
ICNRG M. Mosko
Internet-Draft C. Wood
Intended status: Experimental PARC, Inc.
Expires: October 8, 2016 April 6, 2016

 The CCNx URI Scheme
 draft-mosko-icnrg-ccnxurischeme-01

Abstract

 This document defines an RFC3986 URI compliant identifier called a
 Labeled Segment URI in which name segments carry a label. This
 allows differentiation between unrelated resources with similar
 identifiers. This document also specifies the CCNx URI scheme,
 called "ccnx:," which conforms to the labeled segment encoding rules
 presented here. The CCNx URI scheme applies specific labels to each
 name segment of a URI to disambiguate between resources with similar
 names. This document defines a specific set of segment labels with
 label semantics.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 8, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Mosko & Wood Expires October 8, 2016 [Page 1]

Internet-Draft CCNxScheme April 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 4
 2. URI path segment grammar for label=value pairs 5
 2.1. Labeled Segments . 5
 2.2. URI comparison . 7
 3. Application to CCNx Names 9
 3.1. The ccnx Scheme . 9
 3.2. URI Representation . 9
 3.2.1. Examples . 11
 3.3. ccnx: URI comparison 11
 4. IRI Considerations . 13
 5. Acknowledgements . 14
 6. IANA Considerations . 15
 7. Security Considerations 16
 8. References . 17
 8.1. Normative References 17
 8.2. Informative References 17
 Authors’ Addresses . 18

Mosko & Wood Expires October 8, 2016 [Page 2]

Internet-Draft CCNxScheme April 2016

1. Introduction

 A Labeled Segment is an URI [RFC3986] compliant convention that
 allows an application or protocol to embed labels in name segments,
 thus disambiguating the resource identified by the path. Labeled
 Segment URIs also allow for query and fragment components to follow
 the Labeled Segment form.

 Some protocols may wish to disambiguate name segments between
 different identifier spaces, such as "version" and "page". Other
 protocols may wish to use a type system such as "/str=parc/int=7" and
 "/str=parc/str=7". Labeled Segment URIs provide an unambiguous and
 flexible representation in systems that allow resources with
 otherwise similar names.

 It is not sufficient to leave the determination of type to
 application-specific conventions. In a networked system with
 multiple applications accessing resources generated by other
 applications, there needs to be a set of common conventions. For
 example, if one application uses a base 64 encoding of a frame
 number, e.g. base64(0xbdea), and another uses "ver=" to represent a
 document version, there is an ambiguity because base64(0xbdea) is the
 string "ver=".

 Labeled Segments defines "ls-segment" as "label[:param]=value", where
 the value only contains unreserved, percent-encoded, or certain sub-
 delim characters. In the previous example, one application would say
 "/frame=%BD%EA" and the other would say "/ver=".

 In this document, we use URI [RFC3986] terminology, therefore a URI
 and CCNx Name are both composed of a URI path, which is a collection
 of name segments. We do not use the term "name component" as was
 common in old CCNx. In this document, the word "segment" alone means
 "name segment."

 URIs conforming to the CCNx URI scheme carry a label for each name
 segment. The contents of each name segment must conform to the label
 semantics. Example segment types are "Binary Segment", "Name", and
 "KeyId".

 We use Labeled Segment URIs as the canonical, human-readable
 representation. There is an unambiguous, one-to-one correspondence
 between an absolute LS-URI path and a Labeled Name. Relative URI
 representations are removed during encoding, so no relative name ends
 up in wire format. Some labels are URIs that are IRI [RFC3987]
 compatible.

 Labeled Names shall be used everywhere a Name is used in CCNx, such

Mosko & Wood Expires October 8, 2016 [Page 3]

Internet-Draft CCNxScheme April 2016

 as in the Name of an Interest or Content Object. They are also used
 in Links, KeyLocators, or any other place requiring a name. When
 encoded for the wire, a binary representation is used, depending on
 the specific wire format codec, which is outside the scope of this
 document.

 This document specifies:

 o the ccnx scheme.

 o a canonical URI representation.

 Formal grammars use the ABNF [RFC5234] notation.

 TODO: We have not adopted Requirements Language yet.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Mosko & Wood Expires October 8, 2016 [Page 4]

Internet-Draft CCNxScheme April 2016

2. URI path segment grammar for label=value pairs

2.1. Labeled Segments

 This section describes the formal grammar for Labeled Segments using
 ABNF [RFC5234] notation. We do not impose restrictions on the length
 of labels or values. The semantics of values are URI scheme
 specific, here we only describe the meta-structure of Labeled
 Segments. We begin by reviewing some definitions from [RFC3986] that
 define an absolute path URI.

