
Internet Engineering Task Force A. Bierman
Internet-Draft YumaWorks
Obsoletes: 6536 (if approved) M. Bjorklund
Intended status: Standards Track Tail-f Systems
Expires: April 29, 2017 October 26, 2016

 Network Configuration Protocol (NETCONF) Access Control Model
 draft-bierman-netconf-rfc6536bis-00

Abstract

 The standardization of network configuration interfaces for use with
 the Network Configuration Protocol (NETCONF) or RESTCONF protocol
 requires a structured and secure operating environment that promotes
 human usability and multi-vendor interoperability. There is a need
 for standard mechanisms to restrict NETCONF or RESTCONF protocol
 access for particular users to a pre-configured subset of all
 available NETCONF or RESTCONF protocol operations and content. This
 document defines such an access control model.

 This document obsoletes RFC 6536.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 29, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Bierman & Bjorklund Expires April 29, 2017 [Page 1]

Internet-Draft NACM October 2016

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 1.2. Changes Since RFC 6535 5
 2. Access Control Design Objectives 5
 2.1. Access Control Points 6
 2.2. Simplicity . 6
 2.3. Procedural Interface 7
 2.4. Datastore Access . 7
 2.5. Users and Groups . 7
 2.6. Maintenance . 7
 2.7. Configuration Capabilities 8
 2.8. Identifying Security-Sensitive Content 8
 3. NETCONF Access Control Model (NACM) 9
 3.1. Introduction . 9
 3.1.1. Features . 9
 3.1.2. External Dependencies 10
 3.1.3. Message Processing Model 10
 3.2. Datastore Access . 13
 3.2.1. Access Rights . 13
 3.2.2. RESTCONF Methods 13
 3.2.3. <get> and <get-config> Operations 14
 3.2.4. <edit-config> Operation 14
 3.2.5. <copy-config> Operation 15
 3.2.6. <delete-config> Operation 16
 3.2.7. <commit> Operation 16
 3.2.8. <discard-changes> Operation 16
 3.2.9. <kill-session> Operation 17
 3.3. Model Components . 17
 3.3.1. Users . 17
 3.3.2. Groups . 17
 3.3.3. Emergency Recovery Session 17
 3.3.4. Global Enforcement Controls 18
 3.3.4.1. enable-nacm Switch 18
 3.3.4.2. read-default Switch 18
 3.3.4.3. write-default Switch 18
 3.3.4.4. exec-default Switch 19
 3.3.4.5. enable-external-groups Switch 19
 3.3.5. Access Control Rules 19
 3.4. Access Control Enforcement Procedures 19

Bierman & Bjorklund Expires April 29, 2017 [Page 2]

Internet-Draft NACM October 2016

 3.4.1. Initial Operation 20
 3.4.2. Session Establishment 20
 3.4.3. "access-denied" Error Handling 20
 3.4.4. Incoming RPC Message Validation 20
 3.4.5. Data Node Access Validation 23
 3.4.6. Outgoing <notification> Authorization 25
 3.5. Data Model Definitions 27
 3.5.1. Data Organization 28
 3.5.2. YANG Module . 28
 3.6. IANA Considerations 38
 3.7. Security Considerations 38
 3.7.1. NACM Configuration and Monitoring Considerations . . 39
 3.7.2. General Configuration Issues 40
 3.7.3. Data Model Design Considerations 42
 4. References . 42
 4.1. Normative References 42
 4.2. Informative References 43
 Appendix A. Usage Examples 44
 A.1. <groups> Example . 44
 A.2. Module Rule Example 45
 A.3. Protocol Operation Rule Example 46
 A.4. Data Node Rule Example 48
 A.5. Notification Rule Example 50
 Authors’ Addresses . 51

1. Introduction

 The NETCONF and RESTCONF protocols do not provide any standard
 mechanisms to restrict the protocol operations and content that each
 user is authorized to access.

 There is a need for interoperable management of the controlled access
 to administrator-selected portions of the available NETCONF or
 RESTCONF content within a particular server.

 This document addresses access control mechanisms for the Operations
 and Content layers of NETCONF, as defined in [RFC6241], and RESTCONF,
 as defined in [I-D.ietf-netconf-restconf]. It contains three main
 sections:

 1. Access Control Design Objectives

 2. NETCONF Access Control Model (NACM)

 3. YANG Data Model (ietf-netconf-acm.yang)

 YANG version 1.1 [RFC7950] adds two new constructs that need special
 access control handling. The "action" statement is similar to the

Bierman & Bjorklund Expires April 29, 2017 [Page 3]

Internet-Draft NACM October 2016

 "rpc" statement, except it is located within a data node. The
 "notification" statement can also be located within a data node.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are defined in [RFC6241] and are not redefined
 here:

 o client

 o datastore

 o protocol operation

 o server

 o session

 o user

 The following terms are defined in [RFC7950]. and are not redefined
 here:

 o action

 o data node

 o data definition statement

 The following terms are defined in [I-D.ietf-netconf-restconf]. and
 are not redefined here:

 o data resource

 o datastore resource

 o operation resource

 The following terms are used throughout this document:

 access control: A security feature provided by the NETCONF server
 that allows an administrator to restrict access to a subset of all
 NETCONF protocol operations and data, based on various criteria.

Bierman & Bjorklund Expires April 29, 2017 [Page 4]

Internet-Draft NACM October 2016

 access control model (ACM): A conceptual model used to configure and
 monitor the access control procedures desired by the administrator
 to enforce a particular access control policy.

 access control rule: The criterion used to determine if a particular
 NETCONF protocol operation will be permitted or denied.

 access operation: How a request attempts to access a conceptual
 object. One of "none", "read", "create", "delete", "update", or
 "execute".

 data node hierarchy: The hierarchy of data nodes that identifies the
 specific "action" or "notification" node in the datastore.

 recovery session: A special administrative session that is given
 unlimited NETCONF access and is exempt from all access control
 enforcement. The mechanism(s) used by a server to control and
 identify whether or not a session is a recovery session are
 implementation specific and outside the scope of this document.

 write access: A shorthand for the "create", "delete", and "update"
 access operations.

1.2. Changes Since RFC 6535

 The NACM procedures and data model have been updated to support new
 data modeling capabilities in the version 1.1. of the YANG data
 modeling language. The "action" and "notification" statements can be
 used within data nodes to define data-model specific operations and
 notifications.

 An important use-case for these new YANG statements is the increased
 access control granularity that can be achieved over top-level "rpc"
 and "notification" statements. The new "action" and "notification"
 statements are used within data nodes, and access to the action or
 notification can be restricted to specific instances of these data
 nodes.

 Support for the RESTCONF protocol has been added. The RESTCONF
 operations are similar to the NETCONF operations, so a simple mapping
 to the existing NACM procedures and data model is possible.

2. Access Control Design Objectives

 This section documents the design objectives for the NETCONF Access
 Control Model presented in Section 3.

Bierman & Bjorklund Expires April 29, 2017 [Page 5]

Internet-Draft NACM October 2016

2.1. Access Control Points

 NETCONF allows new protocol operations to be added at any time, and
 the YANG Data Modeling Language supports this feature. It is not
 possible to design an ACM for NETCONF that only focuses on a static
 set of protocol operations, like some other protocols. Since few
 assumptions can be made about an arbitrary protocol operation, the
 NETCONF architectural server components need to be protected at three
 conceptual control points.

 These access control points, described in Figure 1, are as follows:

 protocol operation: Permission to invoke specific protocol
 operations.

 datastore: Permission to read and/or alter specific data nodes
 within any datastore.

 notification: Permission to receive specific notification event
 types.

 +-------------+ +-------------+
 client | protocol | | data node |
 request --> | operation | -------------> | access |
 | allowed? | datastore | allowed? |
 +-------------+ or state +-------------+
 data access

 +----------------+
 | notification |
 event --> | allowed? |
 +----------------+

 Figure 1

2.2. Simplicity

 There is concern that a complicated ACM will not be widely deployed
 because it is too hard to use. It needs to be easy to do simple
 things and possible to do complex things, instead of hard to do
 everything.

 Configuration of the access control system needs to be as simple as
 possible. Simple and common tasks need to be easy to configure and
 require little expertise or domain-specific knowledge. Complex tasks
 are possible using additional mechanisms, which may require
 additional expertise.

Bierman & Bjorklund Expires April 29, 2017 [Page 6]

Internet-Draft NACM October 2016

 A single set of access control rules ought to be able to control all
 types of NETCONF protocol operation invocation, all datastore access,
 and all notification events.

 Access control ought to be defined with a small and familiar set of
 permissions, while still allowing full control of NETCONF datastore
 access.

2.3. Procedural Interface

 The NETCONF protocol uses a remote procedure call model and an
 extensible set of protocol operations. Access control for any
 possible protocol operation is necessary.

2.4. Datastore Access

 It is necessary to control access to specific nodes and subtrees
 within the NETCONF datastore, regardless of which protocol operation,
 standard or proprietary, was used to access the datastore.

2.5. Users and Groups

 It is necessary that access control rules for a single user or a
 configurable group of users can be configured.

 The ACM needs to support the concept of administrative groups, to
 support the well-established distinction between a root account and
 other types of less-privileged conceptual user accounts. These
 groups need to be configurable by the administrator.

 It is necessary that the user-to-group mapping can be delegated to a
 central server, such as a RADIUS server [RFC2865][RFC5607]. Since
 authentication is performed by the NETCONF transport layer and RADIUS
 performs authentication and service authorization at the same time,
 the underlying NETCONF transport needs to be able to report a set of
 group names associated with the user to the server. It is necessary
 that the administrator can disable the usage of these group names
 within the ACM.

2.6. Maintenance

 It ought to be possible to disable part or all of the access control
 model enforcement procedures without deleting any access control
 rules.

Bierman & Bjorklund Expires April 29, 2017 [Page 7]

Internet-Draft NACM October 2016

2.7. Configuration Capabilities

 Suitable configuration and monitoring mechanisms are needed to allow
 an administrator to easily manage all aspects of the ACM’s behavior.
 A standard data model, suitable for use with the <edit-config>
 protocol operation, needs to be available for this purpose.

 Access control rules to restrict access operations on specific
 subtrees within the configuration datastore need to be supported.

2.8. Identifying Security-Sensitive Content

 One of the most important aspects of the data model documentation,
 and biggest concerns during deployment, is the identification of
 security-sensitive content. This applies to protocol operations in
 NETCONF, not just data and notifications.

 It is mandatory for security-sensitive objects to be documented in
 the Security Considerations section of an RFC. This is nice, but it
 is not good enough, for the following reasons:

 o This documentation-only approach forces administrators to study
 the RFC and determine if there are any potential security risks
 introduced by a new data model.

 o If any security risks are identified, then the administrator must
 study some more RFC text and determine how to mitigate the
 security risk(s).

 o The ACM on each server must be configured to mitigate the security
 risks, e.g., require privileged access to read or write the
 specific data identified in the Security Considerations section.

 o If the ACM is not pre-configured, then there will be a time window
 of vulnerability after the new data model is loaded and before the
 new access control rules for that data model are configured,
 enabled, and debugged.

 Often, the administrator just wants to disable default access to the
 secure content, so no inadvertent or malicious changes can be made to
 the server. This allows the default rules to be more lenient,
 without significantly increasing the security risk.

 A data model designer needs to be able to use machine-readable
 statements to identify NETCONF content, which needs to be protected
 by default. This will allow client and server tools to automatically
 identify data-model-specific security risks, by denying access to

Bierman & Bjorklund Expires April 29, 2017 [Page 8]

Internet-Draft NACM October 2016

 sensitive data unless the user is explicitly authorized to perform
 the requested access operation.

3. NETCONF Access Control Model (NACM)

3.1. Introduction

 This section provides a high-level overview of the access control
 model structure. It describes the NETCONF protocol message
 processing model and the conceptual access control requirements
 within that model.

3.1.1. Features

 The NACM data model provides the following features:

 o Independent control of remote procedure call (RPC), action, data,
 and notification access.

 o Simple access control rules configuration data model that is easy
 to use.

 o The concept of an emergency recovery session is supported, but
 configuration of the server for this purpose is beyond the scope
 of this document. An emergency recovery session will bypass all
 access control enforcement, in order to allow it to initialize or
 repair the NACM configuration.

 o A simple and familiar set of datastore permissions is used.

 o Support for YANG security tagging (e.g., "nacm:default-deny-write"
 statement) allows default security modes to automatically exclude
 sensitive data.

 o Separate default access modes for read, write, and execute
 permissions.

 o Access control rules are applied to configurable groups of users.

 o The access control enforcement procedures can be disabled during
 operation, without deleting any access control rules, in order to
 debug operational problems.

 o Access control rules are simple to configure.

 o The number of denied protocol operation requests and denied
 datastore write requests can be monitored by the client.

Bierman & Bjorklund Expires April 29, 2017 [Page 9]

Internet-Draft NACM October 2016

 o Simple unconstrained YANG instance identifiers are used to
 configure access control rules for specific data nodes.

3.1.2. External Dependencies

 The NETCONF protocol [RFC6241] is used for network management
 purposes within this document.

 The RESTCONF protocol [I-D.ietf-netconf-restconf] is used for network
 management purposes within this document.

 The YANG Data Modeling Language [RFC7950] is used to define the data
 models for use with the NETCONF or RESTCONF protocols. YANG is also
 used to define the data model in this document.

3.1.3. Message Processing Model

 The following diagram shows the conceptual message flow model,
 including the points at which access control is applied during
 NETCONF message processing.

 RESTCONF operations are mapped to the access control model based on
 the HTTP method and resource class used in the operation. For
 example, a POST method on a data resource is considered "write data
 node" access, but a POST method on an operation resource is
 considered "operation" access.

Bierman & Bjorklund Expires April 29, 2017 [Page 10]

Internet-Draft NACM October 2016

 +-------------------------+
 | session |
 | (username) |
 +-------------------------+
 | ^
 V |
 +--------------+ +---------------+
 | message | | message |
 | dispatcher | | generator |
 +--------------+ +---------------+
 | | ^ ^
 | V | | | |
 | +=============+ | |
 | | pre-read | | |
 | | data node | | |
 | | acc. ctl | | |
 | +=============+ | |
 | | | |
 V V | |
 +===========+ +-------------+ +----------------+
 | operation |---> | reply | | <notification> |
 | acc. ctl | | generator | | generator |
 +===========+ +-------------+ +----------------+
 | ^ ^ ^
 V +------+ | |
 +-----------+ | +=============+ +================+
 | operation | | | read | | <notification> |
 | processor |-+ | data node | | access ctl |
 | | | acc. ctl | | |
 +-----------+ +=============+ +================+
 | | ^ ^ ^
 V +----------------+ | | |
 +===========+ | | | +============+
 | write | | | | | pre-read |
 | data node | | | | | data node |
 | acc. ctl | -----------+ | | | | acc. ctl |
 +===========+ | | | | +============+
 | | | | | ^
 V V V | | |
 +---------------+ +-------------------+
 | configuration | ---> | server |
 | datastore | | instrumentation |
 | | <--- | |
 +---------------+ +-------------------+

 Figure 2

Bierman & Bjorklund Expires April 29, 2017 [Page 11]

Internet-Draft NACM October 2016

 The following high-level sequence of conceptual processing steps is
 executed for each received <rpc> message, if access control
 enforcement is enabled:

 o For each active session, access control is applied individually to
 all <rpc> messages (except <close-session>) received by the
 server, unless the session is identified as a recovery session.

 o If the <action> operation defined in [RFC7950] is invoked, then
 read access is required for all instances in the hierarchy of data
 nodes that identifies the specific action in the datastore, and
 execute access is required for the action node. If the user is
 not authorized to read all the specified data nodes and execute
 the action, then the request is rejected with an "access-denied"
 error.

 o Otherwise, if the user is not authorized to execute the specified
 protocol operation, then the request is rejected with an "access-
 denied" error.

 o If the configuration datastore or conceptual state data is
 accessed by the protocol operation, then the server checks if the
 client is authorized to access the nodes in the datastore. If the
 user is not authorized to perform the requested access operation
 on the requested data, then the request is rejected with an
 "access-denied" error.

 The following sequence of conceptual processing steps is executed for
 each generated notification event, if access control enforcement is
 enabled:

 o Server instrumentation generates a notification for a particular
 subscription.

 o If the notification statement is specified within a data subtree,
 as specified in [RFC7950], then read access is required for all
 instances in the hierarchy of data nodes that identifies the
 specific notification in the datastore, and read access is
 required for the notification node. If the user is not authorized
 to read all the specified data nodes and the notification node,
 then the notification is dropped for that subscription.

 o If the notification statement is a top-level statement, the
 notification access control enforcer checks the notification event
 type, and if it is one that the user is not authorized to read,
 then the notification is dropped for that subscription.

Bierman & Bjorklund Expires April 29, 2017 [Page 12]

Internet-Draft NACM October 2016

3.2. Datastore Access

 The same access control rules apply to all datastores, for example,
 the candidate configuration datastore or the running configuration
 datastore.

 Only the standard NETCONF datastores (candidate, running, and
 startup) are controlled by NACM. Local or remote files or datastores
 accessed via the <url> parameter are not controlled by NACM. A
 standalone RESTCONF server (i.e., not co-located with a NETCONF
 server) applies NACM rules to a conceptual datastore, since
 datastores are not supported in RESTCONF.

3.2.1. Access Rights

 A small set of hard-wired datastore access rights is needed to
 control access to all possible NETCONF protocol operations, including
 vendor extensions to the standard protocol operation set.

 The "CRUDX" model can support all NETCONF protocol operations:

 o Create: allows the client to add a new data node instance to a
 datastore.

 o Read: allows the client to read a data node instance from a
 datastore or receive the notification event type.

 o Update: allows the client to update an existing data node instance
 in a datastore.

 o Delete: allows the client to delete a data node instance from a
 datastore.

 o eXec: allows the client to execute the operation.

3.2.2. RESTCONF Methods

 The RESTCONF protocol utilizes HTTP methods to perform datastore
 operations, similar to the NETCONF protocol. The NACM procedures
 were originally written for NETCONF protocol operations so the
 RESTCONF methods are mapped to NETCONF operations for the purpose of
 access control processing. The enforcement procedures described
 within this document apply to both protocols unless explicitly stated
 otherwise.

 Not all RESTCONF methods are subject to access control. The
 following table specifies how each method is mapped to NETCONF

Bierman & Bjorklund Expires April 29, 2017 [Page 13]

Internet-Draft NACM October 2016

 protocol operations. The value ’none’ indicates that NACM is not
 applied at all to the specific RESTCONF method.

 +---------+-----------------+---------------------+-----------------+
 | method | resource class | NETCONF operation | Edit operation |
 +---------+-----------------+---------------------+-----------------+
OPTIONS	all	none	N/A
HEAD	all	<get>	N/A
GET	all	<get>	N/A
POST	datastore, data	<edit-config>	create
POST	operation	specified operation	N/A
PUT	data	<edit-config>	create, replace
PUT	datastore	<copy-config>	replace
PATCH	data, datastore	<edit-config>	merge
DELETE	data	<edit-config>	delete
 +---------+-----------------+---------------------+-----------------+

 Table 1: Mapping RESTCONF Methods to NETCONF

3.2.3. <get> and <get-config> Operations

 Data nodes to which the client does not have read access are silently
 omitted from the <rpc-reply> message. This is done to allow NETCONF
 filters for <get> and <get-config> to function properly, instead of
 causing an "access-denied" error because the filter criteria would
 otherwise include unauthorized read access to some data nodes. For
 NETCONF filtering purposes, the selection criteria is applied to the
 subset of nodes that the user is authorized to read, not the entire
 datastore.

3.2.4. <edit-config> Operation

 The NACM access rights are not directly coupled to the <edit-config>
 "operation" attribute, although they are similar. Instead, a NACM
 access right applies to all protocol operations that would result in
 a particular access operation to the target datastore. This section
 describes how these access rights apply to the specific access
 operations supported by the <edit-config> protocol operation.

 If the effective access operation is "none" (i.e., default-
 operation="none") for a particular data node, then no access control
 is applied to that data node. This is required to allow access to a
 subtree within a larger data structure. For example, a user may be
 authorized to create a new "/interfaces/interface" list entry but not
 be authorized to create or delete its parent container
 ("/interfaces"). If the "/interfaces" container already exists in
 the target datastore, then the effective operation will be "none" for

Bierman & Bjorklund Expires April 29, 2017 [Page 14]

Internet-Draft NACM October 2016

 the "/interfaces" node if an "/interfaces/interface" list entry is
 edited.

 If the protocol operation would result in the creation of a datastore
 node and the user does not have "create" access permission for that
 node, the protocol operation is rejected with an "access-denied"
 error.

 If the protocol operation would result in the deletion of a datastore
 node and the user does not have "delete" access permission for that
 node, the protocol operation is rejected with an "access-denied"
 error.

 If the protocol operation would result in the modification of a
 datastore node and the user does not have "update" access permission
 for that node, the protocol operation is rejected with an "access-
 denied" error.

 A "merge" or "replace" <edit-config> operation may include data nodes
 that do not alter portions of the existing datastore. For example, a
 container or list node may be present for naming purposes but does
 not actually alter the corresponding datastore node. These unaltered
 data nodes are ignored by the server and do not require any access
 rights by the client.

 A "merge" <edit-config> operation may include data nodes but not
 include particular child data nodes that are present in the
 datastore. These missing data nodes within the scope of a "merge"
 <edit-config> operation are ignored by the server and do not require
 any access rights by the client.

 The contents of specific restricted datastore nodes MUST NOT be
 exposed in any <rpc-error> elements within the reply.

3.2.5. <copy-config> Operation

 Access control for the <copy-config> protocol operation requires
 special consideration because the administrator may be replacing the
 entire target datastore.

 If the source of the <copy-config> protocol operation is the running
 configuration datastore and the target is the startup configuration
 datastore, the client is only required to have permission to execute
 the <copy-config> protocol operation.

 Otherwise:

Bierman & Bjorklund Expires April 29, 2017 [Page 15]

Internet-Draft NACM October 2016

 o If the source of the <copy-config> operation is a datastore, then
 data nodes to which the client does not have read access are
 silently omitted.

 o If the target of the <copy-config> operation is a datastore, the
 client needs access to the modified nodes, specifically:

 * If the protocol operation would result in the creation of a
 datastore node and the user does not have "create" access
 permission for that node, the protocol operation is rejected
 with an "access-denied" error.

 * If the protocol operation would result in the deletion of a
 datastore node and the user does not have "delete" access
 permission for that node, the protocol operation is rejected
 with an "access-denied" error.

 * If the protocol operation would result in the modification of a
 datastore node and the user does not have "update" access
 permission for that node, the protocol operation is rejected
 with an "access-denied" error.

3.2.6. <delete-config> Operation

 Access to the <delete-config> protocol operation is denied by
 default. The "exec-default" leaf does not apply to this protocol
 operation. Access control rules must be explicitly configured to
 allow invocation by a non-recovery session.

3.2.7. <commit> Operation

 The server MUST determine the exact nodes in the running
 configuration datastore that are actually different and only check
 "create", "update", and "delete" access permissions for this set of
 nodes, which could be empty.

 For example, if a session can read the entire datastore but only
 change one leaf, that session needs to be able to edit and commit
 that one leaf.

3.2.8. <discard-changes> Operation

 The client is only required to have permission to execute the
 <discard-changes> protocol operation. No datastore permissions are
 needed.

Bierman & Bjorklund Expires April 29, 2017 [Page 16]

Internet-Draft NACM October 2016

3.2.9. <kill-session> Operation

 The <kill-session> operation does not directly alter a datastore.
 However, it allows one session to disrupt another session that is
 editing a datastore.

 Access to the <kill-session> protocol operation is denied by default.
 The "exec-default" leaf does not apply to this protocol operation.
 Access control rules must be explicitly configured to allow
 invocation by a non-recovery session.

3.3. Model Components

 This section defines the conceptual components related to the access
 control model.

3.3.1. Users

 A "user" is the conceptual entity that is associated with the access
 permissions granted to a particular session. A user is identified by
 a string that is unique within the server.

 As described in [RFC6241], the username string is derived from the
 transport layer during session establishment. If the transport layer
 cannot authenticate the user, the session is terminated.

3.3.2. Groups

 Access to a specific NETCONF protocol operation is granted to a
 session, associated with a group, not a user.

 A group is identified by its name. All group names are unique within
 the server.

 A group member is identified by a username string.

 The same user can be a member of multiple groups.

3.3.3. Emergency Recovery Session

 The server MAY support a recovery session mechanism, which will
 bypass all access control enforcement. This is useful for
 restricting initial access and repairing a broken access control
 configuration.

Bierman & Bjorklund Expires April 29, 2017 [Page 17]

Internet-Draft NACM October 2016

3.3.4. Global Enforcement Controls

 There are five global controls that are used to help control how
 access control is enforced.

3.3.4.1. enable-nacm Switch

 A global "enable-nacm" on/off switch is provided to enable or disable
 all access control enforcement. When this global switch is set to
 "true", then all requests are checked against the access control
 rules and only permitted if configured to allow the specific access
 request. When this global switch is set to "false", then all access
 requested are permitted.

3.3.4.2. read-default Switch

 An on/off "read-default" switch is provided to enable or disable
 default access to receive data in replies and notifications. When
 the "enable-nacm" global switch is set to "true", then this global
 switch is relevant if no matching access control rule is found to
 explicitly permit or deny read access to the requested NETCONF
 datastore data or notification event type.

 When this global switch is set to "permit" and no matching access
 control rule is found for the NETCONF datastore read or notification
 event requested, then access is permitted.

 When this global switch is set to "deny" and no matching access
 control rule is found for the NETCONF datastore read or notification
 event requested, then access is denied.

3.3.4.3. write-default Switch

 An on/off "write-default" switch is provided to enable or disable
 default access to alter configuration data. When the "enable-nacm"
 global switch is set to "true", then this global switch is relevant
 if no matching access control rule is found to explicitly permit or
 deny write access to the requested NETCONF datastore data.

 When this global switch is set to "permit" and no matching access
 control rule is found for the NETCONF datastore write requested, then
 access is permitted.

 When this global switch is set to "deny" and no matching access
 control rule is found for the NETCONF datastore write requested, then
 access is denied.

Bierman & Bjorklund Expires April 29, 2017 [Page 18]

Internet-Draft NACM October 2016

3.3.4.4. exec-default Switch

 An on/off "exec-default" switch is provided to enable or disable
 default access to execute protocol operations. When the "enable-
 nacm" global switch is set to "true", then this global switch is
 relevant if no matching access control rule is found to explicitly
 permit or deny access to the requested NETCONF protocol operation.

 When this global switch is set to "permit" and no matching access
 control rule is found for the NETCONF protocol operation requested,
 then access is permitted.

 When this global switch is set to "deny" and no matching access
 control rule is found for the NETCONF protocol operation requested,
 then access is denied.

3.3.4.5. enable-external-groups Switch

 When this global switch is set to "true", the group names reported by
 the NETCONF transport layer for a session are used together with the
 locally configured group names to determine the access control rules
 for the session.

 When this switch is set to "false", the group names reported by the
 NETCONF transport layer are ignored by NACM.

3.3.5. Access Control Rules

 There are four types of rules available in NACM:

 module rule: controls access for definitions in a specific YANG
 module, identified by its name.

 protocol operation rule: controls access for a specific protocol
 operation, identified by its YANG module and name.

 data node rule: controls access for a specific data node, identified
 by its path location within the conceptual XML document for the
 data node.

 notification rule: controls access for a specific notification event
 type, identified by its YANG module and name.

3.4. Access Control Enforcement Procedures

 There are seven separate phases that need to be addressed, four of
 which are related to the NETCONF message processing model
 (Section 3.1.3). In addition, the initial startup mode for a NETCONF

Bierman & Bjorklund Expires April 29, 2017 [Page 19]

Internet-Draft NACM October 2016

 server, session establishment, and "access-denied" error-handling
 procedures also need to be considered.

 The server MUST use the access control rules in effect at the time it
 starts processing the message. The same access control rules MUST
 stay in effect for the processing of the entire message.

3.4.1. Initial Operation

 Upon the very first startup of the NETCONF server, the access control
 configuration will probably not be present. If it isn’t, a server
 MUST NOT allow any write access to any session role except a recovery
 session.

 Access rules are enforced any time a request is initiated from a user
 session. Access control is not enforced for server-initiated access
 requests, such as the initial load of the running datastore, during
 bootup.

3.4.2. Session Establishment

 The access control model applies specifically to the well-formed XML
 content transferred between a client and a server after session
 establishment has been completed and after the <hello> exchange has
 been successfully completed.

 Once session establishment is completed and a user has been
 authenticated, the NETCONF transport layer reports the username and a
 possibly empty set of group names associated with the user to the
 NETCONF server. The NETCONF server will enforce the access control
 rules, based on the supplied username, group names, and the
 configuration data stored on the server.

3.4.3. "access-denied" Error Handling

 The "access-denied" error-tag is generated when the access control
 system denies access to either a request to invoke a protocol
 operation or a request to perform a particular access operation on
 the configuration datastore.

 A server MUST NOT include any information the client is not allowed
 to read in any <error-info> elements within the <rpc-error> response.

3.4.4. Incoming RPC Message Validation

 The diagram below shows the basic conceptual structure of the access
 control processing model for incoming NETCONF <rpc> messages within a
 server.

Bierman & Bjorklund Expires April 29, 2017 [Page 20]

Internet-Draft NACM October 2016

 NETCONF server
 +------------+
 | XML |
 | message |
 | dispatcher |
 +------------+
 |
 |
 V
 +------------+
 | NC-base NS |
 | <rpc> |
 +------------+
 | | |
 | | +-------------------------+
 | +------------+ |
 V V V
 +-----------+ +---------------+ +------------+
 | Vendor NS | | NC-base NS | | NC-base NS |
 | <my-edit> | | <edit-config> | | <unlock> |
 +-----------+ +---------------+ +------------+
 | |
 | |
 V V
 +----------------------+
 | |
 | configuration |
 | datastore |
 +----------------------+

 Figure 3

 Access control begins with the message dispatcher.

 After the server validates the <rpc> element and determines the
 namespace URI and the element name of the protocol operation being
 requested, the server verifies that the user is authorized to invoke
 the protocol operation.

 The server MUST separately authorize every protocol operation by
 following these steps:

 1. If the "enable-nacm" leaf is set to "false", then the protocol
 operation is permitted.

 2. If the requesting session is identified as a recovery session,
 then the protocol operation is permitted.

Bierman & Bjorklund Expires April 29, 2017 [Page 21]

Internet-Draft NACM October 2016

 3. If the requested operation is the NETCONF <close-session>
 protocol operation, then the protocol operation is permitted.

 4. Check all the "group" entries for ones that contain a "user-
 name" entry that equals the username for the session making the
 request. If the "enable-external-groups" leaf is "true", add to
 these groups the set of groups provided by the transport layer.

 5. If no groups are found, continue with step 10.

 6. Process all rule-list entries, in the order they appear in the
 configuration. If a rule-list’s "group" leaf-list does not
 match any of the user’s groups, proceed to the next rule-list
 entry.

 7. For each rule-list entry found, process all rules, in order,
 until a rule that matches the requested access operation is
 found. A rule matches if all of the following criteria are met:

 * The rule’s "module-name" leaf is "*" or equals the name of
 the YANG module where the protocol operation is defined.

 * The rule does not have a "rule-type" defined or the "rule-
 type" is "protocol-operation" and the "rpc-name" is "*" or
 equals the name of the requested protocol operation.

 * The rule’s "access-operations" leaf has the "exec" bit set or
 has the special value "*".

 8. If a matching rule is found, then the "action" leaf is checked.
 If it is equal to "permit", then the protocol operation is
 permitted; otherwise, it is denied.

 9. At this point, no matching rule was found in any rule-list
 entry.

 10. If the requested protocol operation is defined in a YANG module
 advertised in the server capabilities and the "rpc" statement
 contains a "nacm:default-deny-all" statement, then the protocol
 operation is denied.

