
ICNRG M. Mosko
Internet-Draft PARC, Inc.
Intended status: Experimental June 1, 2016
Expires: December 3, 2016

 CCNx Content Object Chunking
 draft-mosko-icnrg-ccnxchunking-02

Abstract

 This document specifies a chunking protocol for dividing a user
 payload into CCNx Content Objects. This includes specification for
 the naming convention to use for the chunked payload and a field
 added to a Content Object to represent the last chunk of an object.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 3, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Mosko Expires December 3, 2016 [Page 1]

Internet-Draft CCNx chunking June 2016

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 3
 2. Chunking . 4
 2.1. Cryptographic material 5
 2.2. Examples . 5
 3. TLV Types . 6
 3.1. Name Types . 6
 3.1.1. Chunk Number . 6
 3.2. Protocol Information 6
 3.2.1. EndChunkNumber . 7
 4. Acknowledgements . 8
 5. IANA Considerations . 9
 6. Security Considerations 10
 7. References . 11
 7.1. Normative References 11
 7.2. Informative References 11
 Author’s Address . 12

Mosko Expires December 3, 2016 [Page 2]

Internet-Draft CCNx chunking June 2016

1. Introduction

 CCNx Content Objects [CCNSemantics] are sized to amortize
 cryptographic operations over user data while simultaneously staying
 a reasonable size for transport over today’s networks. This means a
 Content Object is usually within common UDP or jumbo Ethernet size.
 If a publisher has a larger amount of data to associate with a single
 Name, the data should be chunked with this chunking protocol. This
 protocol uses state in the Name and in an optional field within the
 Content Object. A chunked object may also have an external metadata
 content object that describes the original pre-chunked object.

 CCNx uses two types of messages: Interests and Content Objects
 [CCNSemantics]. An Interest carries the hierarchically structured
 variable-length identifier (HSVLI), or Name, of a Content Object and
 serves as a request for that object. If a network element sees
 multiple Interests for the same name, it may aggregate those
 Interests. A network element along the path of the Interest with a
 matching Content Object may return that object, satisfying the
 Interest. The Content Object follows the reverse path of the
 Interest to the origin(s) of the Interest. A Content Object contains
 the Name, the object’s Payload, and the cryptographic information
 used to bind the Name to the payload.

 This specification adds a new segment to the Name TLV for conveying
 the chunk number. It updates [CCNMessages]. It also provides
 guidelines for the usage of the Key Locator in chunked objects.

 Packets are represented as 32-bit wide words using ASCII art.
 Because of the TLV encoding and optional fields or sizes, there is no
 concise way to represent all possibilities. We use the convention
 that ASCII art fields enclosed by vertical bars "|" represent exact
 bit widths. Fields with a forward slash "/" are variable bitwidths,
 which we typically pad out to word alignment for picture readability.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Mosko Expires December 3, 2016 [Page 3]

Internet-Draft CCNx chunking June 2016

2. Chunking

 Chunking, as used in this specification, means serializing user data
 into one or more chunks, each encapsulated in a CCNx Content Object.
 A chunk is a contiguous byte range within the user data. One segment
 in the Name of that Content Object represents the chunk number. A
 field in the Content Object - only mandatory in the final chunk -
 represents the end of the stream. Chunks are denoted by a serial
 counter, beginning at 0 and incrementing by 1 for each contiguous
 chunk. The chunking ends at the final chunk. No valid user data
 exists beyond the final chunk, and reading beyond the final chunk
 MUST NOT return any user data.

 Chunking MUST use a fixed block size, where only the final chunk MAY
 use a smaller block size. This is required to allow a reader to seek
 to a specific byte offset once it knows the block size. The
 blocksize may be inferred from the size of the first chunk of user
 data. The first chunk of user data may not be chunk 0.

 Because of the requirement for a fixed block size, the inclusion of
 certain cryptographic fields in the same content objects as user data
 would throw off the ability to seek. Therefore, it is RECOMMENDED
 that all required cryptographic data, such as public keys or key name
 links, be included in the leading chunks before the first byte of
 user data. User data SHOULD then run continuously and with the same
 block size through the remainder of the content objects.

 This draft introduces a new Name path segment TLV type, called the
 ChunkNumber name segment. The ChunkNumber name segment is the serial
 order of the chunks. It MUST begin at 0 and MUST be incremented by
 1. The ChunkNumber name segment is appended to the base name of the
 user data, and is usually the last name segment.

 The new Content Object field is the EndChunkNumber. It MUST be
 included in the Content Object which is the last chunk of user data,
 but SHOULD be present at the earliest time it is known. The value of
 the EndChunkNumber should be the network byte order value of the last
 ChunkNumber. For example, if 3000 bytes of user data is split with a
 1200 byte block size, there will be 3 chunks: 0, 1, and 2. The
 EndChunkNumber is 2.

 The EndChunkNumber may be updated in later Chunks to a larger value,
 as long as it has not yet reached the end. The EndChunkNumber SHOULD
 NOT decrease. If a publisher wishes to close a stream before
 reaching the End Chunk, it should publish empty Content Objects to
 fill out to the maximum EndChunkNumber ever published. These padding
 chunks MUST contain the true EndChunkNumber.

Mosko Expires December 3, 2016 [Page 4]

Internet-Draft CCNx chunking June 2016

2.1. Cryptographic material

 Chunk 0 SHOULD include the public key or key name link used to verify
 the chunked data. It is RECOMMENDED to use the same key for the
 whole set of chunked data. If a publisher uses multiple keys, then
 the public key or key name link for all keys SHOULD be in the leading
 chunks before any user data.