 URI = scheme ":" hier-part ["?" query] ["#" fragment]
 hier-part = "//" authority path-abempty
 / path-absolute
 / <other path types>
 path-absolute = "/" [segment-nz *("/" segment)]
 segment = *pchar
 segment-nz = 1*pchar
 pchar = unreserved / pct-encoded / sub-delims / ":" / "@"
 query = *(pchar / "/" / "?")
 fragment = *(pchar / "/" / "?")
 pct-encoded = "%" HEXDIG HEXDIG
 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"
 reserved = gen-delims / sub-delims
 gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"
 sub-delims = "!" / "$" / "&" / "’" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

 Labeled Segments defines a new segment type that provides unambiguous
 representation of a segment’s label and its value. We define the
 top-level LS-URI as the same form as a URI, wherein each part
 conforms to the Label Segment grammar, which is a subset of the URI
 grammar.

Mosko & Wood Expires October 8, 2016 [Page 5]

Internet-Draft CCNxScheme April 2016

 LS-URI = scheme ":" ls-hier-part ["?" ls-query]
 ["#" fragment]
 ls-hier-part = ["//" authority] ls-path-absolute
 ls-path-absolute = "/" [first-segment *("/" ls-segment)]
 first-segment = ls-segment-nz
 ls-segment = lpv-segment / v-segment
 lpv-segment = label [":" param] "=" *s-value-nz
 v-segment = *s-value-nz
 ls-segment-nz = lpv-segment-nz / v-segment-nz
 lpv-segment-nz = label [":" param] "=" s-value-nz
 v-segment-nz = s-value-nz
 label = alpha-t / num-t
 param = alpha-t / num-t
 s-value-nz = 1*(s-pchar)

 ls-query = *1 (lpv-component / v-component
 *("&" (lpv-component / v-component)))
 lpv-component = label [":" param] "=" q-value
 v-component = q-value
 q-value = *(q-pchar)

 alpha-t = ALPHA *(ALPHA / DIGIT)
 num-t = dec-t / hex-t
 dec-t = 1*(DIGIT)
 hex-t = "0x" 1*(HEXDIG)
 ls-pchar = unreserved / pct-encoded / ls-sub-delims
 s-pchar = ls-pchar / ":" / "@" / "&"
 q-pchar = ls-pchar / ":" / "@" / "/"
 ls-sub-delims = "!" / "$" / "’" / "(" / ")"
 / "*" / "+" / "," / ";"

 A Labeled Segment URI (LS-URI) contains a scheme that uses Labeled
 Segments, an optional authority, a labeled segment absolute path (ls-
 path-aboslute), an optional labeled segment query (ls-query), and a
 fragment. The authority is URI scheme specific and the fragment is
 independent of the URI scheme.

 the ls-path-aboslute is a first-segment followed by zero or more "/"
 ls-segment. The first-segment may be empty or a non-zero ls-segment
 (ls-segment-nz). If it is empty, it corresponds to a 0-lenght name
 which typically is a default route. It is distinct from a 1-segment
 name with no value (which is not allowed). The first-segment MUST
 either be empty (the 0-lenght name) or MUST have a value. If the
 first-segment is an ls-segment-nz, then it will have a value.

 An ls-segment may (lpv-segment) or may not (v-segment) have a label.
 A particular LS-URI scheme MUST define how unlabeled segments are
 processed, and MAY disallow them. A v-segment is an implied type.

Mosko & Wood Expires October 8, 2016 [Page 6]

Internet-Draft CCNxScheme April 2016

 Once the implied type is resolved, it functions like an lpv-segment.

 An lpv-segment has a label, optional parameter, and optional value
 (s-value-nz). An empty value is a 0-length name segment with a
 defined type. This is distinct from a 0-length first-segment, which
 has neither type nor value.

 lpv-segment values come from the s-pchar set, which excludes the "="
 equal sign. This means that the only equal sign in a name segment
 must be the delimiter between the label:param and the value. Within
 the value, an equal sign must be percent encoded.

 lpv-segment labels and values may be alpha-numeric identifiers or
 numbers (decimal or hexadecimal). For example, one scheme may define
 the labels "name", "version", and "frame". A version may be of types
 "date" or "serial", meaning that the version is either a date or a
 monotonic serial number. Some examples of resulting LS-URIs are:
 "/name=parc/name=csl/version:date=20130930" or "/name=alice_smith/
 version:serial=299". The parameters may also indicate an instance of
 a label, such as "/name=books/year:1=1920/year:3=1940", where there
 are scheme or application semantics associated with "year:1" and
 "year:3".

 lpv-segment labels and parameters may also be numbers. For example,
 a protocol with a binary and URI representation may not have pre-
 defined all possible labels. In such cases, it could render unknown
 labels as their binary value, such as "/name=marc/x2003=green".