 11. If the requested protocol operation is the NETCONF <kill-
 session> or <delete-config>, then the protocol operation is
 denied.

 12. If the "exec-default" leaf is set to "permit", then permit the
 protocol operation; otherwise, deny the request.

Bierman & Bjorklund Expires April 29, 2017 [Page 22]

Internet-Draft NACM October 2016

 If the user is not authorized to invoke the protocol operation, then
 an <rpc-error> is generated with the following information:

 error-tag: access-denied

 error-path: Identifies the requested protocol operation. The
 following example represents the <edit-config> protocol operation
 in the NETCONF base namespace:

 <error-path
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 /nc:rpc/nc:edit-config
 </error-path>

 If a datastore is accessed, either directly or as a side effect of
 the protocol operation, then the server MUST intercept the access
 operation and make sure the user is authorized to perform the
 requested access operation on the specified data, as defined in
 Section 3.4.5.

3.4.5. Data Node Access Validation

 If a data node within a datastore is accessed, or an action or
 notification tied to a data node, then the server MUST ensure that
 the user is authorized to perform the requested "read", "create",
 "update", "delete", or "execute" access operation on the specified
 data node.

 If an action is requested to be executed, the server MUST ensure that
 the user is authorized to perform the "execute" access operation on
 the requested action.

 If a notification tied to a data node is generated, the server MUST
 ensure that the user is authorized to perform the "read" access
 operation on the requested notification.

 The data node access request is authorized by following these steps:

 1. If the "enable-nacm" leaf is set to "false", then the access
 operation is permitted.

 2. If the requesting session is identified as a recovery session,
 then the access operation is permitted.

 3. Check all the "group" entries for ones that contain a "user-
 name" entry that equals the username for the session making the
 request. If the "enable-external-groups" leaf is "true", add to
 these groups the set of groups provided by the transport layer.

Bierman & Bjorklund Expires April 29, 2017 [Page 23]

Internet-Draft NACM October 2016

 4. If no groups are found, continue with step 9.

 5. Process all rule-list entries, in the order they appear in the
 configuration. If a rule-list’s "group" leaf-list does not
 match any of the user’s groups, proceed to the next rule-list
 entry.

 6. For each rule-list entry found, process all rules, in order,
 until a rule that matches the requested access operation is
 found. A rule matches if all of the following criteria are met:

 * The rule’s "module-name" leaf is "*" or equals the name of
 the YANG module where the requested data node is defined.

 * The rule does not have a "rule-type" defined or the "rule-
 type" is "data-node" and the "path" matches the requested
 data node, action node, or notification node.

 * For a "read" access operation, the rule’s "access-operations"
 leaf has the "read" bit set or has the special value "*".

 * For a "create" access operation, the rule’s "access-
 operations" leaf has the "create" bit set or has the special
 value "*".

 * For a "delete" access operation, the rule’s "access-
 operations" leaf has the "delete" bit set or has the special
 value "*".

 * For an "update" access operation, the rule’s "access-
 operations" leaf has the "update" bit set or has the special
 value "*".

 * For an "execute" access operation, the rule’s "access-
 operations" leaf has the "exec" bit set or has the special
 value "*".

 7. If a matching rule is found, then the "action" leaf is checked.
 If it is equal to "permit", then the data node access is
 permitted; otherwise, it is denied. For a "read" access
 operation, "denied" means that the requested data is not
 returned in the reply.

 8. At this point, no matching rule was found in any rule-list
 entry.

 9. For a "read" access operation, if the requested data node is
 defined in a YANG module advertised in the server capabilities

Bierman & Bjorklund Expires April 29, 2017 [Page 24]

Internet-Draft NACM October 2016

 and the data definition statement contains a "nacm:default-deny-
 all" statement, then the requested data node is not included in
 the reply.

 10. For a "write" access operation, if the requested data node is
 defined in a YANG module advertised in the server capabilities
 and the data definition statement contains a "nacm:default-deny-
 write" or a "nacm:default-deny-all" statement, then the data
 node access request is denied.

 11. For a "read" access operation, if the "read-default" leaf is set
 to "permit", then include the requested data node in the reply;
 otherwise, do not include the requested data node in the reply.

 12. For a "write" access operation, if the "write-default" leaf is
 set to "permit", then permit the data node access request;
 otherwise, deny the request.

 13. For an "execute" access operation, if the "exec-default" leaf is
 set to "permit", then permit the request; otherwise, deny the
 request.

3.4.6. Outgoing <notification> Authorization

 Configuration of access control rules specifically for descendant
 nodes of the notification event type element are outside the scope of
 this document. If the user is authorized to receive the notification
 event type, then it is also authorized to receive any data it
 contains.

 If the notification is specified within a data subtree, as specified
 in [RFC7950], then read access to the notification is required.
 Processing continues as described in Section 3.4.5.

 The following figure shows the conceptual message processing model
 for outgoing <notification> messages.

Bierman & Bjorklund Expires April 29, 2017 [Page 25]

Internet-Draft NACM October 2016

 NETCONF server
 +------------+
 | XML |
 | message |
 | generator |
 +------------+
 ^
 |
 +----------------+
 | <notification> |
 | generator |
 +----------------+
 ^
 |
 +=================+
 | <notification> |
 | access control |
 | <eventType> |
 +=================+
 ^
 |
 +------------------------+
 | server instrumentation |
 +------------------------+
 | ^
 V |
 +----------------------+
 | configuration |
 | datastore |
 +----------------------+

 Figure 4

 The generation of a notification for a specific subscription
 [RFC5277] is authorized by following these steps:

 1. If the "enable-nacm" leaf is set to "false", then the
 notification is permitted.

 2. If the session is identified as a recovery session, then the
 notification is permitted.

 3. If the notification is the NETCONF <replayComplete> or
 <notificationComplete> event type [RFC5277], then the
 notification is permitted.

Bierman & Bjorklund Expires April 29, 2017 [Page 26]

Internet-Draft NACM October 2016

 4. Check all the "group" entries for ones that contain a "user-
 name" entry that equals the username for the session making the
 request. If the "enable-external-groups" leaf is "true", add to
 these groups the set of groups provided by the transport layer.

 5. If no groups are found, continue with step 10.

 6. Process all rule-list entries, in the order they appear in the
 configuration. If a rule-list’s "group" leaf-list does not
 match any of the user’s groups, proceed to the next rule-list
 entry.

 7. For each rule-list entry found, process all rules, in order,
 until a rule that matches the requested access operation is
 found. A rule matches if all of the following criteria are met:

 * The rule’s "module-name" leaf is "*" or equals the name of
 the YANG module where the notification is defined.

 * The rule does not have a "rule-type" defined or the "rule-
 type" is "notification" and the "notification-name" is "*" or
 equals the name of the notification.

 * The rule’s "access-operations" leaf has the "read" bit set or
 has the special value "*".

 8. If a matching rule is found, then the "action" leaf is checked.
 If it is equal to "permit", then permit the notification;
 otherwise, drop the notification for the associated
 subscription.

 9. Otherwise, no matching rule was found in any rule-list entry.

 10. If the requested notification is defined in a YANG module
 advertised in the server capabilities and the "notification"
 statement contains a "nacm:default-deny-all" statement, then the
 notification is dropped for the associated subscription.

 11. If the "read-default" leaf is set to "permit", then permit the
 notification; otherwise, drop the notification for the
 associated subscription.

3.5. Data Model Definitions

Bierman & Bjorklund Expires April 29, 2017 [Page 27]

Internet-Draft NACM October 2016

3.5.1. Data Organization

 The following diagram highlights the contents and structure of the
 NACM YANG module.

 module: ietf-netconf-acm
 +--rw nacm
 +--rw enable-nacm? boolean
 +--rw read-default? action-type
 +--rw write-default? action-type
 +--rw exec-default? action-type
 +--rw enable-external-groups? boolean
 +--ro denied-operations yang:zero-based-counter32
 +--ro denied-data-writes yang:zero-based-counter32
 +--ro denied-notifications yang:zero-based-counter32
 +--rw groups
 | +--rw group* [name]
 | +--rw name group-name-type
 | +--rw user-name* user-name-type
 +--rw rule-list* [name]
 +--rw name string
 +--rw group* union
 +--rw rule* [name]
 +--rw name string
 +--rw module-name? union
 +--rw (rule-type)?
 | +--:(protocol-operation)
 | | +--rw rpc-name? union
 | +--:(notification)
 | | +--rw notification-name? union
 | +--:(data-node)
 | +--rw path node-instance-identifier
 +--rw access-operations? union
 +--rw action action-type
 +--rw comment? string

3.5.2. YANG Module

 The following YANG module specifies the normative NETCONF content
 that MUST by supported by the server.

 The "ietf-netconf-acm" YANG module imports typedefs from [RFC6991].

 <CODE BEGINS> file "ietf-netconf-acm@2016-08-26.yang"
 module ietf-netconf-acm {

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-acm";

Bierman & Bjorklund Expires April 29, 2017 [Page 28]

Internet-Draft NACM October 2016

 prefix "nacm";

 import ietf-yang-types {
 prefix yang;
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Andy Bierman
 <mailto:andy@yumaworks.com>

 Author: Martin Bjorklund
 <mailto:mbj@tail-f.com>";

 description
 "NETCONF Access Control Model.

 Copyright (c) 2012, 2016 IETF Trust and the persons
 identified as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2016-08-26" {
 description
 "Second version";
 reference
 "RFC XXXX: Network Configuration Protocol (NETCONF)
 Access Control Model";
 }

 revision "2012-02-22" {
 description
 "Initial version";
 reference

Bierman & Bjorklund Expires April 29, 2017 [Page 29]

Internet-Draft NACM October 2016

 "RFC 6536: Network Configuration Protocol (NETCONF)
 Access Control Model";
 }

 /*
 * Extension statements
 */

 extension default-deny-write {
 description
 "Used to indicate that the data model node
 represents a sensitive security system parameter.

 If present, and the NACM module is enabled (i.e.,
 /nacm/enable-nacm object equals ’true’), the NETCONF server
 will only allow the designated ’recovery session’ to have
 write access to the node. An explicit access control rule is
 required for all other users.

 The ’default-deny-write’ extension MAY appear within a data
 definition statement. It is ignored otherwise.";
 }

 extension default-deny-all {
 description
 "Used to indicate that the data model node
 controls a very sensitive security system parameter.

 If present, and the NACM module is enabled (i.e.,
 /nacm/enable-nacm object equals ’true’), the NETCONF server
 will only allow the designated ’recovery session’ to have
 read, write, or execute access to the node. An explicit
 access control rule is required for all other users.

 The ’default-deny-all’ extension MAY appear within a data
 definition statement, ’rpc’ statement, or ’notification’
 statement. It is ignored otherwise.";
 }

 /*
 * Derived types
 */

 typedef user-name-type {
 type string {
 length "1..max";
 }
 description

Bierman & Bjorklund Expires April 29, 2017 [Page 30]

Internet-Draft NACM October 2016

 "General Purpose Username string.";
 }

 typedef matchall-string-type {
 type string {
 pattern ’*’;
 }
 description
 "The string containing a single asterisk ’*’ is used
 to conceptually represent all possible values
 for the particular leaf using this data type.";
 }

 typedef access-operations-type {
 type bits {
 bit create {
 description
 "Any protocol operation that creates a
 new data node.";
 }
 bit read {
 description
 "Any protocol operation or notification that
 returns the value of a data node.";
 }
 bit update {
 description
 "Any protocol operation that alters an existing
 data node.";
 }
 bit delete {
 description
 "Any protocol operation that removes a data node.";
 }
 bit exec {
 description
 "Execution access to the specified protocol operation.";
 }
 }
 description
 "NETCONF Access Operation.";
 }

 typedef group-name-type {
 type string {
 length "1..max";
 pattern ’[^*].*’;
 }

Bierman & Bjorklund Expires April 29, 2017 [Page 31]

Internet-Draft NACM October 2016

 description
 "Name of administrative group to which
 users can be assigned.";
 }

 typedef action-type {
 type enumeration {
 enum permit {
 description
 "Requested action is permitted.";
 }
 enum deny {
 description
 "Requested action is denied.";
 }
 }
 description
 "Action taken by the server when a particular
 rule matches.";
 }

 typedef node-instance-identifier {
 type yang:xpath1.0;
 description
 "Path expression used to represent a special
 data node, action, or notification instance identifier
 string.

 A node-instance-identifier value is an
 unrestricted YANG instance-identifier expression.
 All the same rules as an instance-identifier apply
 except predicates for keys are optional. If a key
 predicate is missing, then the node-instance-identifier
 represents all possible server instances for that key.

 This XPath expression is evaluated in the following context:

 o The set of namespace declarations are those in scope on
 the leaf element where this type is used.

 o The set of variable bindings contains one variable,
 ’USER’, which contains the name of the user of the current
 session.

 o The function library is the core function library, but
 note that due to the syntax restrictions of an
 instance-identifier, no functions are allowed.

Bierman & Bjorklund Expires April 29, 2017 [Page 32]

Internet-Draft NACM October 2016

 o The context node is the root node in the data tree.

 The accessible tree includes actions and notifications tied to
 data nodes.";
 }

 /*
 * Data definition statements
 */

 container nacm {
 nacm:default-deny-all;

 description
 "Parameters for NETCONF Access Control Model.";

 leaf enable-nacm {
 type boolean;
 default true;
 description
 "Enables or disables all NETCONF access control
 enforcement. If ’true’, then enforcement
 is enabled. If ’false’, then enforcement
 is disabled.";
 }

 leaf read-default {
 type action-type;
 default "permit";
 description
 "Controls whether read access is granted if
 no appropriate rule is found for a
 particular read request.";
 }

 leaf write-default {
 type action-type;
 default "deny";
 description
 "Controls whether create, update, or delete access
 is granted if no appropriate rule is found for a
 particular write request.";
 }

 leaf exec-default {
 type action-type;
 default "permit";
 description

Bierman & Bjorklund Expires April 29, 2017 [Page 33]

Internet-Draft NACM October 2016

 "Controls whether exec access is granted if no appropriate
 rule is found for a particular protocol operation request.";
 }

 leaf enable-external-groups {
 type boolean;
 default true;
 description
 "Controls whether the server uses the groups reported by the
 NETCONF transport layer when it assigns the user to a set of
 NACM groups. If this leaf has the value ’false’, any group
 names reported by the transport layer are ignored by the
 server.";
 }

 leaf denied-operations {
 type yang:zero-based-counter32;
 config false;
 mandatory true;
 description
 "Number of times since the server last restarted that a
 protocol operation request was denied.";
 }

 leaf denied-data-writes {
 type yang:zero-based-counter32;
 config false;
 mandatory true;
 description
 "Number of times since the server last restarted that a
 protocol operation request to alter
 a configuration datastore was denied.";
 }

 leaf denied-notifications {
 type yang:zero-based-counter32;
 config false;
 mandatory true;
 description
 "Number of times since the server last restarted that
 a notification was dropped for a subscription because
 access to the event type was denied.";
 }

 container groups {
 description
 "NETCONF Access Control Groups.";

Bierman & Bjorklund Expires April 29, 2017 [Page 34]

Internet-Draft NACM October 2016

 list group {
 key name;

 description
 "One NACM Group Entry. This list will only contain
 configured entries, not any entries learned from
 any transport protocols.";

 leaf name {
 type group-name-type;
 description
 "Group name associated with this entry.";
 }

 leaf-list user-name {
 type user-name-type;
 description
 "Each entry identifies the username of
 a member of the group associated with
 this entry.";
 }
 }
 }

 list rule-list {
 key "name";
 ordered-by user;
 description
 "An ordered collection of access control rules.";

 leaf name {
 type string {
 length "1..max";
 }
 description
 "Arbitrary name assigned to the rule-list.";
 }
 leaf-list group {
 type union {
 type matchall-string-type;
 type group-name-type;
 }
 description
 "List of administrative groups that will be
 assigned the associated access rights
 defined by the ’rule’ list.

 The string ’*’ indicates that all groups apply to the

Bierman & Bjorklund Expires April 29, 2017 [Page 35]

Internet-Draft NACM October 2016

 entry.";
 }

 list rule {
 key "name";
 ordered-by user;
 description
 "One access control rule.

 Rules are processed in user-defined order until a match is
 found. A rule matches if ’module-name’, ’rule-type’, and
 ’access-operations’ match the request. If a rule
 matches, the ’action’ leaf determines if access is granted
 or not.";

 leaf name {
 type string {
 length "1..max";
 }
 description
 "Arbitrary name assigned to the rule.";
 }

 leaf module-name {
 type union {
 type matchall-string-type;
 type string;
 }
 default "*";
 description
 "Name of the module associated with this rule.

 This leaf matches if it has the value ’*’ or if the
 object being accessed is defined in the module with the
 specified module name.";
 }
 choice rule-type {
 description
 "This choice matches if all leafs present in the rule
 match the request. If no leafs are present, the
 choice matches all requests.";
 case protocol-operation {
 leaf rpc-name {
 type union {
 type matchall-string-type;
 type string;
 }
 description

Bierman & Bjorklund Expires April 29, 2017 [Page 36]

Internet-Draft NACM October 2016

 "This leaf matches if it has the value ’*’ or if
 its value equals the requested protocol operation
 name.";
 }
 }
 case notification {
 leaf notification-name {
 type union {
 type matchall-string-type;
 type string;
 }
 description
 "This leaf matches if it has the value ’*’ or if its
 value equals the requested notification name.";
 }
 }
 case data-node {
 leaf path {
 type node-instance-identifier;
 mandatory true;
 description
 "Data Node Instance Identifier associated with the
 data node controlled by this rule.

 Configuration data or state data instance
 identifiers start with a top-level data node. A
 complete instance identifier is required for this
 type of path value.

 The special value ’/’ refers to all possible
 datastore contents.";
 }
 }
 }

 leaf access-operations {
 type union {
 type matchall-string-type;
 type access-operations-type;
 }
 default "*";
 description
 "Access operations associated with this rule.

 This leaf matches if it has the value ’*’ or if the
 bit corresponding to the requested operation is set.";
 }

Bierman & Bjorklund Expires April 29, 2017 [Page 37]

Internet-Draft NACM October 2016

 leaf action {
 type action-type;
 mandatory true;
 description
 "The access control action associated with the
 rule. If a rule is determined to match a
 particular request, then this object is used
 to determine whether to permit or deny the
 request.";
 }

 leaf comment {
 type string;
 description
 "A textual description of the access rule.";
 }
 }
 }
 }
 }

 <CODE ENDS>

 Figure 5

3.6. IANA Considerations

 This document registers one URI in "The IETF XML Registry".
 Following the format in [RFC3688], the following has been registered.

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-acm
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 This document registers one module in the "YANG Module Names"
 registry. Following the format in [RFC6020], the following has been
 registered.

 Name: ietf-netconf-acm
 Namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-acm
 Prefix: nacm
 reference: RFC 6536

3.7. Security Considerations

 This entire document discusses access control requirements and
 mechanisms for restricting NETCONF protocol behavior within a given
 session.

Bierman & Bjorklund Expires April 29, 2017 [Page 38]

Internet-Draft NACM October 2016

 This section highlights the issues for an administrator to consider
 when configuring a NETCONF server with NACM.

3.7.1. NACM Configuration and Monitoring Considerations

 Configuration of the access control system is highly sensitive to
 system security. A server may choose not to allow any user
 configuration to some portions of it, such as the global security
 level or the groups that allowed access to system resources.

 By default, NACM enforcement is enabled. By default, "read" access
 to all datastore contents is enabled (unless "nacm:default-deny-all"
 is specified for the data definition), and "exec" access is enabled
 for safe protocol operations. An administrator needs to ensure that
 NACM is enabled and also decide if the default access parameters are
 set appropriately. Make sure the following data nodes are properly
 configured:

 o /nacm/enable-nacm (default "true")

 o /nacm/read-default (default "permit")

 o /nacm/write-default (default "deny")

 o /nacm/exec-default (default "permit")

 An administrator needs to restrict write access to all configurable
 objects within this data model.

 If write access is allowed for configuration of access control rules,
 then care needs to be taken not to disrupt the access control
 enforcement. For example, if the NACM access control rules are
 edited directly within the running configuration datastore (i.e.,
 :writable-running capability is supported and used), then care needs
 to be taken not to allow unintended access while the edits are being
 done.

 An administrator needs to make sure that the translation from a
 transport- or implementation-dependent user identity to a NACM
 username is unique and correct. This requirement is specified in
 detail in Section 2.2 of [RFC6241].

 An administrator needs to be aware that the YANG data structures
 representing access control rules (/nacm/rule-list and /nacm/rule-
 list/rule) are ordered by the client. The server will evaluate the
 access control rules according to their relative conceptual order
 within the running datastore configuration.

Bierman & Bjorklund Expires April 29, 2017 [Page 39]

Internet-Draft NACM October 2016

 Note that the /nacm/groups data structure contains the administrative
 group names used by the server. These group names may be configured
 locally and/or provided through an external protocol, such as RADIUS
 [RFC2865][RFC5607].

 An administrator needs to be aware of the security properties of any
 external protocol used by the NETCONF transport layer to determine
 group names. For example, if this protocol does not protect against
 man-in-the-middle attacks, an attacker might be able to inject group
 names that are configured in NACM, so that a user gets more
 permissions than it should. In such cases, the administrator may
 wish to disable the usage of such group names, by setting /nacm/
 enable-external-groups to "false".

 An administrator needs to restrict read access to the following
 objects within this data model, as they reveal access control
 configuration that could be considered sensitive.

 o /nacm/enable-nacm

 o /nacm/read-default

 o /nacm/write-default

 o /nacm/exec-default

 o /nacm/enable-external-groups

 o /nacm/groups

 o /nacm/rule-list

3.7.2. General Configuration Issues

 There is a risk that invocation of non-standard protocol operations
 will have undocumented side effects. An administrator needs to
 construct access control rules such that the configuration datastore
 is protected from such side effects.

 It is possible for a session with some write access (e.g., allowed to
 invoke <edit-config>), but without any access to a particular
 datastore subtree containing sensitive data, to determine the
 presence or non-presence of that data. This can be done by
 repeatedly issuing some sort of edit request (create, update, or
 delete) and possibly receiving "access-denied" errors in response.
 These "fishing" attacks can identify the presence or non-presence of
 specific sensitive data even without the "error-path" field being
 present within the <rpc-error> response.

Bierman & Bjorklund Expires April 29, 2017 [Page 40]

Internet-Draft NACM October 2016

 It may be possible for the set of NETCONF capabilities on the server
 to change over time. If so, then there is a risk that new protocol
 operations, notifications, and/or datastore content have been added
 to the device. An administrator needs to be sure the access control
 rules are correct for the new content in this case. Mechanisms to
 detect NETCONF capability changes on a specific device are outside
 the scope of this document.

 It is possible that the data model definition itself (e.g., YANG
 when-stmt) will help an unauthorized session determine the presence
 or even value of sensitive data nodes by examining the presence and
 values of different data nodes.

 There is a risk that non-standard protocol operations, or even the
 standard <get> protocol operation, may return data that "aliases" or
 "copies" sensitive data from a different data object. There may
 simply be multiple data model definitions that expose or even
 configure the same underlying system instrumentation.

 A data model may contain external keys (e.g., YANG leafref), which
 expose values from a different data structure. An administrator
 needs to be aware of sensitive data models that contain leafref
 nodes. This entails finding all the leafref objects that "point" at
 the sensitive data (i.e., "path-stmt" values) that implicitly or
 explicitly include the sensitive data node.

 It is beyond the scope of this document to define access control
 enforcement procedures for underlying device instrumentation that may
 exist to support the NETCONF server operation. An administrator can
 identify each protocol operation that the server provides and decide
 if it needs any access control applied to it.

 This document incorporates the optional use of a recovery session
 mechanism, which can be used to bypass access control enforcement in
 emergencies, such as NACM configuration errors that disable all
 access to the server. The configuration and identification of such a
 recovery session mechanism are implementation-specific and outside
 the scope of this document. An administrator needs to be aware of
 any recovery session mechanisms available on the device and make sure
 they are used appropriately.

 It is possible for a session to disrupt configuration management,
 even without any write access to the configuration, by locking the
 datastore. This may be done to ensure all or part of the
 configuration remains stable while it is being retrieved, or it may
 be done as a "denial-of-service" attack. There is no way for the
 server to know the difference. An administrator may wish to restrict
 "exec" access to the following protocol operations:

Bierman & Bjorklund Expires April 29, 2017 [Page 41]

Internet-Draft NACM October 2016

 o <lock>

 o <unlock>

 o <partial-lock>

 o <partial-unlock>

3.7.3. Data Model Design Considerations

 Designers need to clearly identify any sensitive data, notifications,
 or protocol operations defined within a YANG module. For such
 definitions, a "nacm:default-deny-write" or "nacm:default-deny-all"
 statement ought to be present, in addition to a clear description of
 the security risks.

 Protocol operations need to be properly documented by the data model
 designer, so it is clear to administrators what data nodes (if any)
 are affected by the protocol operation and what information (if any)
 is returned in the <rpc-reply> message.

 Data models ought to be designed so that different access levels for
 input parameters to protocol operations are not required. Use of
 generic protocol operations should be avoided, and if different
 access levels are needed, separate protocol operations should be
 defined instead.

4. References

4.1. Normative References

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-17 (work in
 progress), September 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <http://www.rfc-editor.org/info/rfc5277>.

Bierman & Bjorklund Expires April 29, 2017 [Page 42]

Internet-Draft NACM October 2016

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <http://www.rfc-editor.org/info/rfc6991>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <http://www.rfc-editor.org/info/rfc7950>.

4.2. Informative References

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <http://www.rfc-editor.org/info/rfc2865>.

 [RFC5607] Nelson, D. and G. Weber, "Remote Authentication Dial-In
 User Service (RADIUS) Authorization for Network Access
 Server (NAS) Management", RFC 5607, DOI 10.17487/RFC5607,
 July 2009, <http://www.rfc-editor.org/info/rfc5607>.

Bierman & Bjorklund Expires April 29, 2017 [Page 43]

Internet-Draft NACM October 2016

Appendix A. Usage Examples

 The following XML snippets are provided as examples only, to
 demonstrate how NACM can be configured to perform some access control
 tasks.

A.1. <groups> Example

 There needs to be at least one <group> entry in order for any of the
 access control rules to be useful.

 The following XML shows arbitrary groups and is not intended to
 represent any particular use case.

 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm">
 <groups>
 <group>
 <name>admin</name>
 <user-name>admin</user-name>
 <user-name>andy</user-name>
 </group>

 <group>
 <name>limited</name>
 <user-name>wilma</user-name>
 <user-name>bam-bam</user-name>
 </group>

 <group>
 <name>guest</name>
 <user-name>guest</user-name>
 <user-name>guest@example.com</user-name>
 </group>
 </groups>
 </nacm>

 This example shows three groups:

 admin: The "admin" group contains two users named "admin" and
 "andy".

 limited: The "limited" group contains two users named "wilma" and
 "bam-bam".

Bierman & Bjorklund Expires April 29, 2017 [Page 44]

Internet-Draft NACM October 2016

 guest: The "guest" group contains two users named "guest" and
 "guest@example.com".

A.2. Module Rule Example

 Module rules are used to control access to all the content defined in
 a specific module. A module rule has the <module-name> leaf set, but
 no case in the "rule-type" choice.

 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm">
 <rule-list>
 <name>guest-acl</name>
 <group>guest</group>

 <rule>
 <name>deny-ncm</name>
 <module-name>ietf-netconf-monitoring</module-name>
 <access-operations>*</access-operations>
 <action>deny</action>
 <comment>
 Do not allow guests any access to the NETCONF
 monitoring information.
 </comment>
 </rule>
 </rule-list>

 <rule-list>
 <name>limited-acl</name>
 <group>limited</group>

 <rule>
 <name>permit-ncm</name>
 <module-name>ietf-netconf-monitoring</module-name>
 <access-operations>read</access-operations>
 <action>permit</action>
 <comment>
 Allow read access to the NETCONF
 monitoring information.
 </comment>
 </rule>
 <rule>
 <name>permit-exec</name>
 <module-name>*</module-name>
 <access-operations>exec</access-operations>
 <action>permit</action>
 <comment>
 Allow invocation of the
 supported server operations.

Bierman & Bjorklund Expires April 29, 2017 [Page 45]

Internet-Draft NACM October 2016

 </comment>
 </rule>
 </rule-list>

 <rule-list>
 <name>admin-acl</name>
 <group>admin</group>

 <rule>
 <name>permit-all</name>
 <module-name>*</module-name>
 <access-operations>*</access-operations>
 <action>permit</action>
 <comment>
 Allow the admin group complete access to all
 operations and data.
 </comment>
 </rule>
 </rule-list>
 </nacm>

 This example shows four module rules:

 deny-ncm: This rule prevents the "guest" group from reading any
 monitoring information in the "ietf-netconf-monitoring" YANG
 module.

 permit-ncm: This rule allows the "limited" group to read the "ietf-
 netconf-monitoring" YANG module.

 permit-exec: This rule allows the "limited" group to invoke any
 protocol operation supported by the server.

 permit-all: This rule allows the "admin" group complete access to
 all content in the server. No subsequent rule will match for the
 "admin" group because of this module rule.

A.3. Protocol Operation Rule Example

 Protocol operation rules are used to control access to a specific
 protocol operation.

 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm">
 <rule-list>
 <name>guest-limited-acl</name>

Bierman & Bjorklund Expires April 29, 2017 [Page 46]

Internet-Draft NACM October 2016

 <group>limited</group>
 <group>guest</group>

 <rule>
 <name>deny-kill-session</name>
 <module-name>ietf-netconf</module-name>
 <rpc-name>kill-session</rpc-name>
 <access-operations>exec</access-operations>
 <action>deny</action>
 <comment>
 Do not allow the limited or guest group
 to kill another session.
 </comment>
 </rule>
 <rule>
 <name>deny-delete-config</name>
 <module-name>ietf-netconf</module-name>
 <rpc-name>delete-config</rpc-name>
 <access-operations>exec</access-operations>
 <action>deny</action>
 <comment>
 Do not allow limited or guest group
 to delete any configurations.
 </comment>
 </rule>
 </rule-list>

 <rule-list>
 <name>limited-acl</name>
 <group>limited</group>

 <rule>
 <name>permit-edit-config</name>
 <module-name>ietf-netconf</module-name>
 <rpc-name>edit-config</rpc-name>
 <access-operations>exec</access-operations>
 <action>permit</action>
 <comment>
 Allow the limited group to edit the configuration.
 </comment>
 </rule>
 </rule-list>

 </nacm>

 This example shows three protocol operation rules:

Bierman & Bjorklund Expires April 29, 2017 [Page 47]

Internet-Draft NACM October 2016

 deny-kill-session: This rule prevents the "limited" or "guest"
 groups from invoking the NETCONF <kill-session> protocol
 operation.

 deny-delete-config: This rule prevents the "limited" or "guest"
 groups from invoking the NETCONF <delete-config> protocol
 operation.

 permit-edit-config: This rule allows the "limited" group to invoke
 the NETCONF <edit-config> protocol operation. This rule will have
 no real effect unless the "exec-default" leaf is set to "deny".

A.4. Data Node Rule Example

 Data node rules are used to control access to specific (config and
 non-config) data nodes within the NETCONF content provided by the
 server.

