.

   o  Upon receiving a TiU SYN packet, after responding with a TiU SYN/
      ACK packet and raw TCP SYN/ACK packet, immediately store the
      encapsulated port numbers and Connection ID.  As long as a TiU
      connection is ongoing, ignore any additional incoming TCP SYN or
      TCP SYN/ACK packets from the same host that carry port numbers
      matching the stored encapsulated port numbers.  Otherwise, process
      TCP SYN or TCP SYN/ACK packets as normal.

   This method ensures that the TCP SYN / SYN/ACK handshake is visible
   to middleboxes and allows to immediately switch back to raw TCP
   communication in case of failures.  If implemented on both sides as
   described above and no TiU SYN or TiU SYN/ACK packet arrives, yet a
   TCP SYN or TCP SYN/ACK packet does, this can only mean that the other
   host does not support TiU, a UDP packet was dropped, or the UDP and
   TCP packets were reordered in transit.  Reordering in the host (e.g.,
   a server responding to a TCP SYN before it responds to a TiU SYN) can
   be a problem for similar methods (e.g.  [RFC6555]), but it can be
   eliminated by prescribing the processing order as above.

   Because TCP does not preserve message boundaries and the size of the
   TCP header can vary depending on the options that are used, it is
   also no problem to precede the TCP header in the UDP packet with a
   different header (e.g.  PLUS or SPUD [I-D.hildebrand-spud-prototype])
   without exceeding the known MTU limit.  When creating a TCP segment,
   a TCP sender needs to consider the length of this header when
   calculating the segment size, just like it would consider the length
   of a TCP option.  For this to work, the usage of other headers such
   as PLUS or SPUD in-between the UDP header and the TiU header must
   therefore be known to both the sender-side and receiver-side code
   that processes TiU.
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3.1.1.4.  Usage Considerations

   TiU cannot work with applications that require the Urgent pointer
   (which is not recommended for use by new applications anyway
   [RFC6093], but should be consider if TiU is implemented in a way that
   allows it to be applied onto existing applications; telnet is a well-
   known example of an application that uses this functionality).  It
   can also be used as a method to experimentally test new TCP
   functionality in the presence of middleboxes that would otherwise
   create problems (as some have been known to do [Honda11]).

   Reasons to use TiU include the benefits of [Che13] and [Den08] that
   were discussed in Section 1.  TiU has the disadvantage of disabling
   ECMP for the TCP connections that it encapsulates.  This can reduce
   the capacity usage of these TCP connections.  It has the advantage of
   being able to apply TCP-CCC coupled congestion control, which can
   provide precise congestion window assignment based on a priority.

3.1.2.  Other Methods

   There are many possible encapsulation schemes for various use cases.
   For example, Generic UDP Encapsulation (GUE)
   [I-D.draft-ietf-nvo3-gue] allows us to multiplex several TCP
   connections onto a same UDP port number pair.  Several encapsulation
   methods transmit layer-2 frames over an IP network - e.g.  VXLAN
   [RFC7348] (over UDP/IP) and NvGRE [RFC7637] (over GRE/IP).  Because
   Layer-2 networks should be agnostic to the transport connections
   running over them, the path should not depend on the TCP port number
   pair and our algorithm should work.  Some care must still be taken:
   for example, for NvGRE, [RFC7637] says: "If ECMP is used, it is
   RECOMMENDED that the ECMP hash is calculated either using the outer
   IP frame fields and entire Key field (32 bits) or the inner IP and
   transport frame fields".  If routers do use the inner transport frame
   fields (typically, port numbers) for this hashing, we have the same
   problem even over NvGRE.

4.  Related Work

   The TCPMUX mechanism in [RFC1078] multiplexes TCP connections under
   the same outer transport port number; it does however not preserve
   the port numbers of the original TCP connections, and no method to
   couple congestion controls is described in [RFC1078].

   Congestion control coupling follows the style of RTP application
   congestion control coupling in [I-D.ietf-rmcat-coupled-cc] which is
   designed to be easy to implement, and to minimize the number of
   changes that need to be made to the underlying congestion control
   mechanisms.  This method was shown to yield several benefits in
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   [fse].  TCP-CCC requires slightly deeper changes to TCP’s congestion
   control, making it harder to implement than
   [I-D.ietf-rmcat-coupled-cc], but it is still a much smaller code
   change than the Congestion Manager [RFC3124].

   Combining congestion controls as TCP-CCC does it has some
   similarities with Ensemble Sharing in [RFC2140], which however only
   concerns initial values of variables used by new connections and does
   not share the congestion window (cwnd).  The cwnd variable is shared
   across ongoing connections in [ETCP] and [EFCM], and the mechanism
   described in Section 2 resembles the mechanisms in these works, but
   neither [ETCP] nor [EFCM] address the problem of ECMP.

   Coupled congestion control has also been specified for Multipath TCP
   [RFC6356].  MPTCP’s coupled congestion control combines the
   congestion controls of subflows that may traverse different paths,
   whereas we propose congestion control coupling for flows sharing a
   single-path.  TCP-CCC builds on the assumption that all its
   encapsulated TCP connections traverse the same path.  This makes the
   two methods for coupled congestion control very different, even
   though they both aim at emulating the behavior of a single TCP
   connection in the case where all flows traverse the same network
   bottleneck.  For example, a new flow obtaining a a larger-than-IW
   share of the aggregate cwnd would be inappropriate for an MPTCP
   subflow.

5.  Implementation Status

   We have implemented TCP-CCC and TiU encapsulation for both the sender
   and receiver in the FreeBSD kernel, as a simple add-on to the TCP
   implementation that is controlled via a socket option.

6.  IANA Considerations

   This document specifies a new TCP option that uses the shared
   experimental options format [RFC6994].  No value has yet been
   assigned for ExID.

   This document requires a well-known UDP port (referred to as port XXX
   in this document).  Due to the highly experimental nature of TiU,
   this document is being shared with the community to solicit comments
   before requesting such a port number.

7.  Security Considerations

   TBD
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