 The ls-query component is a non-hierarchical set of components
 separated by "&". Each ls-query component is either a lpv-component
 or a v-component, similar to segments. They are based on q-value,
 which uses q-pchar that excludes "&", but includes "/". This allows
 an LS-URI scheme to use type query parameters.

 Labeled Segments allow for dot-segments "." and ".." in a v-segment.
 They operate as normal. A single dot "." refers to the current
 hierarchy level and may be elided when the URI is resolved. Double
 dot ".." segments pop off the previous non-dot segment. An lpv-
 segment with a value of "." or ".." is not a dot-segment. It means
 that the value of the given label is "." or "..". For example
 /a=parc/b=csl/.. is equivalent to "/a=parc/b=csl", but the LS-URI
 "/a=parc/b=csl/c=.." does not contain a dot-segment.

2.2. URI comparison

 An LS-URI scheme MUST specify the normalization rules to be used,
 following the methods of Section 6 [RFC3986]. At minimum, an LS-URI
 scheme SHOULD do the following:

Mosko & Wood Expires October 8, 2016 [Page 7]

Internet-Draft CCNxScheme April 2016

 o Normalize unrestricted percent-encodings to the unrestricted form.

 o Normalize num-t to either dec-t or hex-t.

 o If the scheme allows for value-only segments or query components
 and interprets them as a default type, they should be normalized
 to having the type specified.

 o If the scheme allows for undefined labels and represents them, for
 example, as num-t, then it should normalize all labels to their
 corresponding num-t. If "name", for example, is known to be %x50
 in a binary encoding of the URI, then all labels should be
 compared using their numeric value.

Mosko & Wood Expires October 8, 2016 [Page 8]

Internet-Draft CCNxScheme April 2016

3. Application to CCNx Names

3.1. The ccnx Scheme

 This section describes the CCNx URI scheme "ccnx:" for Labeled Names.
 A Labeled Name assigns a semantic type or label to each segment of
 the hierarchical content Name.

 Unless otherwise specified, a name segment is an arbitrary sequence
 of octets.

 Several name segment labels are binary unsigned integers. These are
 always encoded as variable length sequences of 1 or more octets in
 network byte order using the shortest representation (i.e. no leading
 %x00). The value of "0" is encoded as the single byte of "%x00". A
 zero-length sequence must be interpreted as "not present."

 The CCNx Name segment types are:

 o Name Segment: A generic name segment that includes arbitrary
 octets.

 o Application Type N: An application may use application-specific
 parameters, numbered as integers, where N is from 0 to a system-
 specific maximum, not less than 255. These are represented as
 "App:1=value", for example.

 It is common for an information centric networking protocol, such as
 CCNx or NDN, to use a binary on-the-wire representation for messages.
 Such protocols, if they use the ccnx: scheme, must have an
 appropriate codec that unambiguously represents Labeled Content
 Information in the chosen wire format. Relative dot-segments should
 not occur in the wire format, they should be resolved before
 encoding.

3.2. URI Representation

 Typed Names use a standard RFC 3986 representation following the LS-
 URI convention. A name segment consists of any "unreserved"
 characters plus percent-encoded characters. Reserved characters must
 be percent encoded.

 Within an absolute path, each segment consists of an "ls-segment"
 (c.f. LS-URI). A labeled segment is a type and a name component
 value, with a URI representation of "type=value". The "type="
 portion may be omitted if it is type Name.

 Some name types take a parameter, such as the Application types.

Mosko & Wood Expires October 8, 2016 [Page 9]

Internet-Draft CCNxScheme April 2016

 They are represented as "A:nnn=value", where the "nnn" is the
 application type number and value is the name component.

 A CCNx URI MUST NOT include an Authority, Query, or Fragment. It is
 an error to include them.

 Dot-segments (relative name components) are resolved when the URI is
 converted to a Typed Name. The "." dot-segment is removed. The ".."
 dot-segment is removed along with the previous non-dot-segment.

 +-------------------+-------------+---------------------------------+
 | Type | Display | Name |
 +-------------------+-------------+---------------------------------+
’Name’	Hexadecimal	Name Segment
’IPID’	Hexadecimal	Interest Payload Identifier
		segment
’App:0’ -	Hexadecimal	Application Component
’App:255’		
 +-------------------+-------------+---------------------------------+

 Table 1: The CCNx URI Scheme Types

Mosko & Wood Expires October 8, 2016 [Page 10]

Internet-Draft CCNxScheme April 2016

3.2.1. Examples

 A name / is
 ccnx:/ and is a 0-length name.