 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm">
 <rule-list>
 <name>guest-acl</name>
 <group>guest</group>

 <rule>
 <name>deny-nacm</name>
 <path xmlns:n="urn:ietf:params:xml:ns:yang:ietf-netconf-acm">
 /n:nacm
 </path>
 <access-operations>*</access-operations>
 <action>deny</action>
 <comment>
 Deny the guest group any access to the /nacm data.
 </comment>
 </rule>
 </rule-list>

 <rule-list>
 <name>limited-acl</name>
 <group>limited</group>

 <rule>
 <name>permit-acme-config</name>
 <path xmlns:acme="http://example.com/ns/netconf">
 /acme:acme-netconf/acme:config-parameters
 </path>
 <access-operations>
 read create update delete
 </access-operations>

Bierman & Bjorklund Expires April 29, 2017 [Page 48]

Internet-Draft NACM October 2016

 <action>permit</action>
 <comment>
 Allow the limited group complete access to the acme
 NETCONF configuration parameters. Showing long form
 of ’access-operations’ instead of shorthand.
 </comment>
 </rule>
 </rule-list>

 <rule-list>
 <name>guest-limited-acl</name>
 <group>guest</group>
 <group>limited</group>

 <rule>
 <name>permit-dummy-interface</name>
 <path xmlns:acme="http://example.com/ns/itf">
 /acme:interfaces/acme:interface[acme:name=’dummy’]
 </path>
 <access-operations>read update</access-operations>
 <action>permit</action>
 <comment>
 Allow the limited and guest groups read
 and update access to the dummy interface.
 </comment>
 </rule>
 </rule-list>

 <rule-list>
 <name>admin-acl</name>
 <group>admin</group>
 <rule>
 <name>permit-interface</name>
 <path xmlns:acme="http://example.com/ns/itf">
 /acme:interfaces/acme:interface
 </path>
 <access-operations>*</access-operations>
 <action>permit</action>
 <comment>
 Allow admin full access to all acme interfaces.
 </comment>
 </rule>
 </rule-list>
 </nacm>

 This example shows four data node rules:

Bierman & Bjorklund Expires April 29, 2017 [Page 49]

Internet-Draft NACM October 2016

 deny-nacm: This rule denies the "guest" group any access to the
 <nacm> subtree. Note that the default namespace is only
 applicable because this subtree is defined in the same namespace
 as the <data-rule> element.

 permit-acme-config: This rule gives the "limited" group read-write
 access to the acme <config-parameters>.

 permit-dummy-interface: This rule gives the "limited" and "guest"
 groups read-update access to the acme <interface> entry named
 "dummy". This entry cannot be created or deleted by these groups,
 just altered.

 permit-interface: This rule gives the "admin" group read-write
 access to all acme <interface> entries.

A.5. Notification Rule Example

 Notification rules are used to control access to a specific
 notification event type.

 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm">
 <rule-list>
 <name>sys-acl</name>
 <group>limited</group>
 <group>guest</group>

 <rule>
 <name>deny-config-change</name>
 <module-name>acme-system</module-name>
 <notification-name>sys-config-change</notification-name>
 <access-operations>read</access-operations>
 <action>deny</action>
 <comment>
 Do not allow the guest or limited groups
 to receive config change events.
 </comment>
 </rule>
 </rule-list>
 </nacm>

 This example shows one notification rule:

 deny-config-change: This rule prevents the "limited" or "guest"
 groups from receiving the acme <sys-config-change> event type.

Bierman & Bjorklund Expires April 29, 2017 [Page 50]

Internet-Draft NACM October 2016

Authors’ Addresses

 Andy Bierman
 YumaWorks
 685 Cochran St.
 Suite #160
 Simi Valley, CA 93065
 USA

 EMail: andy@yumaworks.com

 Martin Bjorklund
 Tail-f Systems

 EMail: mbj@tail-f.com

Bierman & Bjorklund Expires April 29, 2017 [Page 51]

NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Intended status: Standards Track G. Wu
Expires: May 4, 2017 Cisco Networks
 October 31, 2016

 Keystore Model
 draft-ietf-netconf-keystore-00

Abstract

 This document defines a YANG data module for a system-level keystore
 mechanism, that might be used to hold onto private keys and
 certificates that are trusted by the system advertising support for
 this module.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 This document contains references to other drafts in progress, both
 in the Normative References section, as well as in body text
 throughout. Please update the following references to reflect their
 final RFC assignments:

 o draft-ietf-netconf-restconf

 o draft-ietf-netconf-call-home

 o draft-ietf-rtgwg-yang-key-chain

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "VVVV" --> the assigned RFC value for this draft

 o "XXXX" --> the assigned RFC value for draft-ietf-netconf-restconf

 o "YYYY" --> the assigned RFC value for draft-ietf-netconf-call-home

 Artwork in this document contains placeholder values for ports
 pending IANA assignment from "draft-ietf-netconf-call-home". Please
 apply the following replacements:

Watsen & Wu Expires May 4, 2017 [Page 1]

Internet-Draft Keystore Model October 2016

 o "7777" --> the assigned port value for "netconf-ch-ssh"

 o "8888" --> the assigned port value for "netconf-ch-tls"

 o "9999" --> the assigned port value for "restconf-ch-tls"

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2016-10-31" --> the publication date of this draft

 The following two Appendix sections are to be removed prior to
 publication:

 o Appendix A. Change Log

 o Appendix B. Open Issues

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Watsen & Wu Expires May 4, 2017 [Page 2]

Internet-Draft Keystore Model October 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 4
 1.2. Tree Diagram Notation 4
 2. The Keystore Model . 4
 2.1. Overview . 5
 2.2. Example Usage . 6
 2.3. YANG Module . 17
 3. Design Considerations . 28
 4. Security Considerations 29
 5. IANA Considerations . 30
 5.1. The IETF XML Registry 30
 5.2. The YANG Module Names Registry 30
 6. Acknowledgements . 31
 7. References . 31
 7.1. Normative References 31
 7.2. Informative References 32
 Appendix A. Change Log . 33
 A.1. server-model-09 to 00 33
 Appendix B. Open Issues . 33
 Authors’ Addresses . 33

1. Introduction

 This document defines a YANG [RFC6020] data module for a system-level
 keystore mechanism, which can be used to hold onto private keys and
 certificates that are trusted by the system advertising support for
 this module.

 This module provides a centralized location for security sensitive
 data, so that the data can be then referenced by other modules.
 There are two types of data that are maintained by this module:

 o Private keys, and any associated public certificates.

 o Sets of trusted certificates.

 This document extends special consideration for systems that have
 Trusted Protection Modules (TPMs). These systems are unique in that
 the TPM must be directed to generate new private keys (it is not
 possible to load a private key into a TPM) and it is not possible to
 backup/restore the TPM’s private keys as configuration.

Watsen & Wu Expires May 4, 2017 [Page 3]

Internet-Draft Keystore Model October 2016

 It is not required that a system has an operating system level
 keystore utility to implement this module.

1.1. Requirements Language

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Tree Diagram Notation

 A simplified graphical representation of the data models is used in
 this document. The meaning of the symbols in these diagrams is as
 follows:

 o Brackets "[" and "]" enclose list keys.

 o Braces "{" and "}" enclose feature names, and indicate that the
 named feature must be present for the subtree to be present.

 o Abbreviations before data node names: "rw" means configuration
 (read-write) and "ro" state data (read-only).

 o Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list and leaf-list.

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

2. The Keystore Model

 The keystore module defined in this section provides a configurable
 object having the following characteristics:

 o A semi-configurable list of private keys, each with one or more
 associated certificates. Private keys MUST be either preinstalled
 (e.g., a key associated to an IDevID [Std-802.1AR-2009]
 certificate), be generated by request, or be loaded by request.
 Each private key is MAY have associated certificates, either
 preinstalled or configured after creation.

 o A configurable list of lists of trust anchor certificates. This
 enables the server to have use-case specific trust anchors. For
 instance, one list of trust anchors might be used to authenticate
 management connections (e.g., client certificate-based

Watsen & Wu Expires May 4, 2017 [Page 4]

Internet-Draft Keystore Model October 2016

 authentication for NETCONF or RESTCONF connections), and a
 different list of trust anchors might be used for when connecting
 to a specific Internet-based service (e.g., a zero touch bootstrap
 server).

 o An RPC to generate a certificate signing request for an existing
 private key, a passed subject, and an optional attributes. The
 signed certificate returned from an external certificate authority
 (CA) can be later set using a standard configuration change
 request (e.g., <edit-config>).

 o An RPC to request the server to generate a new private key using
 the specified algorithm and key length.

 o An RPC to request the server to load a new private key.

2.1. Overview

 The keystore module has the following tree diagram. Please see
 Section 1.2 for information on how to interpret this diagram.

 module: ietf-keystore
 +--rw keystore
 +--rw private-keys
 | +--rw private-key* [name]
 | | +--rw name string
 | | +--ro algorithm? identityref
 | | +--ro key-length? uint32
 | | +--ro public-key binary
 | | +--rw certificate-chains
 | | | +--rw certificate-chain* [name]
 | | | +--rw name string
 | | | +--rw certificate* binary
 | | +---x generate-certificate-signing-request
 | | +---w input
 | | | +---w subject binary
 | | | +---w attributes? binary
 | | +--ro output
 | | +--ro certificate-signing-request binary
 | +---x generate-private-key
 | | +---w input
 | | +---w name string
 | | +---w algorithm identityref
 | | +---w key-length? uint32
 | +---x load-private-key
 | +---w input
 | +---w name string
 | +---w private-key binary

Watsen & Wu Expires May 4, 2017 [Page 5]

Internet-Draft Keystore Model October 2016

 +--rw trusted-certificates* [name]
 | +--rw name string
 | +--rw description? string
 | +--rw trusted-certificate* [name]
 | +--rw name string
 | +--rw certificate? binary
 +--rw trusted-ssh-host-keys* [name]
 | +--rw name string
 | +--rw description? string
 | +--rw trusted-host-key* [name]
 | +--rw name string
 | +--rw host-key binary
 +--rw user-auth-credentials
 +--rw user-auth-credential* [username]
 +--rw username string
 +--rw auth-method* [priority]
 +--rw priority uint8
 +--rw (auth-type)?
 +--:(certificate)
 | +--rw certificate* -> /keystore/private
 -keys/private-key/certificate-chains/certificate-chain/name
 +--:(public-key)
 | +--rw public-key* -> /keystore/private
 -keys/private-key/name
 +--:(ciphertext-password)
 | +--rw ciphertext-password? string
 +--:(cleartext-password)
 +--rw cleartext-password? string

 notifications:
 +---n certificate-expiration
 +--ro certificate instance-identifier
 +--ro expiration-date yang:date-and-time

2.2. Example Usage

 The following example illustrates the "generate-private-key" action
 in use with the RESTCONF protocol and JSON encoding.

Watsen & Wu Expires May 4, 2017 [Page 6]

Internet-Draft Keystore Model October 2016

 REQUEST

 [’\’ line wrapping added for formatting only]

 POST https://example.com/restconf/data/ietf-keystore:keystore/\
 private-keys/generate-private-key HTTP/1.1
 HOST: example.com
 Content-Type: application/yang.operation+json

 {
 "ietf-keystore:input" : {
 "name" : "ex-key-sect571r1",
 "algorithm" : "sect571r1"
 }
 }

 RESPONSE

 HTTP/1.1 204 No Content
 Date: Mon, 31 Oct 2015 11:01:00 GMT
 Server: example-server

 The following example illustrates the "load-private-key" action in
 use with the RESTCONF protocol and JSON encoding.

Watsen & Wu Expires May 4, 2017 [Page 7]

Internet-Draft Keystore Model October 2016

 REQUEST

 [’\’ line wrapping added for formatting only]

 POST https://example.com/restconf/data/ietf-keystore:keystore/\
 private-keys/load-private-key HTTP/1.1
 HOST: example.com
 Content-Type: application/yang.operation+xml

 <input xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">
 <name>ex-key-sect571r1</name>
 <private-key>
 NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd\
 VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER\
 V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF\
 Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN\
 QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ\
 MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ\
 NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC\
 WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM\
 lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk\
 zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot\
 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2\
 WpiMjB2WlhoaGJYQnNaUzVqY215aU9L=
 </private-key>
 </input>

 RESPONSE

 HTTP/1.1 204 No Content
 Date: Mon, 31 Oct 2015 11:01:00 GMT
 Server: example-server

 The following example illustrates the "generate-certificate-signing-
 request" action in use with the NETCONF protocol.

 REQUEST

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <action xmlns="urn:ietf:params:xml:ns:yang:1">
 <keystore
 xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">

Watsen & Wu Expires May 4, 2017 [Page 8]

Internet-Draft Keystore Model October 2016

 <private-keys>
 <private-key>
 <name>ex-key-sect571r1</name>
 <generate-certificate-signing-request>
 <subject>
 cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2R
 manZvO3NkZmJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNlmO
 Z2aXNiZGZpYmhzZG87ZmJvO3NkZ25iO29pLmR6Zgo=
 </subject>
 <attributes>
 bwtakWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvut4
 arnZvO3NkZmJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYm
 Z2aXNiZGZpYmhzZG87ZmJvO3NkZ25iO29pLmC6Rhp=
 </attributes>
 </generate-certificate-signing-request>
 </private-key>
 </private-keys>
 </keystore>
 </action>
 </rpc>

 RESPONSE

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <certificate-signing-request
 xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
 FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
 GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
 diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
 KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
 El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1
 FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV
 bXBDT2YKQWdNQkFBR2pnYXd3Z2Frd0hRWURWUjBPQkJZRUZKY1o2W
 URiR0lPNDB4ajlPb3JtREdsRUNCVTFNR1FHQTFVZApJd1JkTUZ1QU
 ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d
 mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0
 RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
 rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
 TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d
 c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
 SWHgzZjdVM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
 </certificate-signing-request>
 </rpc-reply>

Watsen & Wu Expires May 4, 2017 [Page 9]

Internet-Draft Keystore Model October 2016

 The following example illustrates what a fully configured keystore
 object might look like. The private-key shown below is consistent
 with the generate-private-key and generate-certificate-signing-
 request examples above. This example also assumes that the resulting
 CA-signed certificate has been configured back onto the server.
 Lastly, this example shows that three lists of trusted certificates
 having been configured.

 <keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">

 <!-- private keys and associated certificates -->
 <private-keys>
 <private-key>
 <name>my-rsa-user-key</name>
 <algorithm>rsa</algorithm>
 <public-key>
 cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2RmanZvO3NkZ
 mJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYmZ2aXNiZGZpYmhzZG87Zm
 JvO3NkZ25iO29pLmR6Zgo=
 </public-key>
 <certificate-chains>
 <certificate-chain>
 <name>my-rsa-chain</name>
 <certificate>
 ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d
 diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
 KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
 FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
 GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
 mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0
 RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
 rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
 TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d
 c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
 SWM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
 </certificate>
 </certificate-chain>
 </certificate-chains>
 </private-key>

 <private-key>
 <name>my-ec-user-key</name>
 <algorithm>secp256r1</algorithm>
 <public-key>
 mJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYmZ2aXNiZGZpYmhzZG87Zm
 cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2RmanZvO3NkZ

Watsen & Wu Expires May 4, 2017 [Page 10]

Internet-Draft Keystore Model October 2016

 JvO3NkZ25iO29pLmR6Zgo=
 </public-key>
 <certificate-chains>
 <certificate-chain>
 <name>my-ec-chain</name>
 <certificate>
 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
 ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d
 diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
 KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
 FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
 GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
 mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0
 RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
 rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
 TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d
 c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
 SWM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
 </certificate>
 </certificate-chain>
 </certificate-chains>
 </private-key>

 <private-key>
 <name>tpm-protected-key</name>
 <algorithm>sect571r1</algorithm>
 <public-key>
 cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2RmanZvO3NkZ
 mJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYmZ2aXNiZGZpYmhzZG87Zm
 JvO3NkZ25iO29pLmR6Zgo=
 </public-key>
 <certificate-chains>
 <certificate-chain>
 <name>default-idevid-chain</name>
 <certificate>
 diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
 KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
 FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
 GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
 ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d
 mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0
 RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
 rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
 TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d
 c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV

Watsen & Wu Expires May 4, 2017 [Page 11]

Internet-Draft Keystore Model October 2016

 SWM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
 </certificate>
 <certificate>
 KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
 El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1
 FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV
 bXBDT2YKQWdNQkFBR2pnYXd3Z2Frd0hRWURWUjBPQkJZRUZKY1o2W
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
 FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
 GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
 diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
 URiR0lPNDB4ajlPb3JtREdsRUNCVTFNR1FHQTFVZApJd1JkTUZ1QU
 RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
 rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
 c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
 SSUZJQ0FURS0tLS0tCg==
 </certificate>
 </certificate-chain>
 <certificate-chain>
 <name>my-ldevid-chain</name>
 <certificate>
 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
 FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
 GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
 diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
 KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
 El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1
 FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV
 ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d
 mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0
 RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
 rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
 TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d
 c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
 SWM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
 </certificate>
 <certificate>
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
 FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
 GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
 diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
 KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
 El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1
 FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV
 bXBDT2YKQWdNQkFBR2pnYXd3Z2Frd0hRWURWUjBPQkJZRUZKY1o2W

Watsen & Wu Expires May 4, 2017 [Page 12]

Internet-Draft Keystore Model October 2016

 URiR0lPNDB4ajlPb3JtREdsRUNCVTFNR1FHQTFVZApJd1JkTUZ1QU
 ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d
 mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0
 RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
 rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
 TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d
 c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
 SWHgzZjdVM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
 </certificate>
 </certificate-chain>
 </certificate-chains>
 </private-key>
 </private-keys>

 <!-- trusted netconf/restconf client certificates -->
 <trusted-certificates>
 <name>explicitly-trusted-client-certs</name>
 <description>
 Specific client authentication certificates that are to be
 explicitly trusted NETCONF/RESTCONF clients. These are
 needed for client certificates not signed by our CA.
 </description>
 <trusted-certificate>
 <name>George Jetson</name>
 <certificate>
 QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ
 MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ
 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2
 RV0JCU2t2MXI2SFNHeUFUVkpwSmYyOWtXbUU0NEo5akJrQmdOVkhTTUVY
 VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
 UxNQWtHQTFVRUJoTUNWVk14RURBT0JnTlZCQW9UQjJWNApZVzF3YkdVeE
 V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF
 NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC
 Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN
 WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW
 xWVE1SQXdEZ1lEVlFRSwpFd2RsZUdGdGNHeGxNUk13RVFZRFZRUURFd3B
 EVWt3Z1NYTnpkV1Z5TUEwR0NTcUdTSWIzRFFFQkJRVUFBNEdCCkFFc3BK
 WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM
 TQzcjFZSjk0M1FQLzV5eGUKN2QxMkxCV0dxUjUrbEl5N01YL21ka2M4al
 zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot
 LS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
 </certificate>
 </trusted-certificate>
 <trusted-certificate>
 <name>Fred Flintstone</name>
 <certificate>
 VlEVlFRREV3Vm9ZWEJ3ZVRDQm56QU5CZ2txaGtpRzl3MEJBUUVGQUFPQm
 pRQXdnWWtDCmdZRUE1RzRFSWZsS1p2bDlXTW44eUhyM2hObUFRaUhVUzV

Watsen & Wu Expires May 4, 2017 [Page 13]

Internet-Draft Keystore Model October 2016

 rRUpPQy9hSFA3eGJXQW1ra054ZStUa2hrZnBsL3UKbVhsTjhSZUd1ODhG
 NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd
 VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
 V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF
 NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC
 Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN
 WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW
 xWVE1SQXdEZ1lEVlFRSwpFd2RsZUdGdGNHeGxNUk13RVFZRFZRUURFd3B
 EVWt3Z1NYTnpkV1Z5TUEwR0NTcUdTSWIzRFFFQkJRVUFBNEdCCkFFc3BK
 WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM
 lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk
 zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot
 QWtUOCBDRVUUZJ0RUF==
 </certificate>
 </trusted-certificate>
 </trusted-certificates>

 <!-- trust anchors (CA certs) for netconf/restconf clients -->
 <trusted-certificates>
 <name>deployment-specific-ca-certs</name>
 <description>
 Trust anchors used only to authenticate NETCONF/RESTCONF
 client connections. Since our security policy only allows
 authentication for clients having a certificate signed by
 our CA, we only configure its certificate below.
 </description>
 <trusted-certificate>
 <name>ca.example.com</name>
 <certificate>
 WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM
 lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk
 zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot
 NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd
 VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
 V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF
 NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC
 Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN
 WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW
 QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ
 MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ
 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2
 RJSUJQFRStS0Cg==
 </certificate>
 </trusted-certificate>
 </trusted-certificates>

 <!-- trust anchors for random HTTPS servers on Internet -->
 <trusted-certificates>

Watsen & Wu Expires May 4, 2017 [Page 14]

Internet-Draft Keystore Model October 2016

 <name>common-ca-certs</name>
 <description>
 Trusted certificates to authenticate common HTTPS servers.
 These certificates are similar to those that might be
 shipped with a web browser.
 </description>
 <trusted-certificate>
 <name>ex-certificate-authority</name>
 <certificate>
 NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd
 VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
 V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF
 Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN
 QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ
 MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ
 NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC
 WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM
 lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk
 zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot
 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2
 WpiMjB2WlhoaGJYQnNaUzVqY215aU9L=
 </certificate>
 </trusted-certificate>
 </trusted-certificates>

 <!-- trusted SSH host keys -->
 <trusted-ssh-host-keys>
 <name>explicitly-trusted-ssh-host-keys</name>
 <description>
 Trusted SSH host keys used to authenticate SSH servers.
 These host keys would be analogous to those stored in
 a known_hosts file in OpenSSH.
 </description>
 <trusted-host-key>
 <name>corp-fw1</name>
 <host-key>
 VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
 NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd
 WpiMjB2WlhoaGJYQnNaUzVqY215aU9L=
 </host-key>
 </trusted-host-key>
 </trusted-ssh-host-keys>

 <!-- user credentials and associated authentication methods -->
 <user-auth-credentials>
 <user-auth-credential>
 <username>admin</username>
 <auth-method>

Watsen & Wu Expires May 4, 2017 [Page 15]

Internet-Draft Keystore Model October 2016

 <priority>1</priority>
 <certificate-chain>my-ec-chain</certificate-chain>
 <certificate-chain>my-rsa-chain</certificate-chain>
 </auth-method>
 <auth-method>
 <priority>2</priority>
 <public-key>my-rsa-user-key</public-key>
 </auth-method>
 </user-auth-credential>
 <user-auth-credential>
 <username>tester</username>
 <auth-method>
 <priority>1</priority>
 <cleartext-password>testing123</cleartext-password>
 </auth-method>
 </user-auth-credential>
 <user-auth-credential>
 <username>ldevid</username>
 <auth-method>
 <priority>1</priority>
 <certificate-chain>my-ldevid-chain</certificate-chain>
 </auth-method>
 </user-auth-credential>
 </user-auth-credentials>

 </keystore>

 The following example illustrates a "certificate-expiration"
 notification in XML.

[’\’ line wrapping added for formatting only]

<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2016-07-08T00:01:00Z</eventTime>
 <certificate-expiration
 xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">
 <certificate>
 /ks:keystore/ks:private-keys/ks:private-key/ks:certificate-chains\
 /ks:certificate-chain/ks:certificate[3]
 </certificate>
 <expiration-date>2016-08-08T14:18:53-05:00</expiration-date>
 </certificate-expiration>
</notification>

Watsen & Wu Expires May 4, 2017 [Page 16]

Internet-Draft Keystore Model October 2016

2.3. YANG Module

 This YANG module makes extensive use of data types defined in
 [RFC5280] and [RFC5958].

<CODE BEGINS> file "ietf-keystore@2016-10-31.yang"

module ietf-keystore {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-keystore";
 prefix "ks";

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nsn.com>

 WG Chair: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 Editor: Kent Watsen
 <mailto:kwatsen@juniper.net>";

 description
 "This module defines a keystore to centralize management of
 security credentials.

 Copyright (c) 2014 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s

Watsen & Wu Expires May 4, 2017 [Page 17]

Internet-Draft Keystore Model October 2016

 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC VVVV; see
 the RFC itself for full legal notices.";

 revision "2016-10-31" {
 description
 "Initial version";
 reference
 "RFC VVVV: NETCONF Server and RESTCONF Server Configuration
 Models";
 }

 identity key-algorithm {
 description
 "Base identity from which all key-algorithms are derived.";
 }

 identity rsa {
 base key-algorithm;
 description
 "The RSA algorithm.";
 reference
 "RFC3447: Public-Key Cryptography Standards (PKCS) #1:
 RSA Cryptography Specifications Version 2.1.";
 }

 identity secp192r1 {
 base key-algorithm;
 description
 "The secp192r1 algorithm.";
 reference
 "RFC5480:
 Elliptic Curve Cryptography Subject Public Key Information.";
 }

 identity secp256r1 {
 base key-algorithm;
 description
 "The secp256r1 algorithm.";
 reference
 "RFC5480:
 Elliptic Curve Cryptography Subject Public Key Information.";
 }

 identity secp384r1 {

Watsen & Wu Expires May 4, 2017 [Page 18]

Internet-Draft Keystore Model October 2016

 base key-algorithm;
 description
 "The secp384r1 algorithm.";
 reference
 "RFC5480:
 Elliptic Curve Cryptography Subject Public Key Information.";
 }

 identity secp521r1 {
 base key-algorithm;
 description
 "The secp521r1 algorithm.";
 reference
 "RFC5480:
 Elliptic Curve Cryptography Subject Public Key Information.";
 }

 container keystore {
 description
 "A list of private-keys and their associated certificates, as
 well as lists of trusted certificates for client certificate
 authentication. RPCs are provided to generate a new private
 key and to generate a certificate signing requests.";

 container private-keys {
 description
 "A list of private key maintained by the keystore.";
 list private-key {
 key name;
 description
 "A private key.";
 leaf name {
 type string;
 description
 "An arbitrary name for the private key.";
 }
 leaf algorithm {
 type identityref {
 base "key-algorithm";
 }
 config false;
 description
 "The algorithm used by the private key.";
 }
 leaf key-length {
 type uint32;
 config false;
 description

Watsen & Wu Expires May 4, 2017 [Page 19]

Internet-Draft Keystore Model October 2016

 "The key-length used by the private key.";
 }
 leaf public-key {
 type binary;
 config false;
 mandatory true;
 description
 "An OneAsymmetricKey ’publicKey’ structure as specified
 by RFC 5958, Section 2 encoded using the ASN.1
 distinguished encoding rules (DER), as specified
 in ITU-T X.690.";
 reference
 "RFC 5958:
 Asymmetric Key Packages
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }
 container certificate-chains {
 description
 "Certificate chains associated with this private key.
 More than one chain per key is enabled to support,
 for instance, a TPM-protected key that has associated
 both IDevID and LDevID certificates.";
 list certificate-chain {
 key name;
 description
 "A certificate chain for this public key.";
 leaf name {
 type string;
 description
 "An arbitrary name for the certificate chain. The
 name must be a unique across all private keys, not
 just within this private key.";
 }
 leaf-list certificate {
 type binary;
 ordered-by user;
 description
 "An X.509 v3 certificate structure as specified by RFC
 5280, Section 4 encoded using the ASN.1 distinguished
 encoding rules (DER), as specified in ITU-T X.690.
 The list of certificates that run from the server
 certificate towards the trust anchor. The chain MAY
 include the trust anchor certificate itself.";
 reference

Watsen & Wu Expires May 4, 2017 [Page 20]

Internet-Draft Keystore Model October 2016

 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile.
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }
 }
 }
 action generate-certificate-signing-request {
 description
 "Generates a certificate signing request structure for
 the associated private key using the passed subject and
 attribute values. Please review both the Security
 Considerations and Design Considerations sections in
 RFC VVVV for more information regarding this action
 statement.";
 input {
 leaf subject {
 type binary;
 mandatory true;
 description
 "The ’subject’ field from the CertificationRequestInfo
 structure as specified by RFC 2986, Section 4.1 encoded
 using the ASN.1 distinguished encoding rules (DER), as
 specified in ITU-T X.690.";
 reference
 "RFC 2986:
 PKCS #10: Certification Request Syntax Specification
 Version 1.7.
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }
 leaf attributes {
 type binary;
 description
 "The ’attributes’ field from the CertificationRequestInfo
 structure as specified by RFC 2986, Section 4.1 encoded
 using the ASN.1 distinguished encoding rules (DER), as
 specified in ITU-T X.690.";
 reference
 "RFC 2986:
 PKCS #10: Certification Request Syntax Specification

Watsen & Wu Expires May 4, 2017 [Page 21]

Internet-Draft Keystore Model October 2016

 Version 1.7.
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }
 }
 output {
 leaf certificate-signing-request {
 type binary;
 mandatory true;
 description
 "A CertificationRequest structure as specified by RFC
 2986, Section 4.1 encoded using the ASN.1 distinguished
 encoding rules (DER), as specified in ITU-T X.690.";
 reference
 "RFC 2986:
 PKCS #10: Certification Request Syntax Specification
 Version 1.7.
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";

 }
 }
 }
 }

 action generate-private-key {
 description
 "Requests the device to generate a private key using the
 specified algorithm and key length.";
 input {
 leaf name {
 type string;
 mandatory true;
 description
 "The name this private-key should have when listed
 in /keystore/private-keys. As such, the passed
 value must not match any existing ’name’ value.";
 }
 leaf algorithm {
 type identityref {
 base "key-algorithm";
 }

Watsen & Wu Expires May 4, 2017 [Page 22]

Internet-Draft Keystore Model October 2016

 mandatory true;
 description
 "The algorithm to be used when generating the key.";
 }
 leaf key-length {
 type uint32;
 description
 "For algorithms that need a key length specified
 when generating the key.";
 }
 }
 }

 action load-private-key {
 description
 "Requests the device to load a private key";
 input {
 leaf name {
 type string;
 mandatory true;
 description
 "The name this private-key should have when listed
 in /keystore/private-keys. As such, the passed
 value must not match any existing ’name’ value.";
 }
 leaf private-key {
 type binary;
 mandatory true;
 description
 "An OneAsymmetricKey structure as specified by RFC
 5958, Section 2 encoded using the ASN.1 distinguished
 encoding rules (DER), as specified in ITU-T X.690.
 Note that this is the raw private with no shrouding
 to protect it. The strength of this private key
 MUST NOT be greater than the strength of the secure
 connection over which it is communicated. Devices
 SHOULD fail this request if ever that happens.";
 reference
 "RFC 5958:
 Asymmetric Key Packages
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }
 }
 }

Watsen & Wu Expires May 4, 2017 [Page 23]

Internet-Draft Keystore Model October 2016

 }

 list trusted-certificates {
 key name;
 description
 "A list of trusted certificates. These certificates
 can be used by a server to authenticate clients, or by clients
 to authenticate servers. The certificates may be endpoint
 specific or for certificate authorities (to authenticate many
 clients at once. Each list of certificates SHOULD be specific
 to a purpose, as the list as a whole may be referenced by other
 modules. For instance, a NETCONF server model might point to
 a list of certificates to use when authenticating client
 certificates.";
 leaf name {
 type string;
 description
 "An arbitrary name for this list of trusted certificates.";
 }
 leaf description {
 type string;
 description
 "An arbitrary description for this list of trusted
 certificates.";
 }
 list trusted-certificate {
 key name;
 description
 "A trusted certificate for a specific use. Note, this
 ’certificate’ is a list in order to encode any
 associated intermediate certificates.";
 leaf name {
 type string;
 description
 "An arbitrary name for this trusted certificate. Must
 be unique across all lists of trusted certificates
 (not just this list) so that a leafref to it from
 another module can resolve to unique values.";
 }
 leaf certificate { // rename to ’data’?
 type binary;
 description
 "An X.509 v3 certificate structure as specified by RFC
 5280, Section 4 encoded using the ASN.1 distinguished
 encoding rules (DER), as specified in ITU-T X.690.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate

Watsen & Wu Expires May 4, 2017 [Page 24]

Internet-Draft Keystore Model October 2016

 and Certificate Revocation List (CRL) Profile.
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }
 }
 }

 list trusted-ssh-host-keys {
 key name;
 description
 "A list of trusted host-keys. These host-keys can be used
 by clients to authenticate SSH servers. The host-keys are
 endpoint specific. Each list of host-keys SHOULD be
 specific to a purpose, as the list as a whole may be
 referenced by other modules. For instance, a NETCONF
 client model might point to a list of host-keys to use
 when authenticating servers host-keys.";
 leaf name {
 type string;
 description
 "An arbitrary name for this list of trusted SSH host keys.";
 }
 leaf description {
 type string;
 description
 "An arbitrary description for this list of trusted SSH host
 keys.";
 }
 list trusted-host-key {
 key name;
 description
 "A trusted host key.";
 leaf name {
 type string;
 description
 "An arbitrary name for this trusted host-key. Must be
 unique across all lists of trusted host-keys (not just
 this list) so that a leafref to it from another module
 can resolve to unique values.