 The rationel for putting all cryptographic data up front is because
 the protocol requires using a fixed block size for all user data to
 enable seeking in the chunked stream.

2.2. Examples

 Here are some examples of chunked Names using the Labeled Content
 Identifier URI scheme in human readable form (ccnx:).

 In this example, the content producer publishes a JPG that takes 4
 Chunks. The EndChunkNumber is missing in the first content object
 (Chunk 0), but is known and included when Chunk 1 is published. It
 is omitted in Chunk 2, then appears in Chunk 3, where it is
 mandatory.

 ccnx:/Name=parc/Name=picture.jpg/Chunk=0 --
 ccnx:/Name=parc/Name=picture.jpg/Chunk=1 EndChunkNumber=3
 ccnx:/Name=parc/Name=picture.jpg/Chunk=2 --
 ccnx:/Name=parc/Name=picture.jpg/Chunk=3 EndChunkNumber=3

 In this example, the publisher is writing an audio stream that ends
 before expected so the publisher fills empty Content Objects out to
 the maximum ChunkNumber, stating the correct EndChunkNumber. Chunks
 4, 5, and 6 do not contain any new user data.

 ccnx:/Name=parc/Name=talk.wav/Chunk=0 --
 ccnx:/Name=parc/Name=talk.wav/Chunk=1 EndChunkNumber=6
 ccnx:/Name=parc/Name=talk.wav/Chunk=2 --
 ccnx:/Name=parc/Name=talk.wav/Chunk=3 EndChunkNumber=3
 ccnx:/Name=parc/Name=talk.wav/Chunk=4 EndChunkNumber=3
 ccnx:/Name=parc/Name=talk.wav/Chunk=5 EndChunkNumber=3
 ccnx:/Name=parc/Name=talk.wav/Chunk=6 EndChunkNumber=3

Mosko Expires December 3, 2016 [Page 5]

Internet-Draft CCNx chunking June 2016

3. TLV Types

 This section specifies the TLV types used by CCNx chunking.

3.1. Name Types

 CCNx chunking uses two new Name types: Chunk Number and Chunk
 Metadata.

 +--------+---------+-----------------+------------------------------+
 | Type | Abbrev | Name | Description |
 +--------+---------+-----------------+------------------------------+
%x0010	T_CHUNK	Chunk Number	The current Chunk Number, is
		(Section 3.1.1)	an unsigned integer in
			network byte order without
			leading zeros. The value of
			zero is represented as the
			single byte %x00.
 +--------+---------+-----------------+------------------------------+

 Table 1: Name Types

3.1.1. Chunk Number

 The current chunk number, as an unsigned integer in network byte
 order without leading zeros. The value of zero is represented as the
 single byte %x00.

 In ccnx: URI form, it is denoted as "Chunk".

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+--------------+
 | T_CHUNK | Length |
 +---------------+---------------+---------------+--------------+
 | variable length integer /
 +---------------+---------------+

3.2. Protocol Information

 CCNx chunking introduces one new TLV for use in a Content Object.

Mosko Expires December 3, 2016 [Page 6]

Internet-Draft CCNx chunking June 2016

 +--------+------------+-----------------+---------------------------+
 | Type | Abbrev | Name | Description |
 +--------+------------+-----------------+---------------------------+
%x000C	T_ENDCHUNK	EndChunkNumber	The last Chunk number, as
		(Section 3.1.1)	an unsigned integer in
			network byte order
			without leading zeros.
			The value of zero is
			represented as the single
			byte %x00.
 +--------+------------+-----------------+---------------------------+

 Table 2: Content Object Types

3.2.1. EndChunkNumber

 The ending chunk number, as an unsigned integer in network byte order
 without leading zeros. The value of zero is represented as the
 single byte %x00.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+--------------+
 | T_ENDCHUNK | Length |
 +---------------+---------------+---------------+--------------+
 | variable length integer /
 +---------------+---------------+

Mosko Expires December 3, 2016 [Page 7]

Internet-Draft CCNx chunking June 2016

4. Acknowledgements

Mosko Expires December 3, 2016 [Page 8]

Internet-Draft CCNx chunking June 2016

5. IANA Considerations

 The draft adds new types to the CCNx Name Segment Types registry and
 the CCNx Content Object Types registry.

Mosko Expires December 3, 2016 [Page 9]

Internet-Draft CCNx chunking June 2016

6. Security Considerations

 This draft does not put any requirements on how chunked data is
 signed or validated.

Mosko Expires December 3, 2016 [Page 10]

Internet-Draft CCNx chunking June 2016

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

7.2. Informative References

 [CCNMessages]
 Mosko, M., Solis, I., and C. Wood, "CCNx Messages in TLV
 Format (Internet draft)", 2016, <http://tools.ietf.org/
 html/draft-irtf-icnrg-ccnxmessages-02>.

 [CCNSemantics]
 Mosko, M., Solis, I., and C. Wood, "CCNx Semantics
 (Internet draft)", 2016, <http://tools.ietf.org/html/
 draft-mosko-icnrg-ccnxsemantics-03>.

 [CCNx] PARC, Inc., "CCNx Open Source", 2007,
 <http://www.ccnx.org>.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, DOI 10.17487/
 RFC2616, June 1999,
 <http://www.rfc-editor.org/info/rfc2616>.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <http://www.rfc-editor.org/info/rfc3552>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

Mosko Expires December 3, 2016 [Page 11]

Internet-Draft CCNx chunking June 2016

Author’s Address

 Marc Mosko
 PARC, Inc.
 Palo Alto, California 94304
 USA

 Phone: +01 650-812-4405
 Email: marc.mosko@parc.com

Mosko Expires December 3, 2016 [Page 12]