 A name /Name= is
 ccnx:/Name= and is a 1-segment name of 0-length.

 A name /foo/bar.
 ccnx:/Name=foo/Name=bar
 ccnx:/foo/Name=bar
 ccnx:/foo/bar

 A name /foo/bar with key %xA0.
 ccnx:/Name=foo/Name=bar/App:1=0xA0

 A name /foo/bar with version %xA0 and App:2 value 0x09.
 ccnx:/foo/bar/Version=0xA0/App:2=0x09

 A name /foo/.., where the ".." is a literal name component,
 not a relative dot-segment.
 ccnx:/foo/Name=..

 A name /foo/bar with application type 0 "hello"
 and application type 1 "world".
 ccnx:/Name=foo/Name=bar/App:0=hello/App:1=world

3.3. ccnx: URI comparison

 While most comparisons are done using a wire format representation of
 a ccnx: URI, some applications may compare the CCNx URI using their
 URI representation. This section defines the rules for comparing
 ccnx: URIs using the methods of Section 6 [RFC3986]

 Comparing typed name URIs must be done with:

 o Syntax-based normalization

 o Case normalization: normalize the representation of percent
 encodings. ccnx: does not use the host portion of the URI, and
 should be ignored if present.

 o Percent encoding normalization: Percent encodings of unreserved
 characters must be converted to the unreserved character.

 o Path segment normalization: dot-segments must be resolved first.

Mosko & Wood Expires October 8, 2016 [Page 11]

Internet-Draft CCNxScheme April 2016

 o Scheme-based normalization: The authority should be removed and
 the path represented as an absolute path.

 o Protocol-based normalization: Should not be done. A trailing
 slash indicates a zero-length terminal name component and
 signifies a different name.

 o typed-name-segment normalization: All segments should be presented
 with their type, do not elide the "N=" for Name components.

 o Binary unsigned integer normalization: remove any leading %x00
 from numbers, leaving only the terminal %x00 for "0".

 o type parameters: they must have their percent encodings
 normalized. If they are integers, such as for the ’A’ type, they
 must not have leading zeros.

Mosko & Wood Expires October 8, 2016 [Page 12]

Internet-Draft CCNxScheme April 2016

4. IRI Considerations

 International Resource Identifiers extend the unreserved character
 set to include characters above U+07F and encode them using percent
 encoding. This extension is compatible with the ccnx: schema. It
 applies only to the "value" portion of an ls-segment.

 The canonical name is determined by the URI representation of the
 IRI, after applying the rules of Section 3.1 of [RFC3987] and
 resolving dot-segments. The canonical name thus includes the URI
 representation of language markers, including the bidirectional
 components.

 The value of a UTF-8 Name segment should be interpreted using IRI
 rules, including bidirectional markers. They may be displayed using
 localized formats.

 Binary unsigned integer types are not interpreted under IRI rules,
 they are specifically percent encoded numbers. They may be displayed
 using a localized format.

Mosko & Wood Expires October 8, 2016 [Page 13]

Internet-Draft CCNxScheme April 2016

5. Acknowledgements

Mosko & Wood Expires October 8, 2016 [Page 14]

Internet-Draft CCNxScheme April 2016

6. IANA Considerations

 This memo includes no request to IANA.

 All drafts are required to have an IANA considerations section (see
 Guidelines for Writing an IANA Considerations Section in RFCs
 [RFC5226] for a guide). If the draft does not require IANA to do
 anything, the section contains an explicit statement that this is the
 case (as above). If there are no requirements for IANA, the section
 will be removed during conversion into an RFC by the RFC Editor.

Mosko & Wood Expires October 8, 2016 [Page 15]

Internet-Draft CCNxScheme April 2016

7. Security Considerations

 All drafts are required to have a security considerations section.
 See RFC 3552 [RFC3552] for a guide.

Mosko & Wood Expires October 8, 2016 [Page 16]

Internet-Draft CCNxScheme April 2016

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

8.2. Informative References

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <http://www.rfc-editor.org/info/rfc3552>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, DOI 10.17487/RFC3987,
 January 2005, <http://www.rfc-editor.org/info/rfc3987>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, DOI 10.17487/
 RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

Mosko & Wood Expires October 8, 2016 [Page 17]

Internet-Draft CCNxScheme April 2016

Authors’ Addresses

 Marc Mosko
 PARC, Inc.
 Palo Alto, California 94304
 USA

 Phone: +01 650-812-4405
 Email: marc.mosko@parc.com

 Christopher A. Wood
 PARC, Inc.
 Palo Alto, California 94304
 USA

 Phone: +01 650-812-4421
 Email: christopher.wood@parc.com

Mosko & Wood Expires October 8, 2016 [Page 18]