 Note that, for when the SSH client is able to listen
 for call-home connections as well, there is no reference
 identifier (e.g., hostname, IP address, etc.) that it
 can use to uniquely identify the server with. The
 call-home draft recommends SSH servers use X.509v3

Watsen & Wu Expires May 4, 2017 [Page 25]

Internet-Draft Keystore Model October 2016

 certificates (RFC6187) when calling home.";
 }
 leaf host-key { // rename to ’data’?
 type binary;
 mandatory true;
 description
 "An OneAsymmetricKey ’publicKey’ structure as specified
 by RFC 5958, Section 2 encoded using the ASN.1
 distinguished encoding rules (DER), as specified
 in ITU-T X.690.";
 reference
 "RFC 5958:
 Asymmetric Key Packages
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }
 }
 }

/*
Are the auth credentials truly limited to SSH?
Could they be used by an HTTP client to log into an HTTP server?
If truly just for SSH, maybe rename?
*/
 container user-auth-credentials {
 description
 "A list of user authentication credentials that can be used
 by an SSH client to log into an SSH server, using any of
 the supported authentication methods (e.g., password,
 public key, client certificate, etc.).";
 list user-auth-credential {
 key username;
 description
 "The authentication credentials for a specific user.";
 leaf username {
 type string;
 description
 "The username of this user. This will be the username
 used, for instance, to log into an SSH server.";
 }
 list auth-method {
 key priority;
 description
 "A method of authenticating as this user.";
 leaf priority {

Watsen & Wu Expires May 4, 2017 [Page 26]

Internet-Draft Keystore Model October 2016

 type uint8;
 description
 "When multiple authentication methods in this list are
 supported by the server, the one with the lowest priority
 value will be the one that is used.";
 }
 choice auth-type {
 description
 "The authentication type.";
 leaf-list certificate {
 type leafref {
 path "/keystore/private-keys/private-key/"
 + "certificate-chains/certificate-chain/name";
 }
 ordered-by user;
 description
 "A list of references to certificates that can be used
 for user authentication. When multiple certificates
 in this list supported by the server, the one that
 comes before the others in the leaf-list will be
 used.";
 }
 leaf-list public-key {
 type leafref {
 path "/keystore/private-keys/private-key/name";
 }
 ordered-by user;
 description
 "A list of references to public keys that can be used
 for user authentication. When multiple public keys
 in this list supported by the server, the one that
 comes before the others in the leaf-list will be
 used.";
 }
 leaf ciphertext-password {
 type string;
 description
 "An ciphertext password. The method of encipherment
 and how that method can be determined from this
 string is implementation-specific.";
 }
 leaf cleartext-password {
 type string;
 description
 "An cleartext password.";
 }
 }
 }

Watsen & Wu Expires May 4, 2017 [Page 27]

Internet-Draft Keystore Model October 2016

 }
 }
 }

 notification certificate-expiration {
 description
 "A notification indicating that a configured certificate is
 either about to expire or has already expired. When to send
 notifications is an implementation specific decision, but
 it is RECOMMENDED that a notification be sent once a month
 for 3 months, then once a week for four weeks, and then once
 a day thereafter.";
 leaf certificate {
 type instance-identifier;
 mandatory true;
 description
 "Identifies which certificate is expiring or is expired.";
 }
 leaf expiration-date {
 type yang:date-and-time;
 mandatory true;
 description
 "Identifies the expiration date on the certificate.";
 }
 }

}

<CODE ENDS>

3. Design Considerations

 This document, along with four other drafts, was split out from the
 original draft "draft-ietf-netconf-server-model". The split was made
 so that each draft would have better focus, and also becuase there
 was a desire to define client modules, in addition to server modules.
 The complete list of drafts that resulted from the split includes:

 - draft-ietf-netconf-keystore

 - draft-ietf-netconf-ssh-client-server

 - draft-ietf-netconf-tls-client-server

 - draft-ietf-netconf-netconf-client-server

 - draft-ietf-netconf-restconf-client-server

Watsen & Wu Expires May 4, 2017 [Page 28]

Internet-Draft Keystore Model October 2016

 This document uses PKCS #10 [RFC2986] for the "generate-certificate-
 signing-request" action. The use of Certificate Request Message
 Format (CRMF) [RFC4211] was considered, but is was unclear if there
 was market demand for it, and so support for CRMF has been left out
 of this specification. If it is desired to support CRMF in the
 future, placing a "choice" statement in both the input and output
 statements, along with an "if-feature" statement on the CRMF option,
 would enable a backwards compatible solution.

 This document puts a limit of the number of elliptical curves
 supported by default. This was done to match industry trends in IETF
 best practice (e.g., matching work being done in TLS 1.3). If
 additional algorithms are needed, they MAY be augmented in by another
 module, or added directly in a future version of this document.

 Both this document and Key Chain YANG Data Model
 [draft-ietf-rtgwg-yang-key-chain] regard a similar idea. The authors
 looked at this and agree that they two modules server different
 purposes and hence not worth merging into one document. To
 underscore this further, this document renamed its module from "ietf-
 keychain" to "ietf-keystore", to contrast it with the other
 document’s module "ietf-key-chain".

 For the trusted-certificates list, Trust Anchor Format [RFC5914] was
 evaluated and deemed inappropriate due to this document’s need to
 also support pinning. That is, pinning a client-certificate to
 support NETCONF over TLS client authentication.

4. Security Considerations

 This document defines a keystore mechanism that is entrusted with the
 safe keeping of private keys, and the safe keeping of trusted
 certificates. Nowhere in this API is there an ability to access
 (read out) a private key once it is known to the keystore. Further,
 associated public keys and attributes (e.g., algorithm name, key
 length, etc.) are read-only. That said, this document allows for the
 deletion of private keys and their certificates, as well the deletion
 of trusted certificates. Access control mechanisms (e.g., NACM
 [RFC6536]) MUST be in place so as to authorize such client actions.
 Further, whilst the data model allows for private keys and trusted
 certificates in general to be deleted, implementations should be well
 aware that some privates keys (e.g., those in a TPM) and some trusted
 certificates, should never be deleted, regardless if the
 authorization mechanisms would generally allow for such actions.

 For the "generate-certificate-signing-request" action, it is
 RECOMMENDED that devices implement assert channel binding [RFC5056],
 so as to ensure that the application layer that sent the request is

Watsen & Wu Expires May 4, 2017 [Page 29]

Internet-Draft Keystore Model October 2016

 the same as the device authenticated in the secure transport layer
 was established.

 This document defines a data model that includes a list of private
 keys. These private keys MAY be deleted using standard NETCONF or
 RESTCONF operations (e.g., <edit-config>). Implementations SHOULD
 automatically (without explicit request) zeroize these keys in the
 most secure manner available, so as to prevent the remnants of their
 persisted storage locations from being analyzed in any meaningful
 way.

 The keystore module define within this document defines the "load-
 private-key" action enabling a device to load a client-supplied
 private key. This is a private key with no shrouding to protect it.
 The strength of this private key MUST NOT be greater than the
 strength of the underlying secure transport connection over which it
 is communicated. Devices SHOULD fail this request if ever the
 strength of the private key is greater then the strength of the
 underlying transport.

5. IANA Considerations

5.1. The IETF XML Registry

 This document registers one URI in the IETF XML registry [RFC2119].
 Following the format in [RFC3688], the following registration is
 requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-keystore
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

5.2. The YANG Module Names Registry

 This document registers one YANG module in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registration is requested:

 name: ietf-keystore
 namespace: urn:ietf:params:xml:ns:yang:ietf-keystore
 prefix: kc
 reference: RFC VVVV

Watsen & Wu Expires May 4, 2017 [Page 30]

Internet-Draft Keystore Model October 2016

6. Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Benoit Claise, Mehmet Ersue, David Lamparter, Alan Luchuk,
 Ladislav Lhotka, Radek Krejci, Tom Petch, Juergen Schoenwaelder; Phil
 Shafer, Sean Turner, and Bert Wijnen.

7. References

7.1. Normative References

 [draft-ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ieft-netconf-restconf-04 (work in
 progress), 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 DOI 10.17487/RFC2986, November 2000,
 <http://www.rfc-editor.org/info/rfc2986>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC5958] Turner, S., "Asymmetric Key Packages", RFC 5958,
 DOI 10.17487/RFC5958, August 2010,
 <http://www.rfc-editor.org/info/rfc5958>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

Watsen & Wu Expires May 4, 2017 [Page 31]

Internet-Draft Keystore Model October 2016

7.2. Informative References

 [draft-ietf-rtgwg-yang-key-chain]
 Lindem, A., Qu, Y., Yeung, D., Chen, I., Zhang, J., and Y.
 Yang, "Key Chain YANG Data Model", draft-ietf-rtgwg-yang-
 key-chain (work in progress), 2016,
 <https://datatracker.ietf.org/html/draft-ietf-rtgwg-yang-
 key-chain>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC4211] Schaad, J., "Internet X.509 Public Key Infrastructure
 Certificate Request Message Format (CRMF)", RFC 4211,
 DOI 10.17487/RFC4211, September 2005,
 <http://www.rfc-editor.org/info/rfc4211>.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,
 <http://www.rfc-editor.org/info/rfc5056>.

 [RFC5914] Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor
 Format", RFC 5914, DOI 10.17487/RFC5914, June 2010,
 <http://www.rfc-editor.org/info/rfc5914>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

 [Std-802.1AR-2009]
 IEEE SA-Standards Board, "IEEE Standard for Local and
 metropolitan area networks - Secure Device Identity",
 December 2009, <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

Watsen & Wu Expires May 4, 2017 [Page 32]

Internet-Draft Keystore Model October 2016

Appendix A. Change Log

A.1. server-model-09 to 00

 o This draft was split out from draft-ietf-netconf-server-model-09.

 o Removed key-usage parameter from generate-private-key action.

 o Now /private-keys/private-key/certificates/certificate/name must
 be globally unique (unique across all private keys).

 o Added top-level ’trusted-ssh-host-keys’ and ’user-auth-
 credentials’ to support SSH client modules.

Appendix B. Open Issues

 Please see: https://github.com/netconf-wg/keystore/issues.

Authors’ Addresses

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

 Gary Wu
 Cisco Networks

 EMail: garywu@cisco.com

Watsen & Wu Expires May 4, 2017 [Page 33]

NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Intended status: Standards Track G. Wu
Expires: May 7, 2017 Cisco Networks
 J. Schoenwaelder
 Jacobs University Bremen
 November 3, 2016

 NETCONF Client and Server Models
 draft-ietf-netconf-netconf-client-server-01

Abstract

 This document defines two YANG modules, one module to configure a
 NETCONF client and the other module to configure a NETCONF server.
 Both modules support both the SSH and TLS transport protocols, and
 support both standard NETCONF and NETCONF Call Home connections.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 This document contains references to other drafts in progress, both
 in the Normative References section, as well as in body text
 throughout. Please update the following references to reflect their
 final RFC assignments:

 o draft-ietf-netconf-keystore

 o draft-ietf-netconf-ssh-client-server

 o draft-ietf-netconf-tls-client-server

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

 o "YYYY" --> the assigned RFC value for draft-ietf-netconf-ssh-
 client-server

 o "ZZZZ" --> the assigned RFC value for draft-ietf-netconf-tls-
 client-server

Watsen, et al. Expires May 7, 2017 [Page 1]

Internet-Draft NETCONF Client and Server Models November 2016

 o "AAAA" --> the assigned RFC value for draft-ietf-netconf-call-home

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2016-11-02" --> the publication date of this draft

 The following two Appendix sections are to be removed prior to
 publication:

 o Appendix A. Change Log

 o Appendix B. Open Issues

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Watsen, et al. Expires May 7, 2017 [Page 2]

Internet-Draft NETCONF Client and Server Models November 2016

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 1.2. Tree Diagrams . 4
 2. The NETCONF Client Model 4
 2.1. Tree Diagram . 5
 2.2. Example Usage . 6
 2.3. YANG Model . 8
 3. The NETCONF Server Model 14
 3.1. Tree Diagram . 15
 3.2. Example Usage . 17
 3.3. YANG Model . 21
 4. Design Considerations . 31
 4.1. Support all NETCONF transports 31
 4.2. Enable each transport to select which keys to use 32
 4.3. Support authenticating NETCONF clients certificates . . . 32
 4.4. Support mapping authenticated NETCONF client certificates
 to usernames . 32
 4.5. Support both listening for connections and call home . . 32
 4.6. For Call Home connections 32
 4.6.1. Support more than one NETCONF client 32
 4.6.2. Support NETCONF clients having more than one endpoint 33
 4.6.3. Support a reconnection strategy 33
 4.6.4. Support both persistent and periodic connections . . 33
 4.6.5. Reconnection strategy for periodic connections . . . 33
 4.6.6. Keep-alives for persistent connections 33
 4.6.7. Customizations for periodic connections 34
 5. Security Considerations 34
 6. IANA Considerations . 34
 6.1. The IETF XML Registry 34
 6.2. The YANG Module Names Registry 34
 7. Acknowledgements . 35
 8. References . 35
 8.1. Normative References 35
 8.2. Informative References 36
 Appendix A. Change Log . 38
 A.1. server-model-09 to 00 38
 Appendix B. Open Issues . 38
 Authors’ Addresses . 38

1. Introduction

 This document defines two YANG [RFC6020] modules, one module to
 configure a NETCONF client and the other module to configure a
 NETCONF server. Both modules support both the SSH and TLS transport
 protocols, and support both standard NETCONF and NETCONF Call Home
 connections.

Watsen, et al. Expires May 7, 2017 [Page 3]

Internet-Draft NETCONF Client and Server Models November 2016

 NETCONF is defined by [RFC6241]. SSH is defined by [RFC4252],
 [RFC4253], and [RFC4254]. TLS is defined by [RFC5246]. NETCONF Call
 Home is defined by [draft-ietf-netconf-call-home]).

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Tree Diagrams

 A simplified graphical representation of the data models is used in
 this document. The meaning of the symbols in these diagrams is as
 follows:

 o Brackets "[" and "]" enclose list keys.

 o Braces "{" and "}" enclose feature names, and indicate that the
 named feature must be present for the subtree to be present.

 o Abbreviations before data node names: "rw" means configuration
 (read-write) and "ro" state data (read-only).

 o Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list and leaf-list.

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

2. The NETCONF Client Model

 The NETCONF client model presented in this section supports both
 clients initiating connections to servers, as well as clients
 listening for connections from servers calling home.

 This model supports both the SSH and TLS transport protocols, using
 the SSH client and TLS client groupings defined in
 [draft-ietf-netconf-ssh-client-server] and
 [draft-ietf-netconf-tls-client-server] respectively.

 All private keys and trusted certificates are held in the keystore
 model defined in [draft-ietf-netconf-keystore].

Watsen, et al. Expires May 7, 2017 [Page 4]

Internet-Draft NETCONF Client and Server Models November 2016

 YANG feature statements are used to enable implementations to
 advertise which parts of the model the NETCONF client supports.

2.1. Tree Diagram

 Note: all lines are folded at column 71 with no ’\’ character.

 module: ietf-netconf-client
 +--rw netconf-client
 +--rw initiate {initiate}?
 | +--rw netconf-server* [name]
 | +--rw name string
 | +--rw (transport)
 | +--:(ssh) {ssh-initiate}?
 | +--rw ssh
 | +--rw address inet:host
 | +--rw port? inet:port-number
 | +--rw server-auth
 | | +--rw trusted-ssh-host-keys? -> /ks:keystore
 /trusted-ssh-host-keys/name
 | | +--rw trusted-ca-certs? -> /ks:keystore
 /trusted-certificates/name {ssh-x509-certs}?
 | | +--rw trusted-server-certs? -> /ks:keystore
 /trusted-certificates/name
 | +--rw client-auth
 | +--rw matches* [name]
 | +--rw name string
 | +--rw match* [name]
 | | +--rw name string
 | | +--rw trusted-ssh-host-keys? -> /ks:ke
 ystore/trusted-ssh-host-keys/name
 | | +--rw trusted-ca-certs? -> /ks:ke
 ystore/trusted-certificates/name
 | | +--rw trusted-server-certs? -> /ks:ke
 ystore/trusted-certificates/name
 | +--rw user-auth-credentials? -> /ks:keyst
 ore/user-auth-credentials/user-auth-credential/username
 +--rw listen {listen}?
 +--rw max-sessions? uint16
 +--rw idle-timeout? uint16
 +--rw endpoint* [name]
 +--rw name string
 +--rw (transport)
 +--:(ssh) {ssh-listen}?
 +--rw ssh
 +--rw address? inet:ip-address
 +--rw port? inet:port-number
 +--rw server-auth

Watsen, et al. Expires May 7, 2017 [Page 5]

Internet-Draft NETCONF Client and Server Models November 2016

 | +--rw trusted-ssh-host-keys? -> /ks:keystore
 /trusted-ssh-host-keys/name
 | +--rw trusted-ca-certs? -> /ks:keystore
 /trusted-certificates/name {ssh-x509-certs}?
 | +--rw trusted-server-certs? -> /ks:keystore
 /trusted-certificates/name
 +--rw client-auth
 +--rw matches* [name]
 +--rw name string
 +--rw match* [name]
 | +--rw name string
 | +--rw trusted-ssh-host-keys? -> /ks:ke
 ystore/trusted-ssh-host-keys/name
 | +--rw trusted-ca-certs? -> /ks:ke
 ystore/trusted-certificates/name
 | +--rw trusted-server-certs? -> /ks:ke
 ystore/trusted-certificates/name
 +--rw user-auth-credentials? -> /ks:keyst
 ore/user-auth-credentials/user-auth-credential/username

2.2. Example Usage

 The following example illustrates configuring a NETCONF client to
 initiate connections, using both the SSH and TLS transport protocols,
 as well as listening for call-home connections, again using both the
 SSH and TLS transport protocols.

 This example is consistent with the examples presented in Section 2.2
 of [draft-ietf-netconf-keystore].

 <netconf-client
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-client">

 <!-- NETCONF servers to initiate NETCONF connections to -->
 <initiate>
 <netconf-server>
 <name>corp-fw1</name>
 <ssh>
 <address>corp-fw1.example.com</address>
 <server-auth>
 <trusted-server-certs>
 deployment-specific-ca-certs
 </trusted-server-certs>
 </server-auth>
 <client-auth>
 <matches>
 <match>
 <trusted-ca-certs>

Watsen, et al. Expires May 7, 2017 [Page 6]

Internet-Draft NETCONF Client and Server Models November 2016

 deployment-specific-ca-certs
 </trusted-ca-certs>
 </match>
 <user-auth-credentials>Bob</user-auth-credentials>
 </matches>
 </client-auth>
 </ssh>
 </netconf-server>
 </initiate>

 <!-- endpoints to listen for NETCONF Call Home connections on -->
 <listen>
 <endpoint>
 <name>Intranet-facing listener</name>
 <ssh>
 <address>11.22.33.44</address>
 <server-auth>
 <trusted-ca-certs>
 deployment-specific-ca-certs
 </trusted-ca-certs>
 <trusted-server-certs>
 explicitly-trusted-server-certs
 </trusted-server-certs>
 <trusted-ssh-host-keys>
 explicitly-trusted-ssh-host-keys
 </trusted-ssh-host-keys>
 </server-auth>
 <client-auth>
 <matches>
 <match>
 <trusted-ca-certs>
 deployment-specific-ca-certs
 </trusted-ca-certs>
 </match>
 <user-auth-credentials>admin</user-auth-credentials>
 </matches>
 <matches>
 <match>
 <trusted-ca-certs>
 explicitly-trusted-server-certs
 </trusted-ca-certs>
 </match>
 <user-auth-credentials>admin</user-auth-credentials>
 </matches>
 <matches>
 <match>
 <trusted-ca-certs>
 explicitly-trusted-ssh-host-keys

Watsen, et al. Expires May 7, 2017 [Page 7]

Internet-Draft NETCONF Client and Server Models November 2016

 </trusted-ca-certs>
 </match>
 <user-auth-credentials>admin</user-auth-credentials>
 </matches>
 </client-auth>
 </ssh>
 </endpoint>
 </listen>
 </netconf-client>

2.3. YANG Model

 This YANG module imports YANG types from [RFC6991] and [RFC7407].

 <CODE BEGINS> file "ietf-netconf-client@2016-11-02.yang"

 module ietf-netconf-client {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-client";
 prefix "ncc";

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-x509-cert-to-name {
 prefix x509c2n;
 reference
 "RFC 7407: A YANG Data Model for SNMP Configuration";
 }

 import ietf-ssh-client {
 prefix ss;
 revision-date 2016-11-02; // stable grouping definitions
 reference
 "RFC YYYY: SSH Client and Server Models";
 }

 // import ietf-tls-client {
 // prefix ts;
 // revision-date 2016-11-02; // stable grouping definitions
 // reference
 // "RFC ZZZZ: TLS Client and Server Models";
 // }

Watsen, et al. Expires May 7, 2017 [Page 8]

Internet-Draft NETCONF Client and Server Models November 2016

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nsn.com>

 WG Chair: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description
 "This module contains a collection of YANG definitions for
 configuring NETCONF servers.

 Copyright (c) 2014 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2016-11-02" {
 description
 "Initial version";
 reference
 "RFC XXXX: NETCONF Client and Server Models";
 }

 // Features

 feature initiate {
 description

Watsen, et al. Expires May 7, 2017 [Page 9]

Internet-Draft NETCONF Client and Server Models November 2016

 "The ’initiate’ feature indicates that the NETCONF client
 supports initiating NETCONF connections to NETCONF servers
 using at least one transport (e.g., SSH, TLS, etc.).";
 }

 feature ssh-initiate {
 description
 "The ’ssh-initiate’ feature indicates that the NETCONF client
 supports initiating SSH connections to NETCONF servers.";
 reference
 "RFC 6242: Using the NETCONF Protocol over Secure Shell (SSH)";
 }

 feature tls-initiate {
 description
 "The ’tls-initiate’ feature indicates that the NETCONF client
 supports initiating TLS connections to NETCONF servers.";
 reference
 "RFC 7589: Using the NETCONF Protocol over Transport
 Layer Security (TLS) with Mutual X.509
 Authentication";
 }

 feature listen {
 description
 "The ’listen’ feature indicates that the NETCONF client
 supports opening a port to accept NETCONF server call
 home connections using at least one transport (e.g.,
 SSH, TLS, etc.).";
 }

 feature ssh-listen {
 description
 "The ’ssh-listen’ feature indicates that the NETCONF client
 supports opening a port to listen for incoming NETCONF
 server call-home SSH connections.";
 reference
 "RFC AAAA: NETCONF Call Home and RESTCONF Call Home";
 }

 feature tls-listen {
 description
 "The ’tls-listen’ feature indicates that the NETCONF client
 supports opening a port to listen for incoming NETCONF
 server call-home TLS connections.";
 reference
 "RFC AAAA: NETCONF Call Home and RESTCONF Call Home";
 }

Watsen, et al. Expires May 7, 2017 [Page 10]

Internet-Draft NETCONF Client and Server Models November 2016

 container netconf-client {
 description
 "Top-level container for NETCONF client configuration.";

 container initiate {
 if-feature initiate;
 description
 "Configures client intiating underlying TCP connections.";
 list netconf-server {
 key name;
 description
 "List of NETCONF servers the NETCONF client is to initiate
 connections to.";
 leaf name {
 type string;
 description
 "An arbitrary name for the NETCONF server.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports.";
 case ssh {
 if-feature ssh-initiate;
 container ssh {
 description
 "Specifies SSH-specific transport configuration.";
 leaf address {
 type inet:host;
 mandatory true;
 description
 "The IP address or hostname of the endpoint. If
 a hostname is configured and the DNS resolution
 results in more than one IP address, the NETCONF
 client will process the IP addresses as if they
 had been explicitly configured in place of the
 hostname.";
 }
 leaf port {
 type inet:port-number;
 default 830;
 description
 "The IP port for this endpoint. The NETCONF client
 will use the IANA-assigned well-known port if no
 value is specified.";
 }
 uses ss:initiating-ssh-client-grouping;
 }

Watsen, et al. Expires May 7, 2017 [Page 11]

Internet-Draft NETCONF Client and Server Models November 2016

 }
 /*
 case tls {
 if-feature tls-initiate;
 container tls {
 description
 "Specifies TLS-specific transport configuration.";
 uses endpoints-container {
 refine endpoints/endpoint/port {
 default 6513;
 }
 }
 uses ts:listening-tls-client-grouping {
 augment "client-auth" {
 description
 "Augments in the cert-to-name structure.";
 uses cert-maps-grouping;
 }
 }
 }
 }
 */
 }
 }
 } // end initiate

 container listen {
 if-feature listen;
 description
 "Configures client accepting call-home TCP connections.";
 leaf max-sessions {
 type uint16;
 default 0;
 description
 "Specifies the maximum number of concurrent sessions
 that can be active at one time. The value 0 indicates
 that no artificial session limit should be used.";
 }
 leaf idle-timeout {
 type uint16;
 units "seconds";
 default 3600; // one hour
 description
 "Specifies the maximum number of seconds that a NETCONF
 session may remain idle. A NETCONF session will be dropped
 if it is idle for an interval longer than this number of
 seconds. If set to zero, then the server will never drop
 a session because it is idle. Sessions that have a

Watsen, et al. Expires May 7, 2017 [Page 12]

Internet-Draft NETCONF Client and Server Models November 2016

 notification subscription active are never dropped.";
 }
 list endpoint {
 key name;
 description
 "List of endpoints to listen for NETCONF connections on.";
 leaf name {
 type string;
 description
 "An arbitrary name for the NETCONF listen endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports.";
 case ssh {
 if-feature ssh-listen;
 container ssh {
 description
 "SSH-specific listening configuration for inbound
 connections.";
 uses ss:listening-ssh-client-grouping {
 refine port {
 default 4334;
 }
 }
 }
 }
 /*
 case tls {
 if-feature tls-listen;
 container tls {
 description
 "TLS-specific listening configuration for inbound
 connections.";
 uses ts:listening-tls-client-grouping {
 refine port {
 default 4335;
 }
 augment "client-auth" {
 description
 "Augments in the cert-to-name structure.";
 uses cert-maps-grouping;
 }
 }
 }
 }
 */

Watsen, et al. Expires May 7, 2017 [Page 13]

Internet-Draft NETCONF Client and Server Models November 2016

 }
 }
 } // end listen
 }

 grouping cert-maps-grouping {
 description
 "A grouping that defines a container around the
 cert-to-name structure defined in RFC 7407.";
 container cert-maps {
 uses x509c2n:cert-to-name;
 description
 "The cert-maps container is used by a TLS-based NETCONF
 server to map the NETCONF client’s presented X.509
 certificate to a NETCONF username. If no matching and
 valid cert-to-name list entry can be found, then the
 NETCONF server MUST close the connection, and MUST NOT
 accept NETCONF messages over it.";
 reference
 "RFC WWWW: NETCONF over TLS, Section 7";
 }
 }

 }

 <CODE ENDS>

3. The NETCONF Server Model

 The NETCONF server model presented in this section supports servers
 both listening for connections as well as initiating call-home
 connections.

 This model also supports both the SSH and TLS transport protocols,
 using the SSH server and TLS server groupings defined in
 [draft-ietf-netconf-ssh-client-server] and
 [draft-ietf-netconf-tls-client-server] respectively.

 All private keys and trusted certificates are held in the keystore
 model defined in [draft-ietf-netconf-keystore].

 YANG feature statements are used to enable implementations to
 advertise which parts of the model the NETCONF server supports.

Watsen, et al. Expires May 7, 2017 [Page 14]

Internet-Draft NETCONF Client and Server Models November 2016

3.1. Tree Diagram

 Note: all lines are folded at column 71 with no ’\’ character.

 module: ietf-netconf-server
 +--rw netconf-server
 +--rw session-options
 | +--rw hello-timeout? uint16
 +--rw listen {listen}?
 | +--rw max-sessions? uint16
 | +--rw idle-timeout? uint16
 | +--rw endpoint* [name]
 | +--rw name string
 | +--rw (transport)
 | +--:(ssh) {ssh-listen}?
 | | +--rw ssh
 | | +--rw address? inet:ip-address
 | | +--rw port? inet:port-number
 | | +--rw host-keys
 | | | +--rw host-key* [name]
 | | | +--rw name string
 | | | +--rw (host-key-type)
 | | | +--:(public-key)
 | | | | +--rw public-key? -> /ks:keystore/
 private-keys/private-key/name
 | | | +--:(certificate)
 | | | +--rw certificate? -> /ks:keystore/
 private-keys/private-key/certificate-chains/certificate-chain/name {ssh
 -x509-certs}?
 | | +--rw client-cert-auth {ssh-x509-certs}?
 | | +--rw trusted-ca-certs? -> /ks:keystore/
 trusted-certificates/name
 | | +--rw trusted-client-certs? -> /ks:keystore/
 trusted-certificates/name
 | +--:(tls) {tls-listen}?
 | +--rw tls
 | +--rw address? inet:ip-address
 | +--rw port? inet:port-number
 | +--rw certificates
 | | +--rw certificate* [name]
 | | +--rw name -> /ks:keystore/private-keys/
 private-key/certificate-chains/certificate-chain/name
 | +--rw client-auth
 | +--rw trusted-ca-certs? -> /ks:keystore/
 trusted-certificates/name
 | +--rw trusted-client-certs? -> /ks:keystore/
 trusted-certificates/name
 | +--rw cert-maps

Watsen, et al. Expires May 7, 2017 [Page 15]

Internet-Draft NETCONF Client and Server Models November 2016

 | +--rw cert-to-name* [id]
 | +--rw id uint32
 | +--rw fingerprint x509c2n:tls-fingerp
 rint
 | +--rw map-type identityref
 | +--rw name string
 +--rw call-home {call-home}?
 +--rw netconf-client* [name]
 +--rw name string
 +--rw (transport)
 | +--:(ssh) {ssh-call-home}?
 | | +--rw ssh
 | | +--rw endpoints
 | | | +--rw endpoint* [name]
 | | | +--rw name string
 | | | +--rw address inet:host
 | | | +--rw port? inet:port-number
 | | +--rw host-keys
 | | | +--rw host-key* [name]
 | | | +--rw name string
 | | | +--rw (host-key-type)
 | | | +--:(public-key)
 | | | | +--rw public-key? -> /ks:keystore/
 private-keys/private-key/name
 | | | +--:(certificate)
 | | | +--rw certificate? -> /ks:keystore/
 private-keys/private-key/certificate-chains/certificate-chain/name {ssh
 -x509-certs}?
 | | +--rw client-cert-auth {ssh-x509-certs}?
 | | +--rw trusted-ca-certs? -> /ks:keystore/
 trusted-certificates/name
 | | +--rw trusted-client-certs? -> /ks:keystore/
 trusted-certificates/name
 | +--:(tls) {tls-call-home}?
 | +--rw tls
 | +--rw endpoints
 | | +--rw endpoint* [name]
 | | +--rw name string
 | | +--rw address inet:host
 | | +--rw port? inet:port-number
 | +--rw certificates
 | | +--rw certificate* [name]
 | | +--rw name -> /ks:keystore/private-keys/
 private-key/certificate-chains/certificate-chain/name
 | +--rw client-auth
 | +--rw trusted-ca-certs? -> /ks:keystore/
 trusted-certificates/name
 | +--rw trusted-client-certs? -> /ks:keystore/

Watsen, et al. Expires May 7, 2017 [Page 16]

Internet-Draft NETCONF Client and Server Models November 2016

 trusted-certificates/name
 | +--rw cert-maps
 | +--rw cert-to-name* [id]
 | +--rw id uint32
 | +--rw fingerprint x509c2n:tls-fingerp
 rint
 | +--rw map-type identityref
 | +--rw name string
 +--rw connection-type
 | +--rw (connection-type)?
 | +--:(persistent-connection)
 | | +--rw persistent!
 | | +--rw idle-timeout? uint32
 | | +--rw keep-alives
 | | +--rw max-wait? uint16
 | | +--rw max-attempts? uint8
 | +--:(periodic-connection)
 | +--rw periodic!
 | +--rw idle-timeout? uint16
 | +--rw reconnect_timeout? uint16
 +--rw reconnect-strategy
 +--rw start-with? enumeration
 +--rw max-attempts? uint8

3.2. Example Usage

 The following example illustrates configuring a NETCONF server to
 listen for NETCONF client connections using both the SSH and TLS
 transport protocols, as well as configuring call-home to two NETCONF
 clients, one using SSH and the other using TLS.

 This example is consistent with the examples presented in Section 2.2
 of [draft-ietf-netconf-keystore].

 <netconf-server
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-server">
 <listen>

 <!-- listening for SSH connections -->
 <endpoint>
 <name>netconf/ssh</name>
 <ssh>
 <address>11.22.33.44</address>
 <host-keys>
 <host-key>
 <public-key>my-rsa-key</public-key>
 </host-key>
 <host-key>

Watsen, et al. Expires May 7, 2017 [Page 17]

Internet-Draft NETCONF Client and Server Models November 2016

 <certificate>TPM key</certificate>
 </host-key>
 </host-keys>
 <client-cert-auth>
 <trusted-ca-certs>
 deployment-specific-ca-certs
 </trusted-ca-certs>
 <trusted-client-certs>
 explicitly-trusted-client-certs
 </trusted-client-certs>
 </client-cert-auth>
 </ssh>
 </endpoint>

 <!-- listening for TLS connections -->
 <endpoint>
 <name>netconf/tls</name>
 <tls>
 <address>11.22.33.44</address>
 <certificates>
 <certificate>ex-key-sect571r1-cert</certificate>
 </certificates>
 <client-auth>
 <trusted-ca-certs>
 deployment-specific-ca-certs
 </trusted-ca-certs>
 <trusted-client-certs>
 explicitly-trusted-client-certs
 </trusted-client-certs>
 <cert-maps>
 <cert-to-name>
 <id>1</id>
 <fingerprint>11:0A:05:11:00</fingerprint>
 <map-type>x509c2n:san-any</map-type>
 </cert-to-name>
 <cert-to-name>
 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map-type>x509c2n:specified</map-type>
 <name>scooby-doo</name>
 </cert-to-name>
 </cert-maps>
 </client-auth>
 </tls>
 </endpoint>

 </listen>
 <call-home>

Watsen, et al. Expires May 7, 2017 [Page 18]

Internet-Draft NETCONF Client and Server Models November 2016

 <!-- calling home to an SSH-based NETCONF client -->
 <netconf-client>
 <name>config-mgr</name>
 <ssh>
 <endpoints>
 <endpoint>
 <name>east-data-center</name>
 <address>11.22.33.44</address>
 </endpoint>
 <endpoint>
 <name>west-data-center</name>
 <address>55.66.77.88</address>
 </endpoint>
 </endpoints>
 <host-keys>
 <host-key>
 <certificate>TPM key</certificate>
 </host-key>
 </host-keys>
 <client-cert-auth>
 <trusted-ca-certs>
 deployment-specific-ca-certs
 </trusted-ca-certs>
 <trusted-client-certs>
 explicitly-trusted-client-certs
 </trusted-client-certs>
 </client-cert-auth>
 </ssh>
 <connection-type>
 <periodic>
 <idle-timeout>300</idle-timeout>
 <reconnect-timeout>60</reconnect-timeout>
 </periodic>
 </connection-type>
 <reconnect-strategy>
 <start-with>last-connected</start-with>
 <max-attempts>3</max-attempts>
 </reconnect-strategy>
 </netconf-client>

 <!-- calling home to a TLS-based NETCONF client -->
 <netconf-client>
 <name>event-correlator</name>
 <tls>
 <endpoints>
 <endpoint>
 <name>east-data-center</name>
 <address>22.33.44.55</address>

Watsen, et al. Expires May 7, 2017 [Page 19]

Internet-Draft NETCONF Client and Server Models November 2016

 </endpoint>
 <endpoint>
 <name>west-data-center</name>
 <address>33.44.55.66</address>
 </endpoint>
 </endpoints>
 <certificates>
 <certificate>ex-key-sect571r1-cert</certificate>
 </certificates>
 <client-auth>
 <trusted-ca-certs>
 deployment-specific-ca-certs
 </trusted-ca-certs>
 <trusted-client-certs>
 explicitly-trusted-client-certs
 </trusted-client-certs>
 <cert-maps>
 <cert-to-name>
 <id>1</id>
 <fingerprint>11:0A:05:11:00</fingerprint>
 <map-type>x509c2n:san-any</map-type>
 </cert-to-name>
 <cert-to-name>
 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map-type>x509c2n:specified</map-type>
 <name>scooby-doo</name>
 </cert-to-name>
 </cert-maps>
 </client-auth>
 </tls>
 <connection-type>
 <persistent>
 <idle-timeout>300</idle-timeout>
 <keep-alives>
 <max-wait>30</max-wait>
 <max-attempts>3</max-attempts>
 </keep-alives>
 </persistent>
 </connection-type>
 <reconnect-strategy>
 <start-with>first-listed</start-with>
 <max-attempts>3</max-attempts>
 </reconnect-strategy>
 </netconf-client>

 </call-home>
 </netconf-server>

Watsen, et al. Expires May 7, 2017 [Page 20]

Internet-Draft NETCONF Client and Server Models November 2016

3.3. YANG Model

 This YANG module imports YANG types from [RFC6991] and [RFC7407].

 <CODE BEGINS> file "ietf-netconf-server@2016-11-02.yang"

 module ietf-netconf-server {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-server";
 prefix "ncs";

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-x509-cert-to-name {
 prefix x509c2n;
 reference
 "RFC 7407: A YANG Data Model for SNMP Configuration";
 }

 import ietf-ssh-server {
 prefix ss;
 revision-date 2016-11-02; // stable grouping definitions
 reference
 "RFC YYYY: SSH Client and Server Models";
 }

 import ietf-tls-server {
 prefix ts;
 revision-date 2016-11-02; // stable grouping definitions
 reference
 "RFC ZZZZ: TLS Client and Server Models";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nsn.com>

Watsen, et al. Expires May 7, 2017 [Page 21]

Internet-Draft NETCONF Client and Server Models November 2016

 WG Chair: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 Editor: Kent Watsen
 <mailto:kwatsen@juniper.net>";

 description
 "This module contains a collection of YANG definitions for
 configuring NETCONF servers.

 Copyright (c) 2014 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2016-11-02" {
 description
 "Initial version";
 reference
 "RFC XXXX: NETCONF Client and Server Models";
 }

 // Features

 feature listen {
 description
 "The ’listen’ feature indicates that the NETCONF server
 supports opening a port to accept NETCONF client connections
 using at least one transport (e.g., SSH, TLS, etc.).";
 }

 feature ssh-listen {
 description
 "The ’ssh-listen’ feature indicates that the NETCONF server
 supports opening a port to accept NETCONF over SSH
 client connections.";
 reference
 "RFC 6242: Using the NETCONF Protocol over Secure Shell (SSH)";

Watsen, et al. Expires May 7, 2017 [Page 22]

Internet-Draft NETCONF Client and Server Models November 2016

 }

 feature tls-listen {
 description
 "The ’tls-listen’ feature indicates that the NETCONF server
 supports opening a port to accept NETCONF over TLS
 client connections.";
 reference
 "RFC 7589: Using the NETCONF Protocol over Transport
 Layer Security (TLS) with Mutual X.509
 Authentication";
 }

 feature call-home {
 description
 "The ’call-home’ feature indicates that the NETCONF server
 supports initiating NETCONF call home connections to NETCONF
 clients using at least one transport (e.g., SSH, TLS, etc.).";
 reference
 "RFC YYYY: NETCONF Call Home and RESTCONF Call Home";
 }

 feature ssh-call-home {
 description
 "The ’ssh-call-home’ feature indicates that the NETCONF
 server supports initiating a NETCONF over SSH call
 home connection to NETCONF clients.";
 reference
 "RFC YYYY: NETCONF Call Home and RESTCONF Call Home";
 }

 feature tls-call-home {
 description
 "The ’tls-call-home’ feature indicates that the NETCONF
 server supports initiating a NETCONF over TLS call
 home connection to NETCONF clients.";
 reference
 "RFC YYYY: NETCONF Call Home and RESTCONF Call Home";
 }

 // top-level container (groupings below)
 container netconf-server {
 description
 "Top-level container for NETCONF server configuration.";

 container session-options { // SHOULD WE REMOVE THIS ALTOGETHER?
 description

Watsen, et al. Expires May 7, 2017 [Page 23]

Internet-Draft NETCONF Client and Server Models November 2016

 "NETCONF session options, independent of transport
 or connection strategy.";
 leaf hello-timeout {
 type uint16;
 units "seconds";
 default 600;
 description
 "Specifies the maximum number of seconds that a SSH/TLS
 connection may wait for a hello message to be received.
 A connection will be dropped if no hello message is
 received before this number of seconds elapses. If set
 to zero, then the server will wait forever for a hello
 message.";
 }
 }

 container listen {
 if-feature listen;
 description
 "Configures listen behavior";
 leaf max-sessions {
 type uint16;
 default 0;
 description
 "Specifies the maximum number of concurrent sessions
 that can be active at one time. The value 0 indicates
 that no artificial session limit should be used.";
 }
 leaf idle-timeout {
 type uint16;
 units "seconds";
 default 3600; // one hour
 description
 "Specifies the maximum number of seconds that a NETCONF
 session may remain idle. A NETCONF session will be dropped
 if it is idle for an interval longer than this number of
 seconds. If set to zero, then the server will never drop
 a session because it is idle. Sessions that have a
 notification subscription active are never dropped.";
 }
 list endpoint {
 key name;
 description
 "List of endpoints to listen for NETCONF connections on.";
 leaf name {
 type string;
 description
 "An arbitrary name for the NETCONF listen endpoint.";

Watsen, et al. Expires May 7, 2017 [Page 24]

Internet-Draft NETCONF Client and Server Models November 2016

 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports.";
 case ssh {
 if-feature ssh-listen;
 container ssh {
 description
 "SSH-specific listening configuration for inbound
 connections.";
 uses ss:listening-ssh-server-grouping {
 refine port {
 default 830;
 }
 }
 }
 }
 case tls {
 if-feature tls-listen;
 container tls {
 description
 "TLS-specific listening configuration for inbound
 connections.";
 uses ts:listening-tls-server-grouping {
 refine port {
 default 6513;
 }
 augment "client-auth" {
 description
 "Augments in the cert-to-name structure.";
 uses cert-maps-grouping;
 }
 }
 }
 }
 }
 }
 }

 container call-home {
 if-feature call-home;
 description
 "Configures call-home behavior";
 list netconf-client {
 key name;
 description
 "List of NETCONF clients the NETCONF server is to initiate

Watsen, et al. Expires May 7, 2017 [Page 25]

Internet-Draft NETCONF Client and Server Models November 2016

 call-home connections to.";
 leaf name {
 type string;
 description
 "An arbitrary name for the remote NETCONF client.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports.";
 case ssh {
 if-feature ssh-call-home;
 container ssh {
 description
 "Specifies SSH-specific call-home transport
 configuration.";
 uses endpoints-container {
 refine endpoints/endpoint/port {
 default 4334;
 }
 }
 uses ss:non-listening-ssh-server-grouping;
 }
 }
 case tls {
 if-feature tls-call-home;
 container tls {
 description
 "Specifies TLS-specific call-home transport
 configuration.";
 uses endpoints-container {
 refine endpoints/endpoint/port {
 default 4335;
 }
 }
 uses ts:non-listening-tls-server-grouping {
 augment "client-auth" {
 description
 "Augments in the cert-to-name structure.";
 uses cert-maps-grouping;
 }
 }
 }
 }
 }
 container connection-type {
 description
 "Indicates the kind of connection to use.";

Watsen, et al. Expires May 7, 2017 [Page 26]

Internet-Draft NETCONF Client and Server Models November 2016

 choice connection-type {
 description
 "Selects between available connection types.";
 case persistent-connection {
 container persistent {
 presence true;
 description
 "Maintain a persistent connection to the NETCONF
 client. If the connection goes down, immediately
 start trying to reconnect to it, using the
 reconnection strategy.

 This connection type minimizes any NETCONF client
 to NETCONF server data-transfer delay, albeit at
 the expense of holding resources longer.";
 leaf idle-timeout {
 type uint32;
 units "seconds";
 default 86400; // one day;
 description
 "Specifies the maximum number of seconds that a
 a NETCONF session may remain idle. A NETCONF
 session will be dropped if it is idle for an
 interval longer than this number of seconds.
 If set to zero, then the server will never drop
 a session because it is idle. Sessions that
 have a notification subscription active are
 never dropped.";
 }
 container keep-alives {
 description
 "Configures the keep-alive policy, to proactively
 test the aliveness of the SSH/TLS client. An
 unresponsive SSH/TLS client will be dropped after
 approximately max-attempts * max-wait seconds.";
 reference
 "RFC YYYY: NETCONF Call Home and RESTCONF Call
 Home, Section 3.1, item S6";
 leaf max-wait {
 type uint16 {
 range "1..max";
 }
 units seconds;
 default 30;
 description
 "Sets the amount of time in seconds after which
 if no data has been received from the SSH/TLS
 client, a SSH/TLS-level message will be sent

Watsen, et al. Expires May 7, 2017 [Page 27]

Internet-Draft NETCONF Client and Server Models November 2016

 to test the aliveness of the SSH/TLS client.";
 }
 leaf max-attempts {
 type uint8;
 default 3;
 description
 "Sets the maximum number of sequential keep-alive
 messages that can fail to obtain a response from
 the SSH/TLS client before assuming the SSH/TLS
 client is no longer alive.";
 }
 }
 }
 }
 case periodic-connection {
 container periodic {
 presence true;
 description
 "Periodically connect to the NETCONF client, so that
 the NETCONF client may deliver messages pending for
 the NETCONF server. The NETCONF client must close
 the connection when it is ready to release it. Once
 the connection has been closed, the NETCONF server
 will restart its timer until the next connection.";
 leaf idle-timeout {
 type uint16;
 units "seconds";
 default 300; // five minutes
 description
 "Specifies the maximum number of seconds that a
 a NETCONF session may remain idle. A NETCONF
 session will be dropped if it is idle for an
 interval longer than this number of seconds.
 If set to zero, then the server will never drop
 a session because it is idle. Sessions that
 have a notification subscription active are
 never dropped.";
 }
 leaf reconnect_timeout {
 type uint16 {
 range "1..max";
 }
 units minutes;
 default 60;
 description
 "Sets the maximum amount of unconnected time the
 NETCONF server will wait before re-establishing
 a connection to the NETCONF client. The NETCONF

Watsen, et al. Expires May 7, 2017 [Page 28]

Internet-Draft NETCONF Client and Server Models November 2016

 server may initiate a connection before this
 time if desired (e.g., to deliver an event
 notification message).";
 }
 }
 }
 }
 }
 container reconnect-strategy {
 description
 "The reconnection strategy directs how a NETCONF server
 reconnects to a NETCONF client, after discovering its
 connection to the client has dropped, even if due to a
 reboot. The NETCONF server starts with the specified
 endpoint and tries to connect to it max-attempts times
 before trying the next endpoint in the list (round
 robin).";
 leaf start-with {
 type enumeration {
 enum first-listed {
 description
 "Indicates that reconnections should start with
 the first endpoint listed.";
 }
 enum last-connected {
 description
 "Indicates that reconnections should start with
 the endpoint last connected to. If no previous
 connection has ever been established, then the
 first endpoint configured is used. NETCONF
 servers SHOULD be able to remember the last
 endpoint connected to across reboots.";
 }
 }
 default first-listed;
 description
 "Specifies which of the NETCONF client’s endpoints the
 NETCONF server should start with when trying to connect
 to the NETCONF client.";
 }
 leaf max-attempts {
 type uint8 {
 range "1..max";
 }
 default 3;
 description
 "Specifies the number times the NETCONF server tries to
 connect to a specific endpoint before moving on to the

Watsen, et al. Expires May 7, 2017 [Page 29]

Internet-Draft NETCONF Client and Server Models November 2016

 next endpoint in the list (round robin).";
 }
 }
 }
 }
 }

 grouping cert-maps-grouping {
 description
 "A grouping that defines a container around the
 cert-to-name structure defined in RFC 7407.";
 container cert-maps {
 uses x509c2n:cert-to-name;
 description
 "The cert-maps container is used by a TLS-based NETCONF
 server to map the NETCONF client’s presented X.509
 certificate to a NETCONF username. If no matching and
 valid cert-to-name list entry can be found, then the
 NETCONF server MUST close the connection, and MUST NOT
 accept NETCONF messages over it.";
 reference
 "RFC WWWW: NETCONF over TLS, Section 7";
 }
 }

 grouping endpoints-container {
 description
 "This grouping is used by both the ssh and tls containers
 for call-home configurations.";
 container endpoints {
 description
 "Container for the list of endpoints.";
 list endpoint {
 key name;
 min-elements 1;
 ordered-by user;
 description
 "User-ordered list of endpoints for this NETCONF client.
 Defining more than one enables high-availability.";
 leaf name {
 type string;
 description
 "An arbitrary name for this endpoint.";
 }
 leaf address {
 type inet:host;

Watsen, et al. Expires May 7, 2017 [Page 30]

Internet-Draft NETCONF Client and Server Models November 2016

 mandatory true;
 description
 "The IP address or hostname of the endpoint. If a
 hostname is configured and the DNS resolution results
 in more than one IP address, the NETCONF server
 will process the IP addresses as if they had been
 explicitly configured in place of the hostname.";
 }
 leaf port {
 type inet:port-number;
 description
 "The IP port for this endpoint. The NETCONF server will
 use the IANA-assigned well-known port if no value is
 specified.";
 }
 }
 }
 }

 }

 <CODE ENDS>

4. Design Considerations

 Editorial: this section is a hold over from before, previously called
 "Objectives". It was only written two support the "server" (not the
 "client"). The question is if it’s better to add the missing
 "client" parts, or remove this section altogether.

 The primary purpose of the YANG modules defined herein is to enable
 the configuration of the NETCONF client and servers. This scope
 includes the following objectives:

4.1. Support all NETCONF transports

 The YANG module should support all current NETCONF transports, namely
 NETCONF over SSH [RFC6242], NETCONF over TLS [RFC7589], and to be
 extensible to support future transports as necessary.

 Because implementations may not support all transports, the modules
 should use YANG "feature" statements so that implementations can
 accurately advertise which transports are supported.

Watsen, et al. Expires May 7, 2017 [Page 31]

Internet-Draft NETCONF Client and Server Models November 2016

4.2. Enable each transport to select which keys to use

 Servers may have a multiplicity of host-keys or server-certificates
 from which subsets may be selected for specific uses. For instance,
 a NETCONF server may want to use one set of SSH host-keys when
 listening on port 830, and a different set of SSH host-keys when
 calling home. The data models provided herein should enable
 configuration of which keys to use on a per-use basis.

4.3. Support authenticating NETCONF clients certificates

 When a certificate is used to authenticate a NETCONF client, there is
 a need to configure the server to know how to authenticate the
 certificates. The server should be able to authenticate the client’s
 certificate either by using path-validation to a configured trust
 anchor or by matching the client-certificate to one previously
 configured.

4.4. Support mapping authenticated NETCONF client certificates to
 usernames

 When a client certificate is used for TLS client authentication, the
 NETCONF server must be able to derive a username from the
 authenticated certificate. Thus the modules defined herein should
 enable this mapping to be configured.

4.5. Support both listening for connections and call home

 The NETCONF protocols were originally defined as having the server
 opening a port to listen for client connections. More recently the
 NETCONF working group defined support for call-home
 ([draft-ietf-netconf-call-home]), enabling the server to initiate the
 connection to the client. Thus the modules defined herein should
 enable configuration for both listening for connections and calling
 home. Because implementations may not support both listening for
 connections and calling home, YANG "feature" statements should be
 used so that implementation can accurately advertise the connection
 types it supports.

4.6. For Call Home connections

 The following objectives only pertain to call home connections.

4.6.1. Support more than one NETCONF client

 A NETCONF server may be managed by more than one NETCONF client. For
 instance, a deployment may have one client for provisioning and
 another for fault monitoring. Therefore, when it is desired for a

Watsen, et al. Expires May 7, 2017 [Page 32]

Internet-Draft NETCONF Client and Server Models November 2016

 server to initiate call home connections, it should be able to do so
 to more than one client.

4.6.2. Support NETCONF clients having more than one endpoint

 A NETCONF client managing a NETCONF server may implement a high-
 availability strategy employing a multiplicity of active and/or
 passive endpoint. Therefore, when it is desired for a server to
 initiate call home connections, it should be able to connect to any
 of the client’s endpoints.

4.6.3. Support a reconnection strategy

 Assuming a NETCONF client has more than one endpoint, then it becomes
 necessary to configure how a NETCONF server should reconnect to the
 client should it lose its connection to one the client’s endpoints.
 For instance, the NETCONF server may start with first endpoint
 defined in a user-ordered list of endpoints or with the last
 endpoints it was connected to.

4.6.4. Support both persistent and periodic connections

 NETCONF clients may vary greatly on how frequently they need to
 interact with a NETCONF server, how responsive interactions need to
 be, and how many simultaneous connections they can support. Some
 clients may need a persistent connection to servers to optimize real-
 time interactions, while others prefer periodic interactions in order
 to minimize resource requirements. Therefore, when it is necessary
 for server to initiate connections, it should be configurable if the
 connection is persistent or periodic.

4.6.5. Reconnection strategy for periodic connections

 The reconnection strategy should apply to both persistent and
 periodic connections. How it applies to periodic connections becomes
 clear when considering that a periodic "connection" is a logical
 connection to a single server. That is, the periods of
 unconnectedness are intentional as opposed to due to external
 reasons. A periodic "connection" should always reconnect to the same
 server until it is no longer able to, at which time the reconnection
 strategy guides how to connect to another server.

4.6.6. Keep-alives for persistent connections

 If a persistent connection is desired, it is the responsibility of
 the connection initiator to actively test the "aliveness" of the
 connection. The connection initiator must immediately work to
 reestablish a persistent connection as soon as the connection is

Watsen, et al. Expires May 7, 2017 [Page 33]

Internet-Draft NETCONF Client and Server Models November 2016

 lost. How often the connection should be tested is driven by NETCONF
 client requirements, and therefore keep-alive settings should be
 configurable on a per-client basis.

4.6.7. Customizations for periodic connections

 If a periodic connection is desired, it is necessary for the NETCONF
 server to know how often it should connect. This frequency
 determines the maximum amount of time a NETCONF client may have to
 wait to send data to a server. A server may connect to a client
 before this interval expires if desired (e.g., to send data to a
 client).

5. Security Considerations

 A denial of service (DoS) attack MAY occur if the NETCONF server
 limits the maximum number of NETCONF sessions it will accept (i.e.
 the ’max-sessions’ field in the ietf-netconf-server module is not
 zero) and either the "hello-timeout" or "idle-timeout" fields in
 ietf-netconf-server module have been set to indicate the NETCONF
 server should wait forever (i.e. set to zero).

6. IANA Considerations

6.1. The IETF XML Registry

 This document registers two URIs in the IETF XML registry [RFC2119].
 Following the format in [RFC3688], the following registrations are
 requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-client
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-server
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

6.2. The YANG Module Names Registry

 This document registers two YANG modules in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registrations are requested:

Watsen, et al. Expires May 7, 2017 [Page 34]

Internet-Draft NETCONF Client and Server Models November 2016

 name: ietf-netconf-client
 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-client
 prefix: ncc
 reference: RFC XXXX

 name: ietf-netconf-server
 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-server
 prefix: ncs
 reference: RFC XXXX

7. Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Benoit Claise, Mehmet Ersue, David Lamparter, Alan Luchuk,
 Ladislav Lhotka, Radek Krejci, Tom Petch, Phil Shafer, Sean Turner,
 and Bert Wijnen.

 Juergen Schoenwaelder and was partly funded by Flamingo, a Network of
 Excellence project (ICT-318488) supported by the European Commission
 under its Seventh Framework Programme.

8. References

8.1. Normative References

 [draft-ietf-netconf-keystore]
 Watsen, K., "Keystore Model", draft-ieft-netconf-
 keystore-00 (work in progress), 2016,
 <https://datatracker.ietf.org/html/draft-ieft-netconf-
 keystore>.

 [draft-ietf-netconf-ssh-client-server]
 Watsen, K., "SSH Client and Server Models", draft-ieft-
 netconf-ssh-client-server-00 (work in progress), 2016,
 <https://datatracker.ietf.org/html/draft-ieft-netconf-ssh-
 client-server>.

 [draft-ietf-netconf-tls-client-server]
 Watsen, K., "TLS Client and Server Models", draft-ieft-
 netconf-tls-client-server-00 (work in progress), 2016,
 <https://datatracker.ietf.org/html/draft-ieft-netconf-tls-
 client-server>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

Watsen, et al. Expires May 7, 2017 [Page 35]

Internet-Draft NETCONF Client and Server Models November 2016

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <http://www.rfc-editor.org/info/rfc6242>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <http://www.rfc-editor.org/info/rfc6991>.

 [RFC7407] Bjorklund, M. and J. Schoenwaelder, "A YANG Data Model for
 SNMP Configuration", RFC 7407, DOI 10.17487/RFC7407,
 December 2014, <http://www.rfc-editor.org/info/rfc7407>.

 [RFC7589] Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
 NETCONF Protocol over Transport Layer Security (TLS) with
 Mutual X.509 Authentication", RFC 7589,
 DOI 10.17487/RFC7589, June 2015,
 <http://www.rfc-editor.org/info/rfc7589>.

8.2. Informative References

 [draft-ietf-netconf-call-home]
 Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 draft-ieft-netconf-call-home-17 (work in progress), 2015,
 <https://datatracker.ietf.org/html/draft-ieft-netconf-
 call-home-17>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC4252] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252,
 January 2006, <http://www.rfc-editor.org/info/rfc4252>.

 [RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <http://www.rfc-editor.org/info/rfc4253>.

Watsen, et al. Expires May 7, 2017 [Page 36]

Internet-Draft NETCONF Client and Server Models November 2016

 [RFC4254] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Connection Protocol", RFC 4254, DOI 10.17487/RFC4254,
 January 2006, <http://www.rfc-editor.org/info/rfc4254>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

Watsen, et al. Expires May 7, 2017 [Page 37]

Internet-Draft NETCONF Client and Server Models November 2016

Appendix A. Change Log

A.1. server-model-09 to 00

 o This draft was split out from draft-ietf-netconf-server-model-09.

 o Added in previously missing ietf-netconf-client module.

 o Added in new features ’listen’ and ’call-home’ so future
 transports can be augmented in.

Appendix B. Open Issues

 Please see: https://github.com/netconf-wg/netconf-client-server/
 issues.

Authors’ Addresses

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

 Gary Wu
 Cisco Networks

 EMail: garywu@cisco.com

 Juergen Schoenwaelder
 Jacobs University Bremen

 EMail: j.schoenwaelder@jacobs-university.de

Watsen, et al. Expires May 7, 2017 [Page 38]

NETCONF A. Gonzalez Prieto
Internet-Draft Cisco Systems
Intended status: Standards Track A. Clemm
Expires: May 4, 2017 Sympotech
 E. Voit
 E. Nilsen-Nygaard
 A. Tripathy
 Cisco Systems
 S. Chisholm
 Ciena
 H. Trevino
 Cisco Systems
 October 31, 2016

 NETCONF Support for Event Notifications
 draft-ietf-netconf-netconf-event-notifications-01

Abstract

 This document defines the support of [event-notifications] by the
 Network Configuration protocol (NETCONF). [event-notifications]
 describes capabilities and operations for providing asynchronous
 message notification delivery. This document discusses how to
 provide them on top of NETCONF. The capabilities and operations
 defined between this document and [event-notifications] are intended
 to obsolete RFC 5277.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2017.

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 1]

Internet-Draft NETCONF-notifications October 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 1.2. Solution Overview . 5
 2. Solution . 5
 2.1. Event Streams . 6
 2.2. Event Stream Discovery 6
 2.3. Default Event Stream 9
 2.4. Creating a Subscription 9
 2.5. Establishing a Subscription 11
 2.6. Modifying a Subscription 16
 2.7. Deleting a Subscription 21
 2.8. Configured Subscriptions 24
 2.9. Event (Data Plane) Notifications 33
 2.10. Control Plane Notifications 35
 3. Backwards Compatibility 44
 3.1. Capabilities . 44
 3.2. Stream Discovery . 45
 4. Security Considerations 45
 5. Acknowledgments . 46
 6. References . 46
 6.1. Normative References 46
 6.2. Informative References 47
 Appendix A. Issues that are currently being worked 47
 Appendix B. Changes between revisions 47
 B.1. v00 to v01 . 47
 Authors’ Addresses . 47

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 2]

Internet-Draft NETCONF-notifications October 2016

1. Introduction

 [RFC6241] can be conceptually partitioned into four layers:

 Layer Example
 +-------------+ +---+
 | Content | | Configuration data |
 +-------------+ +---+
 | |
 +-------------+ +---+
 | Operations | |<get-config>, <edit-config>, <notification>|
 +-------------+ +---+
 | | |
 +-------------+ +-----------------------------+ |
 | RPC | | <rpc>, <rpc-reply> | |
 +-------------+ +-----------------------------+ |
 | | |
 +-------------+ +---+
 | Transport | | BEEP, SSH, SSL, console |
 | Protocol | | |
 +-------------+ +---+

 Figure 1: NETCONF layer architecture

 This document defines mechanisms that provide an asynchronous message
 notification delivery service for the NETCONF protocol [RFC6241]
 based on [event-notifications]. This is an optional capability built
 on top of the base NETCONF definition.

 [event-notifications] and this document enhance the capabilities of
 RFC 5277 while maintaining backwards capability with existing
 implementations. It is intended that a final version of this
 document might obsolete [RFC5277]. The enhancements include the
 ability to terminate subscriptions without terminating the client
 session, to modify existing subscriptions, and to have multiple
 subscriptions on a NETCONF session. [RFC5277] clients that do not
 require these enhancements are not affected by them.

 [event-notifications] covers the following functionality:

 o Ability to subscribe to event notifications using two mechanisms:
 dynamic and configuration subscriptions.

 o Ability to subscribe to event notifications using two mechanisms:
 dynamic and configuration subscriptions.

 o Ability to negotiate acceptable subscription parameters.

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 3]

Internet-Draft NETCONF-notifications October 2016

 o Ability to filter the subset of notifications to be pushed with
 stream-specific semantics.

 o Ability to support multiple encodings for the notification.

 o Mechanism to communicate the notifications.

 o Ability to replay locally logged notifications.

 To support this functionality, NETCONF agents must implement the
 operations, configuration and operational state defined in
 [event-notifications]. In addition, they need to:

 o support multiple subscriptions over a single NETCONF session.

 o support a revised definition of the default NETCONF stream

 o be backwards compatible with RFC 5277 implementations.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.1.1. NETCONF

 The following terms are defined in [RFC6241] :

 o Client

 o Server

 o Operation

 o RPC: remote procedure call

1.1.2. Event Notifications

 The following terms are defined in [event-notifications]:

 o Event

 o Event notification

 o Stream (also referred to as "event stream")

 o Subscriber

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 4]

Internet-Draft NETCONF-notifications October 2016

 o Publisher

 o Receiver

 o Subscription

 o Filter

 o Dynamic subscription

 o Configured subscription

 Note that a publisher in [event-notifications] corresponds to a
 server in [RFC6241]. Similarly, a subscribers corresponds to a
 client. A receiver is also a client. In the remainder of this
 document, we will use the terminology in [RFC6241].

1.1.3. NETCONF Access Control

 The following terms are defined in [RFC6536] :

 o NACM: NETCONF Access Control Model

1.2. Solution Overview

 [event-notifications] defines mechanisms that provide an asynchronous
 message notification delivery service. This document discusses its
 realization on top of the NETCONF protocol [RFC6241].

 The functionality to support is defined in [event-notifications]. It
 is formalized in a set of yang models. The mapping of yang
 constructs into NETCONF is described in [RFC6020].

 Supporting [event-notifications] requires enhancements and
 modifications in NETCONF. The key enhacement is suporting multiple
 subscriptions on a NETCONF session. A key modification is the
 definition of the NETCONF stream.

 These enhancements do not affect [RFC5277] clients that do not
 support [event-notifications].

2. Solution

 In this section, we describe and exemplify how [event-notifications]
 must be supported over NETCONF.

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 5]

Internet-Draft NETCONF-notifications October 2016

2.1. Event Streams

 In the context of NETCONF, an event stream is a set of events
 available for subscription from a NETCONF server. It is out of the
 scope of this document to identify a) how streams are defined, b) how
 events are defined/generated, and c) how events are assigned to
 streams.

 The following is a high-level description of the flow of a
 notification. Note that it does not mandate and/or preclude an
 implementation. As events are raised, they are assigned to streams.
 An event may be assigned to multiple streams. The event is
 distributed to subscribers and receivers based on the current
 subscriptions and access control. Access control is needed because
 if any receiver of that subscription does not have permission to
 receive an event, then it never makes it into a notification, and
 processing of the event is completed for that subscription.

2.2. Event Stream Discovery

 A NETCONF client can retrieve the list of available event streams
 from a NETCONF server using the <get> operation. The reply contains
 the elements defined in the YANG model under the container
 "/streams", which includes the stream identifier.

 The following example ilustrates the retrieval of the list of
 available event streams using the <get> operation.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <streams
 xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"/>
 </filter>
 </get>
 </rpc>

 Figure 2: Get streams

 The NETCONF server returns a list of event streams available for
 subscription. In this example, the list contains the NETCONF, SNMP,
 and syslog-critical streams.

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 6]

Internet-Draft NETCONF-notifications October 2016

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <streams
 xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications">
 <stream>NETCONF</stream>
 <stream>SNMP</stream>
 <stream>syslog-critical</stream>
 <stream>NETCONF</stream>
 </streams>
 </data>
 </rpc-reply>

 Figure 3: Get streams response

2.2.1. Backwards Compatibility

 In order to maintain backwards compatibility, clients that only
 support [RFC5277] can retrieve the list of available event streams
 executing a <get> operation against the container "/netconf/streams".

 The following example ilustrates this mechanism.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <netconf
 xmlns="urn:ietf:params:xml:ns:netmod:notification">
 <streams/>
 </netconf>
 </filter>
 </get>
 </rpc>

 Figure 4: Get streams (backwards compatibility)

 The NETCONF server returns a list of event streams available for
 subscription. In this example, the list contains the NETCONF, SNMP,
 and syslog-critical streams.

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <netconf
 xmlns="urn:ietf:params:xml:ns:netmod:notification">
 <streams>
 <stream>

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 7]

Internet-Draft NETCONF-notifications October 2016

 <name>
 NETCONF
 </name>
 <description>
 default NETCONF event stream
 </description>
 <replaySupport>
 true
 </replaySupport>
 <replayLogCreationTime>
 2016-02-05T00:00:00Z
 </replayLogCreationTime>
 </stream>
 <stream>
 <name>
 SNMP
 </name>
 <description>
 SNMP notifications
 </description>
 <replaySupport>
 false
 </replaySupport>
 </stream>
 <stream>
 <name>
 syslog-critical
 </name>
 <description>
 Critical and higher severity
 </description>
 <replaySupport>
 true
 </replaySupport>
 <replayLogCreationTime>
 2007-07-01T00:00:00Z
 </replayLogCreationTime>
 </stream>
 </streams>
 </netconf>
 </data>
 </rpc-reply>

 Figure 5: Get streams response (backwards compatibility)

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 8]

Internet-Draft NETCONF-notifications October 2016

2.3. Default Event Stream

 A NETCONF server implementation supporting the notification
 capability MUST support the "NETCONF" notification event stream.
 This stream contains all NETCONF XML event notifications supported by
 the NETCONF server, except for those belonging only to streams that
 explicitly indicate that they must be excluded from the NETCONF
 stream. The exact string "NETCONF" is used during the advertisement
 of stream support during the <get> operation on <streams> and during
 the <create-subscription> and <establish-subscription> operations.

2.4. Creating a Subscription

 This operation was fully defined in [RFC5277].

2.4.1. Usage Example

 The following demonstrates dynamically creating a subscription.

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <create-subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 </create-subscription>
 </netconf:rpc>

 Figure 6: Create subscription

2.4.2. Positive Response

 If the NETCONF server can satisfy the request, the server sends an
 <ok> element.

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 9]

Internet-Draft NETCONF-notifications October 2016

 <netconf:rpc netconf:message-id="102"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <create-subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/event/1.0"
 select="/ex:event[ex:eventClass=’fault’ and
 (ex:severity=’minor’ or ex:severity=’major’
 or ex:severity=’critical’)]"/>
 </create-subscription>
 </netconf:rpc>

 <rpc-reply message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

 Figure 7: Successful create subscription

2.4.3. Negative Response

 If the request cannot be completed for any reason, an <rpc-error>
 element is included within the <rpc-reply>. Subscription requests
 can fail for several reasons including if a filter with invalid
 syntax is provided or if the name of a non-existent stream is
 provided.

 If a stopTime is specified in a request without having specified a
 startTime, the following error is returned:

 Tag: missing-element
 Error-type: protocol
 Severity: error
 Error-info: <bad-element>: startTime
 Description: An expected element is missing.

 Figure 8: Create subscription missing an element

 If the optional replay feature is requested but the NETCONF server
 does not support it, the following error is returned:

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 10]

Internet-Draft NETCONF-notifications October 2016

 Tag: operation-failed
 Error-type: protocol
 Severity: error
 Error-info: none
 Description: Request could not be completed because the
 requested operation failed for some reason
 not covered by any other error condition.

 Figure 9: Create subscription operation failed

 If a stopTime is requested that is earlier than the specified
 startTime, the following error is returned:

 Tag: bad-element
 Error-type: protocol
 Severity: error
 Error-info: <bad-element>: stopTime
 Description: An element value is not correct;
 e.g., wrong type, out of range, pattern mismatch.

 Figure 10: Create subscription incorrect stopTime

 If a startTime is requested that is later than the current time, the
 following error is returned:

 Tag: bad-element
 Error-type: protocol
 Severity: error
 Error-info: <bad-element>: startTime
 Description: An element value is not correct;
 e.g., wrong type, out of range, pattern mismatch.

 Figure 11: Create subscription incorrect startTime

2.5. Establishing a Subscription

 This operation is defined in [event-notifications].

2.5.1. Usage Example

 The following illustrates the establishment of a simple subscription.

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 11]

Internet-Draft NETCONF-notifications October 2016

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 </establish-subscription>
 </netconf:rpc>

 Figure 12: Establish subscription

2.5.2. Positive Response

 If the NETCONF server can satisfy the request, the server sends a
 positive <subscription-result> element, and the subscription-id of
 the accepted subscription.

 <netconf:rpc netconf:message-id="102"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/event/1.0"
 select="/ex:event[ex:eventClass=’fault’ and
 (ex:severity=’minor’ or ex:severity=’major’
 or ex:severity=’critical’)]"/>
 </establish-subscription>
 </netconf:rpc>

 <rpc-reply message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 ok
 </subscription-result>
 <subscription-id
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 52
 </subscription-id>
 </rpc-reply>

 Figure 13: Successful establish-subscription

2.5.3. Negative Response

 If the NETCONF server cannot satisfy the request, the server sends a
 negative <subscription-result> element.

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 12]

Internet-Draft NETCONF-notifications October 2016

 If the client has no authorization to establish the subscription, the
 <subscription-result> indicates an authorization error. For
 instance:

 <netconf:rpc netconf:message-id="103"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 <stream>foo</stream>
 </establish-subscription>
 </netconf:rpc>

 <rpc-reply message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 error-data-not-authorized
 </subscription-result>
 </rpc-reply>

 Figure 14: Unsuccessful establish subscription

 If the request is rejected because the server is not able to serve
 it, the server SHOULD include in the returned error what subscription
 parameters would have been accepted for the request when it was
 processed. However, they are no guarantee that subsequent requests
 with those parameters for this client or others will be accepted.
 For instance, consider a subscription from [yang-push], which
 augments the establish-subscription with some additional parameters,
 including "period". If the client requests a period the NETCONF
 server cannot serve, the exchange may be:

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 13]

Internet-Draft NETCONF-notifications October 2016

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 <stream>push-update</stream>
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/sample-data/1.0"
 select="/ex:foo"/>
 <period xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 500
 </period>
 <encoding>encode-xml</encoding>
 </establish-subscription>
 </netconf:rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 error-insufficient-resources
 </subscription-result>
 <period
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 2000
 </period>
 </rpc-reply>

 Figure 15: Subscription establishment negotiation

 Subscription requests will fail if a filter with invalid syntax is
 provided or if the name of a non-existent stream is provided.

2.5.4. Multiple Subscriptions over a Single NETCONF Session

 Note that [event-notifications] requires supporting multiple
 subscription establishments over a single NETCONF session. In
 contrast, [RFC5277] mandated servers to return an error when a
 create-subscription was sent while a subscription was active on that
 session. Note that servers are not required to support multiple
 create-subscription over a single session, but they MUST support
 multiple establish-suscription over one session.

2.5.5. Message Flow Examples

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 14]

Internet-Draft NETCONF-notifications October 2016

 +------------+ +-----------+
 | Client | | Server |
 +------------+ +-----------+
 | |
 | Capability Exchange |
 |<---------------------------->|
 | |
 | |
 | Establish Subscription |
 |----------------------------->|
 | RPC Reply: OK, subs-id = 22 |
 |<-----------------------------|
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | |
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | Notification (subs-id 22) |
 |<-----------------------------|
 | |
 | |

 Figure 16: Message flow for subscription establishment

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 15]

Internet-Draft NETCONF-notifications October 2016

 +------------+ +-----------+
 | Client | | Server |
 +------------+ +-----------+
 | |
 | Capability Exchange |
 |<---------------------------->|
 | |
 | |
 | Establish Subscription |
 |----------------------------->|
 | RPC Reply: OK, subs-id = 22 |
 |<-----------------------------|
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | |
 | |
 | Establish Subscription |
 |----------------------------->|
 | RPC Reply: OK, subs-id = 23 |
 |<-----------------------------|
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | |
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | Notification (subs-id 23) |
 |<-----------------------------|
 | |
 | |

 Figure 17: Message Flow for multiple subscription establishments over
 a single session

2.6. Modifying a Subscription

 This operation is defined in [event-notifications].

2.6.1. Usage Example

 The following demonstrates modifying a subscription. Consider a
 subscription from [yang-push], which augments the establish-
 subscription with some additional parameters, including "period". A
 subscription may be established as follows.

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 16]

Internet-Draft NETCONF-notifications October 2016

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 <stream>push-update</stream>
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/sample-data/1.0"
 select="/ex:foo"/>
 <period xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 500
 </period>
 <encoding>encode-xml</encoding>
 </establish-subscription>
 </netconf:rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 ok
 </subscription-result>
 <subscription-id
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 1922
 </subscription-id>
 </rpc-reply>

 Figure 18: Establish subscription to be modified

 The subscription may be modified with:

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 17]

Internet-Draft NETCONF-notifications October 2016

 <netconf:rpc message-id="102"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modify-subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 <subscription-id>1922</subscription-id>
 <period>1000</period>
 </modify-subscription >
 </netconf:rpc>

 <rpc-reply message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 ok
 </subscription-result>
 <subscription-id
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 1922
 </subscription-id>
 </rpc-reply>

 Figure 19: Modify subscription

2.6.2. Positive Response

 If the NETCONF server can satisfy the request, the server sends a
 positive <subscription-result> element. This response is like that
 to an establish-subscription request, but without the subscription-id
 (which would be redundant).

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 18]

Internet-Draft NETCONF-notifications October 2016

 <netconf:rpc message-id="102"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modify-subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 <subscription-id>1922</subscription-id>
 <period
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 1000
 </period>
 </modify-subscription >
 </netconf:rpc>

 <rpc-reply message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 ok
 </subscription-result>
 </rpc-reply>

 Figure 20: Successful modify subscription

2.6.3. Negative Response

 If the NETCONF server cannot satisfy the request, the server sends a
 negative <subscription-result> element. Its contents and semantics
 are identical to those in an establish-subscription request. For
 instance:

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 19]

Internet-Draft NETCONF-notifications October 2016

 <netconf:rpc message-id="102"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modify-subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 <subscription-id>1922</subscription-id>
 <period xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 100
 </period>
 </modify-subscription>
 </netconf:rpc>

 <rpc-reply message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 error-insufficient-resources
 </subscription-result>
 <period>500</period>
 </rpc-reply>

 Figure 21: Unsuccessful modify subscription

2.6.4. Message Flow Example

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 20]

Internet-Draft NETCONF-notifications October 2016

 +------------+ +-----------+
 | Client | | Server |
 +------------+ +-----------+
 | |
 | Capability Exchange |
 |<---------------------------->|
 | |
 | |
 | Establish Subscription |
 |----------------------------->|
 | RPC Reply: OK, subs-id = 22 |
 |<-----------------------------|
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | |
 | |
 | |
 | |
 | Modify Subscription |
 |----------------------------->|
 | |
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | Notification (subs-id 22) |
 |<-----------------------------|
 | |
 | |

 Figure 22: Message flow for subscription modification

2.7. Deleting a Subscription

 This operation is defined in [event-notifications].

2.7.1. Usage Example

 The following demonstrates deleting a subscription.

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 21]

Internet-Draft NETCONF-notifications October 2016

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <delete-subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 <subscription-id>1922</subscription-id>
 </delete-subscription>
 </netconf:rpc>

 Figure 23: Delete subscription

2.7.2. Positive Response

 If the NETCONF server can satisfy the request, the server sends an OK
 element. For example:

 <netconf:rpc message-id="103"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <delete-subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 <subscription-id>1922</subscription-id>
 </delete-subscription>
 </netconf:rpc>

 <rpc-reply message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

 Figure 24: Successful delete subscription

2.7.3. Negative Response

 If the NETCONF server cannot satisfy the request, the server sends an
 error-rpc element. For example:

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 22]

Internet-Draft NETCONF-notifications October 2016

 <netconf:rpc message-id="103"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <delete-subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 <subscription-id>2017</subscription-id>
 </delete-subscription>
 </netconf:rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>invalid-value</error-tag>
 <error-severity>error</error-severity>
 <error-path
 xmlns:t="urn:ietf:params:xml:ns:netconf:notification:1.1">
 /t:subscription-id
 </error-path>
 <error-message xml:lang="en">
 Subscription-id 2017 does not exist
 </error-message>
 </rpc-error>
 </rpc-reply>

 Figure 25: Unsuccessful delete subscription

2.7.4. Message Flow Example

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 23]

Internet-Draft NETCONF-notifications October 2016

 +------------+ +-----------+
 | Client | | Server |
 +------------+ +-----------+
 | |
 | Capability Exchange |
 |<---------------------------->|
 | |
 | |
 | Establish Subscription |
 |----------------------------->|
 | RPC Reply: OK, subs-id = 22 |
 |<-----------------------------|
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | |
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | Notification (subs-id 22) |
 |<-----------------------------|
 | |
 | |
 | Delete Subscription |
 |----------------------------->|
 | |
 | |
 | |
 | |

 Figure 26: Message flow for subscription deletion

2.8. Configured Subscriptions

 A configured subscription is a subscription installed via a
 configuration interface. Configured subscriptions do not support
 negotiation.

 Supporting configured subscriptions is optional and advertised during
 the capabilities exchange using the "configured-subscriptions"
 feature.

 Configured susbscriptions are supported by NETCONF servers using
 NETCONF Call Home [call-home]

 In this section, we present examples of how to manage configuration
 subscriptions using a NETCONF client.

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 24]

Internet-Draft NETCONF-notifications October 2016

2.8.1. Call Home for Configured Subscriptions

 Configured subscriptions are established, modified, and deleted using
 configuration operations against the top-level subtree subscription-
 config. Once the configuration is set, the server initiates a Call
 Home to each of the receivers in the subscription on the address and
 port specified. Once the NETCONF session between the server and the
 receiver is established, the server will issue a "subscription-
 started" notification. After that, the server will send
 notifications to the receiver as per the subscription notification.

 Note that the server assumes the receiver is aware that calls on the
 configured port are intended only for pushing notifications. It also
 assumes that the receiver is ready to accept notifications on the
 session created as part of the Call Home as soon as the NETCONF
 session is established. This may require coordination between the
 client that configures the subscription and the clients for which the
 notifications are intended. This coordination is out of the scope of
 this document.

2.8.2. Establishing a Configured Subscription

 Subscriptions are established using configuration operations against
 the top-level subtree subscription-config.

 For example at subscription establishment, a NETCONF client may send:

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 25]

Internet-Draft NETCONF-notifications October 2016

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <subscription-config
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 <subscription>
 <subscription-id>
 1922
 </subscription-id>
 <stream>
 foo
 </stream>
 <receiver>
 <address>
 1.2.3.4
 </address>
 <port>
 1234
 </port>
 </receiver>
 </subscription>
 </subscription-config>
 </edit-config>
 </rpc>

 Figure 27: Establish static subscription

 if the request is accepted, the server would reply:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

 Figure 28: Response to a successful static subscription establishment

 if the request is not accepted because the server cannot serve it,
 the server may reply:

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 26]

Internet-Draft NETCONF-notifications October 2016

 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>resource-denied</error-tag>
 <error-severity>error</error-severity>
 <error-message xml:lang="en">
 Temporarily the server cannot serve this
 subscription due to the current workload.
 </error-message>
 </rpc-error>
 </rpc-reply>

 Figure 29: Response to a failed static subscription establishment

2.8.2.1. Message Flow Example

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 27]

Internet-Draft NETCONF-notifications October 2016

 +----------+ +-----------+ +---------+ +---------+
 | Client | | Server | | Rcver A | | Rcver B |
 +----------+ +-----------+ +---------+ +---------+
 | | | |
 | Capability Exchange | | |
 |<-------------------------->| | |
 | | | |
 | | | |
 | Edit-config | | |
 |--------------------------->| | |
 | RPC Reply: OK | | |
 |<---------------------------| | |
 | | Call Home | |
 | |<-------------->| |
 | |<--------------------------->|
 | | | |
 | | Subscription | |
 | | Started | |
 | | (subs-id 22) | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | | Notification | |
 | | (subs-id 22) | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | Notification | |
 | | (subs-id 22) | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | | Notification | |
 | | (subs-id 22) | |
 | |--------------->| |
 | |---------------------------->|
 | | | |

 Figure 30: Message flow for subscription establishment (configured
 subscription)

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 28]

Internet-Draft NETCONF-notifications October 2016

2.8.3. Modifying a Configured Subscription

 Configured subscriptions can be modified using configuration
 operations against the top-level subtree subscription-config.

 For example, the subscription established in the previous section
 could be modified as follows, choosing a different receiver:

 <rpc message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <subscription-config
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 <subscription>
 <subscription-id>
 1922
 </subscription-id>
 <stream>
 foo
 </stream>
 <receiver>
 <address>
 1.2.3.5
 </address>
 <port>
 1234
 </port>
 </receiver>
 </subscription>
 </subscription-config>
 </edit-config>
 </rpc>

 Figure 31: Modify configured subscription

 if the request is accepted, the server would reply:

 <rpc-reply message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

 Figure 32: Response to a successful configured subscription
 modification

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 29]

Internet-Draft NETCONF-notifications October 2016

2.8.3.1. Message Flow Example

 +----------+ +-----------+ +---------+ +---------+
 | Client | | Server | | Rcver A | | Rcver B |
 +----------+ +-----------+ +---------+ +---------+
 | | | |
 | Capability Exchange | | |
 |<-------------------------->| | |
 | | | |
 | | | |
 | Edit-config | | |
 |--------------------------->| | |
 | RPC Reply: OK | | |
 |<---------------------------| | |
 | | Call Home | |
 | |<-------------->| |
 | |<--------------------------->|
 | | | |
 | | Subscription | |
 | | Started | |
 | | (subs-id 22) | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | | Notification | |
 | | (subs-id 22) | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | | | |
 | | | |
 | Edit-config | | |
 |--------------------------->| | |
 | RPC Reply: OK | | |
 |<---------------------------| | |
 | | | |
 | | | |
 | | Subscription | |
 | | Modified | |
 | | (subs-id 22) | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | | Notification | |
 | | (subs-id 22) | |
 | |--------------->| |
 | |---------------------------->|
 | | | |

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 30]

Internet-Draft NETCONF-notifications October 2016

 Figure 33: Message flow for subscription modification (configured
 subscription)

2.8.4. Deleting a Configured Subscription

 Subscriptions can be deleted using configuration operations against
 the top-level subtree subscription-config. For example:

 <rpc message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <subscription-config
 xmlns:xc="urn:ietf:params:xml:ns:netconf:notification:1.1">
 <subscription xc:operation="delete">
 <subscription-id>
 1922
 </subscription-id>
 </subscription>
 </subscription-config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

 Figure 34: Deleting a configured subscription

2.8.4.1. Message Flow Example

 +----------+ +-----------+ +---------+ +---------+
 | Client | | Server | | Rcver A | | Rcver B |
 +----------+ +-----------+ +---------+ +---------+
 | | | |
 | Capability Exchange | | |
 |<-------------------------->| | |
 | | | |
 | | | |
 | Edit-config | | |
 |--------------------------->| | |
 | RPC Reply: OK | | |
 |<---------------------------| | |

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 31]

Internet-Draft NETCONF-notifications October 2016

 | | Call Home | |
 | |<-------------->| |
 | |<--------------------------->|
 | | | |
 | | Subscription | |
 | | Started | |
 | | (subs-id 22) | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | | Notification | |
 | | (subs-id 22) | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | Notification | |
 | | (subs-id 22) | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | Edit-config | | |
 |--------------------------->| | |
 | RPC Reply: OK | | |
 |<---------------------------| | |
 | | | |
 | | | |
 | | Subscription | |
 | | Terminated | |
 | | (subs-id 22) | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | | | |
 | | | |
 | | | |

 Figure 35: Message flow for subscription deletion (configured
 subscription)

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 32]

Internet-Draft NETCONF-notifications October 2016

2.9. Event (Data Plane) Notifications

 Once a subscription has been set up, the NETCONF server sends
 (asynchronously) the event notifications from the subscribed stream.
 We refer to these as data plane notifications. For dynamic
 subscriptions set up via RPC operations, event notifications are sent
 over the NETCONF session used to create or establish the
 subscription. For static subscriptions, event notifications are sent
 over the specified connections.

 An event notification is sent to the receiver(s) when an event of
 interest (i.e., meeting the specified filtering criteria) has
 occurred. An event notification is a complete and well-formed XML
 document. Note that <notification> is not a Remote Procedure Call
 (RPC) method but rather the top-level element identifying the one-way
 message as a notification. Note that event notifications never
 trigger responses.

 The event notification always includes an <eventTime> element. It is
 the time the event was generated by the event source. This parameter
 is of type dateTime and compliant to [RFC3339]. Implementations must
 support time zones.

 The event notification also contains notification-specific tagged
 content, if any. With the exception of <eventTime>, the content of
 the notification is beyond the scope of this document.

 For encodings other than XML, notifications include an additional XML
 element so that the notification is a well-formed XML. The element
 is <notification-contents-{encoding}>, E.g., <notification-contents-
 json>. That element contains the notification contents in the
 desired encoding

 The following is an example of an event notification from [RFC6020]:

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 33]

Internet-Draft NETCONF-notifications October 2016

 notification link-failure {
 description "A link failure has been detected";
 leaf if-name {
 type leafref {
 path "/interface/name";
 }
 }
 leaf if-admin-status {
 type admin-status;
 }
 leaf if-oper-status {
 type oper-status;
 }
 }

 Figure 36: Definition of a data plane notification

 <notification
 xmlns=" urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <link-failure xmlns="http://acme.example.com/system">
 <if-name>so-1/2/3.0</if-name>
 <if-admin-status>up</if-admin-status>
 <if-oper-status>down</if-oper-status>
 </link-failure>
 </notification>

 Figure 37: Data plane notification

 The equivalent using JSON encoding would be

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <notification-contents-json>
 {
 "acme-system:link-failure": {
 "if-name": "so-1/2/3.0",
 "if-admin-status": "up",
 "if-oper-status": "down"
 }
 }
 </notification-contents-json>
 </notification>

 Figure 38: Data plane notification using JSON encoding

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 34]

Internet-Draft NETCONF-notifications October 2016

2.10. Control Plane Notifications

 In addition to data plane notifications, a server may send control
 plane notifications (defined in [event-notifications]) to indicate to
 receivers that an event related to the subscription management has
 occurred. Control plane notifications cannot be filtered out. Next
 we exemplify them using both XML, and JSON encondings for the
 notification-specific content:

2.10.1. replayComplete

 <notification
 xmlns=" urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <replayComplete xmlns="urn:ietf:params:xml:ns:netmod:notification"/>
 </notification>

 Figure 39: replayComplete control plane notification

 The equivalent using JSON encoding would be:

 <notification
 xmlns=" urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <notification-contents-json>
 {
 "netmod-notif:replayComplete": { }
 }
 </notification-contents-json>
 </notification>

 Figure 40: replayComplete control plane notification (JSON encoding)

2.10.1.1. Message Flow Example

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 35]

Internet-Draft NETCONF-notifications October 2016

 +------------+ +-----------+
 | Client | | Server |
 +------------+ +-----------+
 | |
 | Capability Exchange |
 |<---------------------------->|
 | |
 | |
 | Establish Subscription |
 |----------------------------->|
 | RPC Reply: OK, subs-id = 22 |
 |<-----------------------------|
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | |
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | Replay Complete (subs-id 22) |
 |<-----------------------------|
 | |
 | |
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | |
 | |
 | |

 Figure 41: replayComplete notification

2.10.2. notificationComplete

 <notification
 xmlns=" urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <notificationComplete
 xmlns="urn:ietf:params:xml:ns:netmod:notification"/>
 </notification>

 Figure 42: notificationComplete control plane notification

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 36]

Internet-Draft NETCONF-notifications October 2016

2.10.2.1. Message Flow Example

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 37]

Internet-Draft NETCONF-notifications October 2016

 +------------+ +-----------+
 | Client | | Server |
 +------------+ +-----------+
 | |
 | Capability Exchange |
 |<---------------------------->|
 | |
 | |
 | Establish Subscription |
 |----------------------------->|
 | RPC Reply: OK, subs-id = 22 |
 |<-----------------------------|
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | |
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | Replay Complete (subs-id 22) |
 |<-----------------------------|
 | |
 | |
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | |
 | Notification (subs-id 22) |
 |<-----------------------------|
 | |
 | |
 | |
 | Notification Complete |
 | (subs-id 22) |
 |<-----------------------------|
 | |
 | |
 | |
 | RPC |
 |----------------------------->|
 | RPC Reply |
 |<-----------------------------|
 | |
 | |

 Figure 43: notificationComplete notification

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 38]

Internet-Draft NETCONF-notifications October 2016

2.10.3. subscription-started

 <notification
 xmlns=" urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <subscription-started
 xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"/>
 <subscription-id>52</subscription-id>
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/event/1.0"
 select="/ex:event[ex:eventClass=’fault’ and
 (ex:severity=’minor’ or ex:severity=’major’
 or ex:severity=’critical’)]"/>
 </subscription-started/>
 </notification>

 Figure 44: subscription-started control plane notification

 The equivalent using JSON encoding would be:

 <notification
 xmlns=" urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <notification-contents-json>
 {
 "notif-bis:subscription-started": {
 "subscription-id" : 52
 ((Open Item: express filter in json))
 }
 }
 </notification-contents-json>
 </notification>

 Figure 45: subscription-started control plane notification (JSON
 encoding)

2.10.4. subscription-modified

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 39]

Internet-Draft NETCONF-notifications October 2016

 <notification
 xmlns=" urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <subscription-modified
 xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"/>
 <subscription-id>52</subscription-id>
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/event/1.0"
 select="/ex:event[ex:eventClass=’fault’]"/>
 </subscription-modified/>
 </notification>

 Figure 46: subscription-modified control plane notification

2.10.5. subscription-terminated

 <notification
 xmlns=" urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <subscription-terminated
 xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"/>
 <subscription-id>52</subscription-id>
 <reason>subscription-deleted</reason>
 </subscription-terminated/>
 </notification>

 Figure 47: subscription-terminated control plane notification

2.10.6. subscription-suspended

 <notification
 xmlns=" urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <subscription-suspended
 xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"/>
 <subscription-id>52</subscription-id>
 <reason>internal-error</reason>
 </subscription-suspended/>
 </notification>

 Figure 48: subscription-suspended control plane notification

2.10.7. subscription-resumed

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 40]

Internet-Draft NETCONF-notifications October 2016

 <notification
 xmlns=" urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <subscription-resumed
 xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"/>
 <subscription-id>52</subscription-id>
 <reason>internal-error</reason>
 </subscription-resumed/>
 </notification>

 Figure 49: subscription-resumed control plane notification

2.10.7.1. Message Flow Examples

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 41]

Internet-Draft NETCONF-notifications October 2016

 +------------+ +-----------+
 | Client | | Server |
 +------------+ +-----------+
 | |
 | Capability Exchange |
 |<---------------------------->|
 | |
 | |
 | Establish Subscription |
 |----------------------------->|
 | RPC Reply: OK, subs-id = 22 |
 |<-----------------------------|
 | |
 | Notification |
 |<-----------------------------|
 | |
 | |
 | Notification |
 |<-----------------------------|
 | Notification |
 |<-----------------------------|
 | |
 | |
 | Subscription Suspended |
 |<-----------------------------|
 | |
 | |
 | |
 | Subscription Resumed |
 |<-----------------------------|
 | |
 | |
 | |
 | |
 | Notification |
 |<-----------------------------|
 | |
 | |

 Figure 50: subscription-suspended and Resumed Notifications

 +----------+ +-----------+ +---------+ +---------+
 | Client | | Server | | Rcver A | | Rcver B |
 +----------+ +-----------+ +---------+ +---------+
 | | | |
 | Capability Exchange | | |

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 42]

Internet-Draft NETCONF-notifications October 2016

 |<-------------------------->| | |
 | | | |
 | | | |
 | Edit-config | | |
 |--------------------------->| | |
 | RPC Reply: OK | | |
 |<---------------------------| | |
 | | Subscription | |
 | | Started | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | | Notification | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | | | |
 | | | |
 | | | |
 | | Subscription | |
 | | Suspended | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | Subscription | |
 | | Resumed | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | | | |
 | | | |
 | | Notification | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | | Notification | |
 | |--------------->| |
 | |---------------------------->|
 | | | |
 | | | |
 | | | |
 | | | |

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 43]

Internet-Draft NETCONF-notifications October 2016

 Figure 51: subscription-suspended and subscription-resumed
 notifications (configured subscriptions)

3. Backwards Compatibility

3.1. Capabilities

 Capabilities are advertised in messages sent by each peer during
 session establishment [RFC6241]. Servers supporting the features in
 this document must advertise both capabilities
 "urn:ietf:params:netconf:capability:notification:1.0" and
 "urn:ietf:params:netconf:capability:notification:1.1".

 An example of a hello message by a server during session
 establishment would be:

 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>
 urn:ietf:params:xml:ns:netconf:base:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:startup:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:notification:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:notification:1.1
 </capability>
 </capabilities>
 <session-id>4</session-id>
 </hello>

 Figure 52: Hello message

 Clients that only support [RFC5277] recognize capability
 "urn:ietf:params:netconf:capability:notification:1.0" and ignore
 capability "urn:ietf:params:netconf:capability:notification:1.1".
 This allows them interacting with the server as per [RFC5277].
 Clients that support the features in this document recognize both
 capabilities. This allows them interacting with the server as per
 this document.

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 44]

Internet-Draft NETCONF-notifications October 2016

3.2. Stream Discovery

 In order to maintain backwards compatibility, clients that only
 support [RFC5277] can retrieve the list of available event streams
 executing a <get> operation against the container "/netconf/streams".

4. Security Considerations

 The security considerations from the base NETCONF document [RFC6241]
 also apply to the notification capability.

 The <notification> elements are never sent before the transport layer
 and the NETCONF layer, including capabilities exchange, have been
 established and the manager has been identified and authenticated.

 A secure transport must be used and the server must ensure that the
 user has sufficient authorization to perform the function they are
 requesting against the specific subset of NETCONF content involved.
 When a <get> is received that refers to the content defined in this
 memo, clients should only be able to view the content for which they
 have sufficient privileges. <create-subscriptiont> and <establish-
 subscriptiont> operations can be considered like deferred <get>, and
 the content that different users can access may vary. This different
 access is reflected in the <notificationt> that different users are
 able to subscribe to.

 The contents of notifications, as well as the names of event streams,
 may contain sensitive information and care should be taken to ensure
 that they are viewed only by authorized users. The NETCONF server
 MUST NOT include any content in a notification that the user is not
 authorized to view.

 If a malicious or buggy NETCONF client sends a number of <create-
 subscription> requests, then these subscriptions accumulate and may
 use up system resources. In such a situation, subscriptions can be
 terminated by terminating the suspect underlying NETCONF sessions
 using the <kill-session> operation. If the client uses <establish-
 subscription>, the server can also suspend or terminate subscriptions
 with per-subscription granularity.

 A subscription could be configured on another receiver’s behalf, with
 the goal of flooding that receiver with updates. One or more
 publishers could be used to overwhelm a receiver, which doesn’t even
 support subscriptions. Clients that do not want pushed data need
 only terminate or refuse any transport sessions from the publisher.
 In addition, the NETCONF Authorization Control Model [RFC6536] SHOULD
 be used to control and restrict authorization of subscription
 configuration. This control models permits specifying per-user

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 45]

Internet-Draft NETCONF-notifications October 2016

 permissions to receive specific event notification types. The
 permissions are specified as a set of access control rules.

 Note that streams can define additional authorization requirements.
 For instance, in [yang-push] each of the elements in its data plane
 notifications must also go through access control.

5. Acknowledgments

 We wish to acknowledge the helpful contributions, comments, and
 suggestions that were received from: Andy Bierman, Yan Gang, Peipei
 Guo, Susan Hares, Tim Jenkins, Balazs Lengyel, Kent Watsen, and
 Guangying Zheng.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <http://www.rfc-editor.org/info/rfc5277>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 46]

Internet-Draft NETCONF-notifications October 2016

6.2. Informative References

 [call-home]
 Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 December 2015, <https://datatracker.ietf.org/doc/draft-
 ietf-netconf-call-home/>.

 [event-notifications]
 Clemm, A., Gonzalez Prieto, A., Voit, Eric., Nilsen-
 Nygaard, E., Tripathy, A., Chisholm, S., and H. Trevino,
 "Subscribing to Event Notifications", June 2016,
 <https://datatracker.ietf.org/doc/draft-ietf-netconf-
 rfc5277bis/>.

 [yang-push]
 Clemm, A., Gonzalez Prieto, A., Voit, Eric., Tripathy, A.,
 and E. Nilsen-Nygaard, "Subscribing to YANG datastore push
 updates", February 2016,
 <https://datatracker.ietf.org/doc/draft-ietf-netconf-yang-
 push/>.

Appendix A. Issues that are currently being worked

 (To be removed by RFC editor prior to publication)

 o NT1 - Express filter in JSON should be documented.

Appendix B. Changes between revisions

 (To be removed by RFC editor prior to publication)

B.1. v00 to v01

 o D1 - Added Call Home in solution for configured subscriptions.

 o D2 - Clarified support for multiple subscription on a single
 session. No need to support multiple create-subscription.

 o D3 - Added mapping between terminology in [yang-push] and
 [RFC6241] (the one followed in this document).

 o D4 - Editorial improvements.

Authors’ Addresses

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 47]

Internet-Draft NETCONF-notifications October 2016

 Alberto Gonzalez Prieto
 Cisco Systems

 Email: albertgo@cisco.com

 Alexander Clemm
 Sympotech

 Email: alex@sympotech.com

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Einar Nilsen-Nygaard
 Cisco Systems

 Email: einarnn@cisco.com

 Ambika Prasad Tripathy
 Cisco Systems

 Email: ambtripa@cisco.com

 Sharon Chisholm
 Ciena

 Email: schishol@ciena.com

 Hector Trevino
 Cisco Systems

 Email: htrevino@cisco.com

Gonzalez Prieto, et al. Expires May 4, 2017 [Page 48]

NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Intended status: Standards Track J. Schoenwaelder
Expires: May 7, 2017 Jacobs University Bremen
 November 3, 2016

 RESTCONF Client and Server Models
 draft-ietf-netconf-restconf-client-server-01

Abstract

 This document defines two YANG modules, one module to configure a
 RESTCONF client and the other module to configure a RESTCONF server.
 Both modules support the TLS transport protocol with both standard
 RESTCONF and RESTCONF Call Home connections.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 This document contains references to other drafts in progress, both
 in the Normative References section, as well as in body text
 throughout. Please update the following references to reflect their
 final RFC assignments:

 o draft-ietf-netconf-keystore

 o draft-ietf-netconf-tls-client-server

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

 o "YYYY" --> the assigned RFC value for draft-ietf-netconf-restconf

 o "ZZZZ" --> the assigned RFC value for draft-ietf-netconf-tls-
 client-server

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2016-11-02" --> the publication date of this draft

Watsen & Schoenwaelder Expires May 7, 2017 [Page 1]

Internet-Draft RESTCONF Client and Server Models November 2016

 The following two Appendix sections are to be removed prior to
 publication:

 o Appendix A. Change Log

 o Appendix B. Open Issues

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 1.2. Tree Diagrams . 3
 2. The RESTCONF Client Model 4
 2.1. Tree Diagram . 4
 2.2. Example Usage . 4
 2.3. YANG Model . 4

Watsen & Schoenwaelder Expires May 7, 2017 [Page 2]

Internet-Draft RESTCONF Client and Server Models November 2016

 3. The RESTCONF Server Model 7
 3.1. Tree Diagram . 7
 3.2. Example Usage . 9
 3.3. YANG Model . 11
 4. Security Considerations 20
 5. IANA Considerations . 20
 5.1. The IETF XML Registry 20
 5.2. The YANG Module Names Registry 20
 6. Acknowledgements . 20
 7. References . 21
 7.1. Normative References 21
 7.2. Informative References 21
 Appendix A. Change Log . 23
 A.1. server-model-09 to 00 23
 Appendix B. Open Issues . 23
 Authors’ Addresses . 23

1. Introduction

 This document defines two YANG [RFC6020] modules, one module to
 configure a RESTCONF client and the other module to configure a
 RESTCONF server [draft-ietf-netconf-restconf]. Both modules support
 the TLS [RFC5246] transport protocol with both standard RESTCONF and
 RESTCONF Call Home connections [draft-ietf-netconf-call-home].

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Tree Diagrams

 A simplified graphical representation of the data models is used in
 this document. The meaning of the symbols in these diagrams is as
 follows:

 o Brackets "[" and "]" enclose list keys.

 o Braces "{" and "}" enclose feature names, and indicate that the
 named feature must be present for the subtree to be present.

 o Abbreviations before data node names: "rw" means configuration
 (read-write) and "ro" state data (read-only).

 o Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list and leaf-list.

Watsen & Schoenwaelder Expires May 7, 2017 [Page 3]

Internet-Draft RESTCONF Client and Server Models November 2016

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

2. The RESTCONF Client Model

 EDITOR NOTE: Please ignore this section, it is incomplete.

 The RESTCONF client model presented in this section supports both
 clients initiating connections to servers, as well as clients
 listening for connections from servers calling home.

 This model supports both TLS transport protocols using the TLS client
 groupings defined in [draft-ietf-netconf-tls-client-server].

 All private keys and trusted certificates are held in the keystore
 model defined in [draft-ietf-netconf-keystore].

 YANG feature statements are used to enable implementations to
 advertise which parts of the model the RESTCONF client supports.

2.1. Tree Diagram

 Note: all lines are folded at column 71 with no ’\’ character.

 module: ietf-restconf-client
 +--rw restconf-client
 +--rw initiate {tls-initiate}?
 +--rw listen {tls-listen}?

2.2. Example Usage

 The following example illustrates configuring a RESTCONF client to
 initiate connections, as well as listening for call-home connections.

 This example is consistent with the examples presented in Section 2.2
 of [draft-ietf-netconf-keystore].

 FIXME

2.3. YANG Model

 This YANG module imports YANG types from [RFC6991] and [RFC7407].

 <CODE BEGINS> file "ietf-restconf-client@2016-11-02.yang"

Watsen & Schoenwaelder Expires May 7, 2017 [Page 4]

Internet-Draft RESTCONF Client and Server Models November 2016

 // Editor’s Note:
 // This module is incomplete at this time. Below is
 // just a skeleton so there’s something in the draft.
 // Please ignore this module for now!

 module ietf-restconf-client {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-restconf-client";
 prefix "rcc";

 /*
 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 //import ietf-netconf-acm {
 // prefix nacm;
 // reference
 // "RFC 6536: Network Configuration Protocol (NETCONF)
 // Access Control Model";
 //}

 import ietf-x509-cert-to-name {
 prefix x509c2n;
 reference
 "RFC 7407: A YANG Data Model for SNMP Configuration";
 }

 import ietf-tls-client {
 prefix ts;
 revision-date 2016-11-02; // stable grouping definitions
 reference
 "RFC ZZZZ: TLS Client and Server Models";
 }
 */
 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nsn.com>

Watsen & Schoenwaelder Expires May 7, 2017 [Page 5]

Internet-Draft RESTCONF Client and Server Models November 2016

 WG Chair: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 Editor: Kent Watsen
 <mailto:kwatsen@juniper.net>";

 description
 "This module contains a collection of YANG definitions for
 configuring RESTCONF servers.

 Copyright (c) 2014 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2016-11-02" {
 description
 "Initial version";
 reference
 "RFC XXXX: RESTCONF Client and Server Models";
 }

 // Features

 feature tls-initiate {
 description
 "The tls-initiate feature indicates that the RESTCONF client
 supports initiating TLS connections to RESTCONF servers.";
 reference
 "RFC YYYY: RESTCONF Protocol";
 }

 feature tls-listen {
 description
 "The tls-listen feature indicates that the RESTCONF client
 supports opening a port to listen for incoming RESTCONF
 server call-home TLS connections.";
 reference
 "RFC AAAA: NETCONF Call Home and RESTCONF Call Home";

Watsen & Schoenwaelder Expires May 7, 2017 [Page 6]

Internet-Draft RESTCONF Client and Server Models November 2016

 }

 container restconf-client {
 description
 "Top-level container for RESTCONF client configuration.";
 container initiate {
 if-feature tls-initiate;
 description
 "Configures client intiating underlying TCP connections.";
 }
 container listen {
 if-feature tls-listen;
 description
 "Configures client accepting call-home TCP connections.";
 }
 }

 }

 <CODE ENDS>

3. The RESTCONF Server Model

 The RESTCONF Server model presented in this section supports servers
 both listening for connections as well as initiating call-home
 connections.

 This model supports the TLS using the TLS server groupings defined in
 [draft-ietf-netconf-tls-client-server].

 All private keys and trusted certificates are held in the keystore
 model defined in [draft-ietf-netconf-keystore].

 YANG feature statements are used to enable implementations to
 advertise which parts of the model the RESTCONF server supports.

3.1. Tree Diagram

 Note: all lines are folded at column 71 with no ’\’ character.

 module: ietf-restconf-server
 +--rw restconf-server
 +--rw listen {listen}?
 | +--rw max-sessions? uint16
 | +--rw endpoint* [name]
 | +--rw name string
 | +--rw (transport)

Watsen & Schoenwaelder Expires May 7, 2017 [Page 7]

Internet-Draft RESTCONF Client and Server Models November 2016

 | +--:(tls) {tls-listen}?
 | +--rw tls
 | +--rw address? inet:ip-address
 | +--rw port? inet:port-number
 | +--rw certificates
 | | +--rw certificate* [name]
 | | +--rw name -> /ks:keystore/private-keys/
 private-key/certificate-chains/certificate-chain/name
 | +--rw client-auth
 | +--rw trusted-ca-certs? -> /ks:keystore/
 trusted-certificates/name
 | +--rw trusted-client-certs? -> /ks:keystore/
 trusted-certificates/name
 | +--rw cert-maps
 | +--rw cert-to-name* [id]
 | +--rw id uint32
 | +--rw fingerprint x509c2n:tls-fingerp
 rint
 | +--rw map-type identityref
 | +--rw name string
 +--rw call-home {call-home}?
 +--rw restconf-client* [name]
 +--rw name string
 +--rw (transport)
 | +--:(tls) {tls-call-home}?
 | +--rw tls
 | +--rw endpoints
 | | +--rw endpoint* [name]
 | | +--rw name string
 | | +--rw address inet:host
 | | +--rw port? inet:port-number
 | +--rw certificates
 | | +--rw certificate* [name]
 | | +--rw name -> /ks:keystore/private-keys/
 private-key/certificate-chains/certificate-chain/name
 | +--rw client-auth
 | +--rw trusted-ca-certs? -> /ks:keystore/
 trusted-certificates/name
 | +--rw trusted-client-certs? -> /ks:keystore/
 trusted-certificates/name
 | +--rw cert-maps
 | +--rw cert-to-name* [id]
 | +--rw id uint32
 | +--rw fingerprint x509c2n:tls-fingerp
 rint
 | +--rw map-type identityref
 | +--rw name string
 +--rw connection-type

Watsen & Schoenwaelder Expires May 7, 2017 [Page 8]

Internet-Draft RESTCONF Client and Server Models November 2016

 | +--rw (connection-type)?
 | +--:(persistent-connection)
 | | +--rw persistent!
 | | +--rw keep-alives
 | | +--rw max-wait? uint16
 | | +--rw max-attempts? uint8
 | +--:(periodic-connection)
 | +--rw periodic!
 | +--rw reconnect-timeout? uint16
 +--rw reconnect-strategy
 +--rw start-with? enumeration
 +--rw max-attempts? uint8

3.2. Example Usage

 The following example illustrates configuring a RESTCONF server to
 listen for RESTCONF client connections, as well as configuring call-
 home to one RESTCONF client.

 This example is consistent with the examples presented in Section 2.2
 of [draft-ietf-netconf-keystore].

 <restconf-server
 xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf-server">

 <!-- listening for TLS (HTTPS) connections -->
 <listen>
 <endpoint>
 <name>netconf/tls</name>
 <tls>
 <address>11.22.33.44</address>
 <certificates>
 <certificate>ex-key-sect571r1-cert</certificate>
 </certificates>
 <client-auth>
 <trusted-ca-certs>
 deployment-specific-ca-certs
 </trusted-ca-certs>
 <trusted-client-certs>
 explicitly-trusted-client-certs
 </trusted-client-certs>
 <cert-maps>
 <cert-to-name>
 <id>1</id>
 <fingerprint>11:0A:05:11:00</fingerprint>
 <map-type>x509c2n:san-any</map-type>
 </cert-to-name>
 <cert-to-name>

Watsen & Schoenwaelder Expires May 7, 2017 [Page 9]

Internet-Draft RESTCONF Client and Server Models November 2016

 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map-type>x509c2n:specified</map-type>
 <name>scooby-doo</name>
 </cert-to-name>
 </cert-maps>
 </client-auth>
 </tls>

 </endpoint>
 </listen>

 <!-- calling home to a RESTCONF client -->
 <call-home>
 <restconf-client>
 <name>config-manager</name>
 <tls>
 <endpoints>
 <endpoint>
 <name>east-data-center</name>
 <address>22.33.44.55</address>
 </endpoint>
 <endpoint>
 <name>west-data-center</name>
 <address>33.44.55.66</address>
 </endpoint>
 </endpoints>
 <certificates>
 <certificate>ex-key-sect571r1-cert</certificate>
 </certificates>
 <client-auth>
 <trusted-ca-certs>
 deployment-specific-ca-certs
 </trusted-ca-certs>
 <trusted-client-certs>
 explicitly-trusted-client-certs
 </trusted-client-certs>
 <cert-maps>
 <cert-to-name>
 <id>1</id>
 <fingerprint>11:0A:05:11:00</fingerprint>
 <map-type>x509c2n:san-any</map-type>
 </cert-to-name>
 <cert-to-name>
 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map-type>x509c2n:specified</map-type>
 <name>scooby-doo</name>

Watsen & Schoenwaelder Expires May 7, 2017 [Page 10]

Internet-Draft RESTCONF Client and Server Models November 2016

 </cert-to-name>
 </cert-maps>
 </client-auth>
 </tls>
 <connection-type>
 <periodic>
 <idle-timeout>300</idle-timeout>
 <reconnect-timeout>60</reconnect-timeout>
 </periodic>
 </connection-type>
 <reconnect-strategy>
 <start-with>last-connected</start-with>
 <max-attempts>3</max-attempts>
 </reconnect-strategy>
 </restconf-client>
 </call-home>

 </restconf-server>

3.3. YANG Model

 This YANG module imports YANG types from [RFC6991] and [RFC7407].

 <CODE BEGINS> file "ietf-restconf-server@2016-11-02.yang"

 module ietf-restconf-server {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-restconf-server";
 prefix "rcs";

 //import ietf-netconf-acm {
 // prefix nacm;
 // reference
 // "RFC 6536: Network Configuration Protocol (NETCONF)
 // Access Control Model";
 //}

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-x509-cert-to-name {
 prefix x509c2n;
 reference

Watsen & Schoenwaelder Expires May 7, 2017 [Page 11]

Internet-Draft RESTCONF Client and Server Models November 2016

 "RFC 7407: A YANG Data Model for SNMP Configuration";
 }

 import ietf-tls-server {
 prefix ts;
 revision-date 2016-11-02; // stable grouping definitions
 reference
 "RFC ZZZZ: TLS Client and Server Models";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nsn.com>

 WG Chair: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 Editor: Kent Watsen
 <mailto:kwatsen@juniper.net>";

 description
 "This module contains a collection of YANG definitions for
 configuring RESTCONF servers.

 Copyright (c) 2014 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2016-11-02" {
 description
 "Initial version";
 reference

Watsen & Schoenwaelder Expires May 7, 2017 [Page 12]

Internet-Draft RESTCONF Client and Server Models November 2016

 "RFC XXXX: RESTCONF Client and Server Models";
 }

 // Features

 feature listen {
 description
 "The ’listen’ feature indicates that the RESTCONF server
 supports opening a port to accept RESTCONF client connections
 using at least one transport (e.g., TLS, etc.).";
 }

 feature tls-listen {
 description
 "The ’tls-listen’ feature indicates that the RESTCONF server
 supports opening a port to listen for incoming RESTCONF
 client connections.";
 reference
 "RFC XXXX: RESTCONF Protocol";
 }

 feature call-home {
 description
 "The ’call-home’ feature indicates that the RESTCONF server
 supports initiating RESTCONF call home connections to REETCONF
 clients using at least one transport (e.g., TLS, etc.).";
 reference
 "RFC YYYY: NETCONF Call Home and RESTCONF Call Home";
 }

 feature tls-call-home {
 description
 "The ’tls-call-home’ feature indicates that the RESTCONF server
 supports initiating connections to RESTCONF clients.";
 reference
 "RFC YYYY: NETCONF Call Home and RESTCONF Call Home";
 }

 feature client-cert-auth {
 description
 "The client-cert-auth feature indicates that the RESTCONF
 server supports the ClientCertificate authentication scheme.";
 reference
 "RFC ZZZZ: Client Authentication over New TLS Connection";
 }

Watsen & Schoenwaelder Expires May 7, 2017 [Page 13]

Internet-Draft RESTCONF Client and Server Models November 2016

 // top-level container
 container restconf-server {
 description
 "Top-level container for RESTCONF server configuration.";

 container listen {
 if-feature listen;
 description
 "Configures listen behavior";
 leaf max-sessions {
 type uint16;
 default 0; // should this be ’max’?
 description
 "Specifies the maximum number of concurrent sessions
 that can be active at one time. The value 0 indicates
 that no artificial session limit should be used.";
 }
 list endpoint {
 key name;
 description
 "List of endpoints to listen for RESTCONF connections on.";
 leaf name {
 type string;
 description
 "An arbitrary name for the RESTCONF listen endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports.";
 case tls {
 if-feature tls-listen;
 container tls {
 description
 "TLS-specific listening configuration for inbound
 connections.";
 uses ts:listening-tls-server-grouping {
 refine port {
 default 443;
 }
 augment "client-auth" {
 description
 "Augments in the cert-to-name structure.";
 uses cert-maps-grouping;
 }
 }
 }
 }

Watsen & Schoenwaelder Expires May 7, 2017 [Page 14]

Internet-Draft RESTCONF Client and Server Models November 2016

 }
 }
 }

 container call-home {
 if-feature call-home;
 description
 "Configures call-home behavior";
 list restconf-client {
 key name;
 description
 "List of RESTCONF clients the RESTCONF server is to
 initiate call-home connections to.";
 leaf name {
 type string;
 description
 "An arbitrary name for the remote RESTCONF client.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between TLS and any transports augmented in.";
 case tls {
 if-feature tls-call-home;
 container tls {
 description
 "Specifies TLS-specific call-home transport
 configuration.";
 uses endpoints-container {
 refine endpoints/endpoint/port {
 default 4336;
 }
 }
 uses ts:non-listening-tls-server-grouping {
 augment "client-auth" {
 description
 "Augments in the cert-to-name structure.";
 uses cert-maps-grouping;
 }
 }
 }
 }
 }
 container connection-type {
 description
 "Indicates the RESTCONF client’s preference for how the
 RESTCONF server’s connection is maintained.";
 choice connection-type {

Watsen & Schoenwaelder Expires May 7, 2017 [Page 15]

Internet-Draft RESTCONF Client and Server Models November 2016

 description
 "Selects between available connection types.";
 case persistent-connection {
 container persistent {
 presence true;
 description
 "Maintain a persistent connection to the RESTCONF
 client. If the connection goes down, immediately
 start trying to reconnect to it, using the
 reconnection strategy.

 This connection type minimizes any RESTCONF client
 to RESTCONF server data-transfer delay, albeit at
 the expense of holding resources longer.";

 container keep-alives {
 description
 "Configures the keep-alive policy, to proactively
 test the aliveness of the TLS client. An
 unresponsive TLS client will be dropped after
 approximately (max-attempts * max-wait)
 seconds.";
 reference
 "RFC YYYY: NETCONF Call Home and RESTCONF Call
 Home, Section 3.1, item S6";
 leaf max-wait {
 type uint16 {
 range "1..max";
 }
 units seconds;
 default 30;
 description
 "Sets the amount of time in seconds after which
 if no data has been received from the TLS
 client, a TLS-level message will be sent to
 test the aliveness of the TLS client.";
 }
 leaf max-attempts {
 type uint8;
 default 3;
 description
 "Sets the maximum number of sequential keep-alive
 messages that can fail to obtain a response from
 the TLS client before assuming the TLS client is
 no longer alive.";
 }
 }
 }

Watsen & Schoenwaelder Expires May 7, 2017 [Page 16]

Internet-Draft RESTCONF Client and Server Models November 2016

 }
 case periodic-connection {
 container periodic {
 presence true;
 description
 "Periodically connect to the RESTCONF client, so that
 the RESTCONF client may deliver messages pending for
 the RESTCONF server. The client must close the
 connection when it’s ready to release it. Once the
 connection has been closed, the server will restart
 its timer until the next connection.";
 leaf reconnect-timeout {
 type uint16 {
 range "1..max";
 }
 units minutes;
 default 60;
 description
 "The maximum amount of unconnected time the
 RESTCONF server will wait before re-establishing
 a connection to the RESTCONF client. The
 RESTCONF server may initiate a connection to
 the RESTCONF client before this time if desired
 (e.g., to deliver a notification).";
 }
 }
 }
 }
 }
 container reconnect-strategy {
 description
 "The reconnection strategy directs how a RESTCONF server
 reconnects to a RESTCONF client after after discovering
 its connection to the client has dropped, even if due to
 a reboot. The RESTCONF server starts with the specified
 endpoint and tries to connect to it max-attempts times
 before trying the next endpoint in the list (round
 robin).";
 leaf start-with {
 type enumeration {
 enum first-listed {
 description
 "Indicates that reconnections should start with
 the first endpoint listed.";
 }
 enum last-connected {
 description
 "Indicates that reconnections should start with

Watsen & Schoenwaelder Expires May 7, 2017 [Page 17]

Internet-Draft RESTCONF Client and Server Models November 2016

 the endpoint last connected to. If no previous
 connection has ever been established, then the
 first endpoint configured is used. RESTCONF
 servers SHOULD be able to remember the last
 endpoint connected to across reboots.";
 }
 }
 default first-listed;
 description
 "Specifies which of the RESTCONF client’s endpoints the
 RESTCONF server should start with when trying to connect
 to the RESTCONF client.";
 }
 leaf max-attempts {
 type uint8 {
 range "1..max";
 }
 default 3;
 description
 "Specifies the number times the RESTCONF server tries to
 connect to a specific endpoint before moving on to the
 next endpoint in the list (round robin).";
 }
 }
 }
 }
 }

 grouping cert-maps-grouping {
 description
 "A grouping that defines a container around the
 cert-to-name structure defined in RFC 7407.";
 container cert-maps {
 uses x509c2n:cert-to-name;
 description
 "The cert-maps container is used by a TLS-based RESTCONF
 server to map the RESTCONF client’s presented X.509
 certificate to a RESTCONF username. If no matching and
 valid cert-to-name list entry can be found, then the
 RESTCONF server MUST close the connection, and MUST NOT
 accept RESTCONF messages over it.";
 reference
 "RFC XXXX: The RESTCONF Protocol";
 }
 }

Watsen & Schoenwaelder Expires May 7, 2017 [Page 18]

Internet-Draft RESTCONF Client and Server Models November 2016

 grouping endpoints-container {
 description
 "This grouping is used by tls container for call-home
 configurations.";
 container endpoints {
 description
 "Container for the list of endpoints.";
 list endpoint {
 key name;
 min-elements 1;
 ordered-by user;
 description
 "User-ordered list of endpoints for this RESTCONF client.
 Defining more than one enables high-availability.";
 leaf name {
 type string;
 description
 "An arbitrary name for this endpoint.";
 }
 leaf address {
 type inet:host;
 mandatory true;
 description
 "The IP address or hostname of the endpoint. If a
 hostname is configured and the DNS resolution results
 in more than one IP address, the RESTCONF server
 will process the IP addresses as if they had been
 explicitly configured in place of the hostname.";
 }
 leaf port {
 type inet:port-number;
 description
 "The IP port for this endpoint. The RESTCONF server will
 use the IANA-assigned well-known port if no value is
 specified.";
 }
 }
 }
 }

 }

 <CODE ENDS>

Watsen & Schoenwaelder Expires May 7, 2017 [Page 19]

Internet-Draft RESTCONF Client and Server Models November 2016

4. Security Considerations

5. IANA Considerations

5.1. The IETF XML Registry

 This document registers two URIs in the IETF XML registry [RFC2119].
 Following the format in [RFC3688], the following registrations are
 requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-restconf-client
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-restconf-server
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

5.2. The YANG Module Names Registry

 This document registers two YANG modules in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registrations are requested:

 name: ietf-restconf-client
 namespace: urn:ietf:params:xml:ns:yang:ietf-restconf-client
 prefix: ncc
 reference: RFC XXXX

 name: ietf-restconf-server
 namespace: urn:ietf:params:xml:ns:yang:ietf-restconf-server
 prefix: ncs
 reference: RFC XXXX

6. Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Benoit Claise, Mehmet Ersue, David Lamparter, Alan Luchuk,
 Ladislav Lhotka, Radek Krejci, Tom Petch, Phil Shafer, Sean Turner,
 and Bert Wijnen.

 Juergen Schoenwaelder and was partly funded by Flamingo, a Network of
 Excellence project (ICT-318488) supported by the European Commission
 under its Seventh Framework Programme.

Watsen & Schoenwaelder Expires May 7, 2017 [Page 20]

Internet-Draft RESTCONF Client and Server Models November 2016

7. References

7.1. Normative References

 [draft-ietf-netconf-keystore]
 Watsen, K., "Keystore Model", draft-ieft-netconf-
 keystore-00 (work in progress), 2016,
 <https://datatracker.ietf.org/html/draft-ieft-netconf-
 keystore>.

 [draft-ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ieft-netconf-restconf-13 (work in
 progress), 2016, <https://datatracker.ietf.org/html/draft-
 ieft-netconf-restconf>.

 [draft-ietf-netconf-tls-client-server]
 Watsen, K., "TLS Client and Server Models", draft-ieft-
 netconf-tls-client-server-00 (work in progress), 2016,
 <https://datatracker.ietf.org/html/draft-ieft-netconf-tls-
 client-server>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <http://www.rfc-editor.org/info/rfc6991>.

 [RFC7407] Bjorklund, M. and J. Schoenwaelder, "A YANG Data Model for
 SNMP Configuration", RFC 7407, DOI 10.17487/RFC7407,
 December 2014, <http://www.rfc-editor.org/info/rfc7407>.

7.2. Informative References

 [draft-ietf-netconf-call-home]
 Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 draft-ieft-netconf-call-home-17 (work in progress), 2015,
 <https://datatracker.ietf.org/html/draft-ieft-netconf-
 call-home-17>.

Watsen & Schoenwaelder Expires May 7, 2017 [Page 21]

Internet-Draft RESTCONF Client and Server Models November 2016

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

Watsen & Schoenwaelder Expires May 7, 2017 [Page 22]

Internet-Draft RESTCONF Client and Server Models November 2016

Appendix A. Change Log

A.1. server-model-09 to 00

 o This draft was split out from draft-ietf-netconf-server-model-09.

 o Added in new features ’listen’ and ’call-home’ so future
 transports can be augmented in.

Appendix B. Open Issues

 Please see: https://github.com/netconf-wg/restconf-client-server/
 issues.

Authors’ Addresses

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

 Juergen Schoenwaelder
 Jacobs University Bremen

 EMail: j.schoenwaelder@jacobs-university.de

Watsen & Schoenwaelder Expires May 7, 2017 [Page 23]

NETCONF E. Voit
Internet-Draft A. Clemm
Intended status: Standards Track A. Gonzalez Prieto
Expires: April 2, 2017 A. Tripathy
 E. Nilsen-Nygaard
 Cisco Systems
 A. Bierman
 YumaWorks
 September 29, 2016

 Restconf and HTTP Transport for Event Notifications
 draft-ietf-netconf-restconf-notif-01

Abstract

 This document defines Restconf, HTTP2, and HTTP1.1 bindings for the
 transport Subscription requests and corresponding push updates.
 Being subscribed may be both Event Notifications and YANG Datastores.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 2, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Voit, et al. Expires April 2, 2017 [Page 1]

Internet-Draft Restconf-Notif September 2016

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Solution . 4
 3.1. Mechanisms for Subscription Establishment and Maintenance 4
 3.2. Dynamic YANG Subscription with RESTCONF control 5
 3.3. Subscription Multiplexing 8
 3.4. Encoded Subscription and Event Notification Examples . . 9
 3.5. Stream Discovery . 14
 4. Security Considerations 14
 5. Acknowledgments . 15
 6. References . 15
 6.1. Normative References 15
 6.2. Informative References 16
 Appendix A. Proxy YANG Subscription when the Subscriber and
 Receiver are different 17
 Appendix B. End-to-End Deployment Guidance 17
 B.1. Call Home . 17
 B.2. TLS Heartbeat . 18
 Appendix C. Issues being worked and resolved 18
 C.1. Unresolved Issues . 18
 C.2. Agreement in principal 18
 C.3. Resolved Issues . 18
 Appendix D. Changes between revisions 19
 Authors’ Addresses . 19

1. Introduction

 Mechanisms to support Event subscription and push are defined in
 [rfc5277bis]. Enhancements to [rfc5277bis] which enable YANG
 Datastore subscription and push are defined in [yang-push]. This
 document provides a transport specification for these protocols over
 Restconf and HTTP. Driving these requirements is [RFC7923].

 The streaming of Subscription Event Notifications has synergies with
 HTTP2 streams. Benefits which can be realized when transporting
 events directly HTTP2 [RFC7540] include:

 o Elimination of head-of-line blocking

 o Weighting and proportional dequeuing of Events from different
 subscriptions

Voit, et al. Expires April 2, 2017 [Page 2]

Internet-Draft Restconf-Notif September 2016

 o Explicit precedence in subscriptions so that events from one
 subscription must be sent before another dequeues

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Configured Subscription: a Subscription installed via a configuration
 interface which persists across reboots.

 Dynamic Subscription: a Subscription negotiated between Subscriber
 and Publisher via create, establish, modify, and delete RPC signaling
 messages.

 Event: an occurrence of something that may be of interest. (e.g., a
 configuration change, a fault, a change in status, crossing a
 threshold, status of a flow, or an external input to the system.)

 Event Notification: a set of information intended for a Receiver
 indicating that one or more Event(s) have occurred. Details of the
 Event(s) may be included within.

 Event Stream: a continuous, ordered set of Events grouped under an
 explicit criteria.

 Notification: the communication of an occurrence, perhaps triggered
 by the occurrence of an Event.

 Publisher: an entity responsible for streaming Event Notifications
 per the terms of a Subscription.

 Receiver: a target to which a Publisher pushes Event Notifications.
 For Dynamic Subscriptions, the Receiver and Subscriber will often be
 the same entity.

 Subscriber: an entity able to request and negotiate a contract for
 the receipt of Event Notifications from a Publisher

 Subscription: a contract between a Subscriber and a Publisher
 stipulating which information the Receiver wishes to have pushed from
 the Publisher without the need for further solicitation.

Voit, et al. Expires April 2, 2017 [Page 3]

Internet-Draft Restconf-Notif September 2016

3. Solution

 Event subscription is defined in [rfc5277bis], YANG Datastore
 subscription is defined in [yang-push]. This section specifies
 transport mechanisms applicable to both.

3.1. Mechanisms for Subscription Establishment and Maintenance

 There are three models for Subscription establishment and
 maintenance:

 1. Dynamic Subscription: Here the Subscriber and Receiver are the
 same. A Subscription ends with a subscription-terminated
 notification, or by a loss of transport connectivity.

 2. Configured Subscription: Receiver(s) are specified on Publisher
 in startup and running config. Subscription is not terminated
 except via an operations interface. (Subscriptions may be
 Suspended, with no Event Notifications sent however.)

 3. Proxy Subscription: Subscriber and Receiver are different.
 Subscription ends when a Subscription End-time is reached, or the
 Publisher process is restarted. A key difference between this
 and configured subscriptions (#2) is that configuration requests
 are made to RPCs which might evaluate run-time conditions much
 like in (#1). Typically direct configuration via (#2) will not
 go through the same sort of capacity and validation checks seen
 in (#1).

 The first two models are described in this section. The third is
 described in Appendix A. This third model will be moved into the
 body of this specification should the IETF community desire. In
 theory, all three models may be intermixed in a single deployment.

Voit, et al. Expires April 2, 2017 [Page 4]

Internet-Draft Restconf-Notif September 2016

 .---------------.
 | Publisher |
 ’---------------’
 ^ ^ | ^
 | | | |
 .-----Restconf----’ | | ’-----Restconf----.
 | .-----’ ’-HTTP-. |
 V | V |
 .-------------. .------------. .----------. .------------.
 | Subscriber+ | | Operations | | Receiver | | Subscriber |
 | Receiver | | /Config | ’----------’ ’------------’
 ’-------------’ ’------------’ ^ ^ ^
 ^ (out of scope) : : :
 : ^ : :...Model #3....:
 Model #1 :..Model #2...: (out of scope)

 Figure 1: Subscription Models

3.2. Dynamic YANG Subscription with RESTCONF control

 Dynamic Subscriptions for both [rfc5277bis] and its [yang-push]
 augmentations are configured and managed via signaling messages
 transported over [restconf]. These interactions will be accomplished
 via a Restconf POST into RPCs located on the Publisher. HTTP
 responses codes will indicate the results of the interaction with the
 Publisher. An HTTP status code of 200 is the proper response to a
 successful <establish-subscription> RPC call. The successful
 <establish-subscription> will result in a HTTP message with returned
 subscription URI on a logically separate mechanism than was used for
 the original Restconf POST. This mechanism would be via a parallel
 TCP connection in the case of HTTP 1.x, or in the case of HTTP2 via a
 separate HTTP stream within the HTTP connection. When a being
 returned by the Publisher, failure will be indicated by error codes
 transported in payload, as well as the return of negotiation
 parameters.

 Once established, streaming Event Notifications are then delivered
 via SSE for HTTP1.1 and via HTTP Data for HTTP2.

3.2.1. Call Flow for HTTP2

 Requests to [yang-push] augmented RPCs are sent on one or more HTTP2
 streams indicated by (a) in Figure 2. Event Notifications related to
 a single subscription are pushed on a unique logical channel (b). In
 the case below, a newly established subscription has its events
 pushed over HTTP2 stream (7).

Voit, et al. Expires April 2, 2017 [Page 5]

Internet-Draft Restconf-Notif September 2016

 +------------+ +------------+
Subscriber		Publisher
HTTP2 Stream		HTTP2 Stream
(a) (b)		(a) (b)
 +------------+ +------------+
 | Restconf POST (RPC:establish-subscription) |
 |--->|
 | HTTP 200 OK (URI)|
 |<---|
 | (7)HTTP POST (URI) (7)
 | |--->| |
 | | HTTP 200 OK|
 | |<---|
 | | HTTP Data (event-notif)|
 | |<---|
 | Restconf POST (RPC:modify-subscription) | |
 |--->| |
 | | HTTP 200 OK| |
 |<---| |
 | | HTTP Data (subscription-modified)|
 | |<---|
 | | HTTP Data (event-notif)|
 | |<---|
 | Restconf POST (RPC:delete-subscription) | |
 |--->| |
 | | HTTP 200 OK| |
 |<---| |
 | | HTTP Headers (end of stream)|
 | (/7)<---(/7)
 |

 Figure 2: Dynamic with HTTP2

3.2.2. Call flow for HTTP1.1

 Requests to [yang-push] RPCs are sent on the TCP connection indicated
 by (a). Event Notifications are pushed on a separate connection (b).
 This connection (b) will be used for all Event Notifications across
 all subscriptions.

Voit, et al. Expires April 2, 2017 [Page 6]

Internet-Draft Restconf-Notif September 2016

 +--------------+ +--------------+
Subscriber		Publisher
TCP connection		TCP connection
(a) (b)		(a) (b)
 +--------------+ +--------------+
 | Restconf POST (RPC:establish-subscription) |
 |--->|
 | HTTP 200 OK (URI)|
 |<---|
 | |HTTP GET (URI) | |
 | |--->|
 | | HTTP 200 OK|
 | |<---|
 | | SSE (event-notif)|
 | |<---|
 | Restconf POST (RPC:modify-subscription) | |
 |--->| |
 | | HTTP 200 OK| |
 |<---| |
 | | SSE (subscription-modified)|
 | |<---|
 | | SSE (event-notif)|
 | |<---|
 | Restconf POST (RPC:delete-subscription) | |
 |--->| |
 | | HTTP 200 OK| |
 |<---| |
 | | |
 | |

 Figure 3: Dynamic with HTTP1.1

3.2.3. Configured Subscription over HTTP2

 With a Configured Subscription, all information needed to establish a
 secure relationship with that Receiver is available on the Publisher.
 With this information, the Publisher will establish a secure
 transport connection with the Receiver and then begin pushing the
 Event Notifications to the Receiver. Since Restconf might not exist
 on the Receiver, it is not desirable to require that such Event
 Notifications be pushed with any dependency on Restconf. Nor is
 there value which Restconf provides on top of HTTP. Therefore in
 place of Restconf, a TLS secured HTTP2 Client connection must be
 established with an HTTP2 Server located on the Receiver. Event
 Notifications will then be sent as part of an extended HTTP POST to
 the Receiver.

Voit, et al. Expires April 2, 2017 [Page 7]

Internet-Draft Restconf-Notif September 2016

 POST messages will be addressed to HTTP augmentation code on the
 Receiver capable of accepting and responding to Event Notifications.
 The first POST message must be a subscription-started notification.
 Push update notifications must not be sent until the receipt of an
 HTTP 200 OK for this initial notification. The 200 OK will indicate
 that the Receiver is ready for Event Notifications. At this point a
 Subscription must be allocated its own HTTP2 stream. Figure 4
 depicts this message flow.

 +------------+ +------------+
Receiver		Publisher
HTTP2 Stream		HTTP2 Stream
(a) (b)		(a) (b)
 +------------+ +------------+
 | HTTP Post Headers, Data (sub-start, SubID)|
 |<---|
 | HTTP 200 OK |
 |--->|
 | | HTTP Post Headers, Data (event-notif)|
 | |<---|
 | | HTTP Data (event-notif)|
 | |<---|
 | | HTTP Data (sub-terminate)|
 | |<---|
 | |HTTP 200 OK |
 | |--->|

 Figure 4: Configured over HTTP2

 As the HTTP2 transport is available to the Receiver, the Publisher
 should:

 o take any subscription-priority and copy it into the HTTP2 stream
 priority, and

 o take a subscription-dependency if it has been provided and map the
 HTTP2 stream for the parent subscription into the HTTP2 stream
 dependency.

3.3. Subscription Multiplexing

 It is possible that updates might be delivered in a different
 sequence than generated. Reasons for this might include (but are not
 limited to):

 o replay of pushed updates

Voit, et al. Expires April 2, 2017 [Page 8]

Internet-Draft Restconf-Notif September 2016

 o temporary loss of transport connectivity, with update buffering
 and different dequeuing priorities per Subscription

 o population, marshalling and bundling of independent Subscription
 Updates, and

 Therefore each Event Notification will include a millisecond level
 timestamp to ensure that a Receiver understands the time when a that
 update was generated. Use of this timestamp can give an indication
 of the state of objects at a Publisher when state-entangled
 information is received across different subscriptions. The use of
 the latest Event Notification timestamp for a particular object
 update can introduce errors. So when state-entangled updates have
 inconsistent object values and temporally close timestamps, a
 Receiver might consider performing a GET to validate the current
 state of a Publisher.

3.4. Encoded Subscription and Event Notification Examples

 Transported updates will contain context data for one or more Event
 Notifications. Each transported Event Notification will contain
 several parameters:

3.4.1. Restconf Subscription and Events over HTTP1.1

 Subscribers can dynamically learn whether a RESTCONF server supports
 various types of Event or Yang datastore subscription capabilities.
 This is done by issuing an HTTP request OPTIONS, HEAD, or GET on the
 stream. Some examples building upon the Call flow for HTTP1.1 from
 Section 3.2.2 are:

 GET /restconf/data/ietf-restconf-monitoring:restconf-state/
 streams/stream=yang-push HTTP/1.1
 Host: example.com
 Accept: application/yang.data+xml

 If the server supports it, it may respond

Voit, et al. Expires April 2, 2017 [Page 9]

Internet-Draft Restconf-Notif September 2016

 HTTP/1.1 200 OK
 Content-Type: application/yang.api+xml
 <stream xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf-monitoring">
 <name>yang-push</name>
 <description>Yang push stream</description>
 <access>
 <encoding>xml</encoding>
 <location>https://example.com/streams/yang-push-xml
 </location>
 </access>
 <access>
 <encoding>json</encoding>
 <location>https://example.com/streams/yang-push-json
 </location>
 </access>
 </stream>

 If the server does not support any form of subscription, it may
 respond

 HTTP/1.1 404 Not Found
 Date: Mon, 25 Apr 2012 11:10:30 GMT
 Server: example-server

 Subscribers can determine the URL to receive updates by sending an
 HTTP GET as a request for the "location" leaf with the stream list
 entry. The stream to use for may be selected from the Event Stream
 list provided in the capabilities exchange. Note that different
 encodings are supporting using different Event Stream locations. For
 example, the Subscriber might send the following request:

 GET /restconf/data/ietf-restconf-monitoring:restconf-state/
 streams/stream=yang-push/access=xml/location HTTP/1.1
 Host: example.com
 Accept: application/yang.data+xml

 The Publisher might send the following response:

 HTTP/1.1 200 OK
 Content-Type: application/yang.api+xml
 <location
 xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf-monitoring">
 https://example.com/streams/yang-push-xml
 </location>

 To subscribe and start receiving updates, the subscriber can then
 send an HTTP GET request for the URL returned by the Publisher in the
 request above. The accept header must be "text/event-stream". The

Voit, et al. Expires April 2, 2017 [Page 10]

Internet-Draft Restconf-Notif September 2016

 Publisher uses the Server Sent Events [W3C-20150203] transport
 strategy to push filtered Event Notifications from the Event stream.

 The Publisher MUST support individual parameters within the POST
 request body for all the parameters of a subscription. The only
 exception is the encoding, which is embedded in the URI. An example
 of this is:

 // subtree filter = /foo
 // periodic updates, every 5 seconds
 POST /restconf/operations/ietf-event-notifications:
 establish-subscription HTTP/1.1
 Host: example.com
 Content-Type: application/yang-data+json

 {
 "ietf-event-notifications:input" : {
 ?stream?: ?push-data"
 ?period" : 5,
 "xpath-filter" : ?/ex:foo[starts-with(?bar?.?some’]"
 }
 }

 Should the publisher not support the requested subscription, it may
 reply:

Voit, et al. Expires April 2, 2017 [Page 11]

Internet-Draft Restconf-Notif September 2016

 HTTP/1.1 501 Not Implemented
 Date: Mon, 23 Apr 2012 17:11:00 GMT
 Server: example-server
 Content-Type: application/yang.errors+xml
 <errors xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf">
 <error>
 <error-type>application</error-type>
 <error-tag>operation-not-supported</error-tag>
 <error-severity>error</error-severity>
 <error-message>Xpath filters not supported</error-message>
 <error-info>
 <supported-subscription xmlns="urn:ietf:params:xml:ns:
 netconf:datastore-push:1.0">
 <subtree-filter/>
 </supported-subscription>
 </error-info>
 </error>
 </errors>

 with an equivalent JSON encoding representation of:

 HTTP/1.1 501 Not Implemented
 Date: Mon, 23 Apr 2012 17:11:00 GMT
 Server: example-server
 Content-Type: application/yang.errors+json
 {
 "ietf-restconf:errors": {
 "error": {
 "error-type": "protocol",
 "error-tag": "operation-not-supported",
 "error-message": "Xpath filters not supported."
 "error-info": {
 "datastore-push:supported-subscription": {
 "subtree-filter": [null]
 }
 }
 }
 }
 }

 The following is an example of a pushed Event Notification data for
 the Subscription above. It contains a subtree with root foo that
 contains a leaf called bar:

Voit, et al. Expires April 2, 2017 [Page 12]

Internet-Draft Restconf-Notif September 2016

 XML encoding representation:
 <?xml version="1.0" encoding="UTF-8"?>
 <notification xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf">
 <subscription-id xmlns="urn:ietf:params:xml:ns:restconf:
 datastore-push:1.0">
 my-sub
 </subscription-id>
 <eventTime>2015-03-09T19:14:56.23Z</eventTime>
 <datastore-contents xmlns="urn:ietf:params:xml:ns:restconf:
 datastore-push:1.0">
 <foo xmlns="http://example.com/yang-push/1.0">
 <bar>some_string</bar>
 </foo>
 </datastore-contents>
 </notification>

 Or with the equivalent YANG over JSON encoding representation as
 defined in [RFC7951]:

 {
 "ietf-restconf:notification": {
 "datastore-push:subscription-id": "my-sub",
 "eventTime": "2015-03-09T19:14:56.23Z",
 "datastore-push:datastore-contents": {
 "example-mod:foo": { "bar": "some_string" }
 }
 }
 }

 To modify a Subscription, the subscriber issues another POST request
 on the provided URI using the same subscription-id as in the original
 request. For example, to modify the update period to 10 seconds, the
 subscriber may send:

 POST /restconf/operations/ietf-event-notifications:
 modify-subscription HTTP/1.1
 Host: example.com
 Content-Type: application/yang-data+json

 {
 "ietf-event-notifications:input" : {
 ?subscription-id?: 100,
 ?period" : 10
 }
 }

Voit, et al. Expires April 2, 2017 [Page 13]

Internet-Draft Restconf-Notif September 2016

 To delete a Subscription, the Subscriber issues a DELETE request on
 the provided URI using the same subscription-id as in the original
 request

3.4.2. Event Notification over HTTP2

 The basic encoding will look as below. It will consists of a JSON
 representation wrapped in an HTTP2 header.

 HyperText Transfer Protocol 2
 Stream: HEADERS, Stream ID: 5
 Header: :method: POST
 Stream: HEADERS, Stream ID: 5

 {
 "ietf-yangpush:notification": {
 "datastore-push:subscription-id": "my-sub",
 "eventTime": "2015-03-09T19:14:56.23Z",
 "datastore-push:datastore-contents": {
 "foo": { "bar": "some_string" }
 }
 }
 }

3.5. Stream Discovery

 Relevant for Dynamic Subscriptions, this will be accomplished as
 specified in [restconf] section 6.2. The namespace chosen will be
 the same as how stream names are acquired for NETCONF, and so that
 backwards compatibility can be maintained without replicating this
 information.

 As per [restconf] section 6.3, RESTCONF clients can determine the URL
 for the subscription resource (to receive notifications) by sending
 an HTTP GET request for the "location" leaf with the stream list
 entry.

4. Security Considerations

 Subscriptions could be used to intentionally or accidentally overload
 the resources of a Publisher. For this reason, it is important that
 the Publisher has the ability to prioritize the establishment and
 push of Event Notifications where there might be resource exhaust
 potential. In addition, a server needs to be able to suspend
 existing Subscriptions when needed. When this occurs, the
 subscription status must be updated accordingly and the Receivers
 notified.

Voit, et al. Expires April 2, 2017 [Page 14]

Internet-Draft Restconf-Notif September 2016

 A Subscription could be used to attempt retrieve information for
 which a Receiver has no authorized access. Therefore it is important
 that data pushed via a Subscription is authorized equivalently with
 regular data retrieval operations. Data being pushed to a Receiver
 needs therefore to be filtered accordingly, just like if the data
 were being retrieved on-demand. The Netconf Authorization Control
 Model [RFC6536] applies even though the transport is not NETCONF.

 One or more Publishers of Configured Subscriptions could be used to
 overwhelm a Receiver which doesn’t even support Subscriptions. There
 are two protections here. First Event Notifications for Configured
 Subscriptions MUST only be transmittable over Encrypted transports.
 Clients which do not want pushed Event Notifications need only
 terminate or refuse any transport sessions from the Publisher.
 Second, the HTTP transport augmentation on the Receiver must send an
 HTTP 200 OK to a subscription started notification before the
 Publisher starts streaming any events.

 One or more Publishers could overwhelm a Receiver which is unable to
 control or handle the volume of Event Notifications received. In
 deployments where this might be a concern, HTTP2 transport such as
 HTTP2) should be selected.

5. Acknowledgments

 We wish to acknowledge the helpful contributions, comments, and
 suggestions that were received from: Susan Hares, Tim Jenkins, Balazs
 Lengyel, Kent Watsen, Michael Scharf, and Guangying Zheng.

6. References

6.1. Normative References

 [restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", March 2016, <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-restconf/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6520] Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) Heartbeat Extension", RFC 6520,
 DOI 10.17487/RFC6520, February 2012,
 <http://www.rfc-editor.org/info/rfc6520>.

Voit, et al. Expires April 2, 2017 [Page 15]

Internet-Draft Restconf-Notif September 2016

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [RFC7923] Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <http://www.rfc-editor.org/info/rfc7923>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <http://www.rfc-editor.org/info/rfc7951>.

6.2. Informative References

 [call-home]
 Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 December 2015, <https://tools.ietf.org/html/draft-ietf-
 netconf-call-home-17>.

 [rfc5277bis]
 Gonzalez Prieto, A., Clemm, A., Voit, E., Prasad Tripathy,
 A., and E. Nilsen-Nygaard, "NETCONF Event Notifications",
 September 2016, <https://datatracker.ietf.org/doc/draft-
 ietf-netconf-rfc5277bis/>.

 [W3C-20150203]
 "Server-Sent Events, World Wide Web Consortium CR CR-
 eventsource-20121211", February 2015,
 <https://www.w3.org/TR/2015/REC-eventsource-20150203/>.

 [yang-push]
 Clemm, A., Voit, E., Gonzalez Prieto, A., Prasad Tripathy,
 A., and E. Nilsen-Nygaard, "Subscribing to YANG datastore
 push updates", June 2016,
 <https://datatracker.ietf.org/doc/draft-ietf-netconf-yang-
 push/>.

Voit, et al. Expires April 2, 2017 [Page 16]

Internet-Draft Restconf-Notif September 2016

Appendix A. Proxy YANG Subscription when the Subscriber and Receiver
 are different

 The properties of Dynamic and Configured Subscriptions can be
 combined to enable deployment models where the Subscriber and
 Receiver are different. Such separation can be useful with some
 combination of:

 o An operator does not want the subscription to be dependent on the
 maintenance of transport level keep-alives. (Transport
 independence provides different scalability characteristics.)

 o There is not a transport session binding, and a transient
 Subscription needs to survive in an environment where there is
 unreliable connectivity with the Receiver and/or Subscriber.

 o An operator wants the Publisher to include highly restrictive
 capacity management and Subscription security mechanisms outside
 of domain of existing operational or programmatic interfaces.

 To build a Proxy Subscription, first the necessary information must
 be signaled as part of the <establish-subscription>. Using this set
 of Subscriber provided information; the same process described within
 section 3 will be followed. There is one exception. Only when an
 HTTP status code of 200 comes back from the receiver, will it inform
 the Subscriber of Subscription establishment success via its Restconf
 connection.

 After a successful establishment, if the Subscriber wishes to track
 the state of Receiver subscriptions, it may choose to place a
 separate on-change Subscription into the "Subscriptions" subtree of
 the YANG Datastore on the Publisher.

Appendix B. End-to-End Deployment Guidance

 Several technologies are expected to be seen within a deployment to
 achieve security and ease-of-use requirements. These are not
 necessary for an implementation of this specification, but will be
 useful to consider when considering the operational context.

B.1. Call Home

 Pub/Sub implementations should have the ability to transparently
 incorporate [call-home] so that secure TLS connections can originate
 from the desired device.

Voit, et al. Expires April 2, 2017 [Page 17]

Internet-Draft Restconf-Notif September 2016

B.2. TLS Heartbeat

 HTTP sessions might not quickly allow a Subscriber to recognize when
 the communication path has been lost from the Publisher. To
 recognize this, it is possible for a Receiver to establish a TLS
 heartbeat [RFC6520]. In the case where a TLS heartbeat is included,
 it should be sent just from Receiver to Publisher. Loss of the
 heartbeat should result in any Subscription related TCP sessions
 between those endpoints being torn down. The subscription can then
 attempt to re-establish.

Appendix C. Issues being worked and resolved

 (To be removed by RFC editor prior to publication)

C.1. Unresolved Issues

 RT3 - Do we include 3rd party signaled subscriptions within models
 that need to be supported generically, or for a particular type of
 transport.

 RT10 - Right now the examples show a YANG timestamp at the hundredths
 of a second level. But the yang-push draft is at seconds. And the
 requirements show at least milliseconds (if not more).

C.2. Agreement in principal

 RT4 - Need to add into document examples of 5277bis Event streams.
 Document only includes yang-push examples at this point.

 RT6 - We need to define encodings of rfc5277bis notifications.

C.3. Resolved Issues

 RT1 - Integration specifics for Restconf capability discovery on
 different types of Streams

 RT2 - In what way to we position Event notifications model in this
 document vs. current solution in Restconf.

 RT5 - Doesn’t make sense to use Restconf for Configured
 subscriptions. HTTP will be used.

 RT7 - HTTP native option doesn’t currently use SSE. But we should
 evaluate moving to that as possible. It will make development
 integration easier and more consistent.

Voit, et al. Expires April 2, 2017 [Page 18]

Internet-Draft Restconf-Notif September 2016

 RT8 - Once SSE starts, there will be no more Restconf interpretation
 of further signaling upon the connection. It is unclear how this can
 be made to work with modify and delete subscription. If it cannot, a
 method of sending events without SSE will be needed, although this
 would diverge from the existing Restconf mechanisms

 RT9 - For static subscriptions, perhaps we can use Restconf call home
 to originate an SSE connection. This assume RT8 & RT2 can be
 resolved with SSE.

Appendix D. Changes between revisions

 (To be removed by RFC editor prior to publication)

 v00 - v01

 o Removed the ability for more than one subscription to go to a
 single HTTP2 stream.

 o Updated call flows. Extensively.

 o SSE only used with Restconf and HTTP1.1 Dynamic Subscriptions

 o HTTP is not used to determine that a Receiver has gone silent and
 is not Receiving Event Notifications

 o Many clean-ups of wording and terminology

Authors’ Addresses

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Alexander Clemm
 Cisco Systems

 Email: alex@clemm.org

 Alberto Gonzalez Prieto
 Cisco Systems

 Email: albertgo@cisco.com

Voit, et al. Expires April 2, 2017 [Page 19]

Internet-Draft Restconf-Notif September 2016

 Ambika Prasad Tripathy
 Cisco Systems

 Email: ambtripa@cisco.com

 Einar Nilsen-Nygaard
 Cisco Systems

 Email: einarnn@cisco.com

 Andy Bierman
 YumaWorks

 Email: andy@yumaworks.com

Voit, et al. Expires April 2, 2017 [Page 20]
Voit, et al. Expires March 27, 2017 [Page 20]

NETCONF A. Clemm
Internet-Draft Sympotech
Intended status: Standards Track A. Gonzalez Prieto
Expires: April 30, 2017 E. Voit
 E. Nilsen-Nygaard
 A. Tripathy
 Cisco Systems
 S. Chisholm
 Ciena
 H. Trevino
 Cisco Systems
 October 27, 2016

 Subscribing to Event Notifications
 draft-ietf-netconf-rfc5277bis-01

Abstract

 This document defines capabilities and operations for subscribing to
 content and providing asynchronous notification message delivery on
 that content. Notification delivery can occur over a variety of
 protocols used commonly in conjunction with YANG, such as NETCONF and
 RESTCONF. The capabilities and operations defined in this document
 when using in conjunction with draft-ietf-netconf-netconf-event-
 notifications are intended to replace RFC 5277.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2017.

Clemm, et al. Expires April 30, 2017 [Page 1]

Internet-Draft Event Notifications October 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Motivation . 3
 1.2. Terminology . 4
 1.3. Solution Overview . 5
 2. Solution . 6
 2.1. Event Streams . 6
 2.2. Event Stream Discovery 7
 2.3. Filters . 7
 2.4. Subscription State Model at the Publisher 7
 3. Data Model Trees for Event Notifications 8
 4. Dynamic Subscriptions . 12
 4.1. Establishing a Subscription 12
 4.2. Modifying a Subscription 13
 4.3. Deleting a Subscription 13
 5. Configured Subscriptions 14
 5.1. Establishing a Configured Subscription 14
 5.2. Modifying a Configured Subscription 16
 5.3. Deleting a Configured Subscription 16
 6. Event (Data Plane) Notifications 17
 7. Control Plane Notifications 18
 7.1. replayComplete . 19
 7.2. notificationComplete 19
 7.3. subscription-started 19
 7.4. subscription-modified 19
 7.5. subscription-terminated 19
 7.6. subscription-suspended 20
 7.7. subscription-resumed 20
 8. Data Model for Event Notifications 20
 9. Backwards Compatibility 40
 10. Security Considerations 41
 11. Acknowledgments . 42

Clemm, et al. Expires April 30, 2017 [Page 2]

Internet-Draft Event Notifications October 2016

 12. References . 42
 12.1. Normative References 42
 12.2. Informative References 42
 Appendix A. Issues that are currently being worked and resolved 43
 A.1. Unresolved and yet-to-be addressed issues 43
 A.2. Agreement in principal 43
 A.3. Resolved Issues . 44
 Appendix B. Changes between revisions 44
 Authors’ Addresses . 45

1. Introduction

 This document defines mechanisms that provide an asynchronous message
 notification delivery service in a protocol-agnostic manner. This
 document defines capabilities and operations for providing
 asynchronous message notification delivery for notifications
 including those necessary to establish, monitor, and support
 subscriptions to notification delivery.

 Notification delivery can occur over a variety of protocols used
 commonly in conjunction with YANG, such as NETCONF [RFC6241] (defined
 in [I-D.ietf-netconf-netconf-event-notif]) and Restconf
 [I-D.ietf-netconf-restconf] (defined in
 [I-D.ietf-netconf-restconf-notif]). The capabilities and operations
 defined in this document are intended to replace RFC 5277, along with
 their mapping onto NETCONF transport.

1.1. Motivation

 The motivation for this work is to enable the sending of transport
 agnostic asynchronous notification messages driven by a YANG
 Subscription that are consistent with the data model (content) and
 security model. Predating this work was used within a NETCONF
 implementation. [RFC5277] which defined a limited defines a
 notification mechanism for for NETCONF. However, there are various
 [RFC5277] has limitations:, many of which have been exposed in
 [RFC7923].

 The scope of the work aims at meeting the operational needs of
 network subscriptions:

 o Ability to dynamically or statically subscribe to event
 notifications available on a publisher.

 o Ability to negotiate acceptable dynamic subscription parameters.

 o Ability to filter the subset of notifications to be pushed with
 stream-specific semantics.

Clemm, et al. Expires April 30, 2017 [Page 3]

Internet-Draft Event Notifications October 2016

 o Ability for the notification payload to be interpreted
 independently of the transport protocol. (In other words, the
 encoded notification fully describes itself.)

 o Mechanism to communicate the notifications.

 o Ability to replay locally logged notifications.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Configured subscription: A subscription installed via a configuration
 interface which persists across reboots.

 Dynamic subscription: A subscription agreed between subscriber and
 publisher via create, establish, modify, and delete RPC control plane
 signaling messages.

 Event: An occurrence of something that may be of interest. (e.g., a
 configuration change, a fault, a change in status, crossing a
 threshold, or an external input to the system.)

 Event notification: A set of information intended for a Receiver
 indicating that one or more Event(s) have occurred. Details of the
 Event(s) may be included within the Notification.

 Filter: Evaluation criteria, which may be applied against a targeted
 set of objects/events in a subscription. Information traverses the
 filter only if specified filter criteria are met.

 NACM: NETCONF Access Control Model.

 OAM: Operations, Administration, Maintenance.

 Publisher: An entity responsible for streaming Event Notifications
 per the terms of a Subscriptions

 Receiver: A target to which a publisher pushes event notifications.
 For dynamic subscriptions, the receiver and subscriber will often be
 the same entity.

 RPC: Remote Procedure Call.

 Stream (also referred to as "event stream"): A continuous ordered set
 of events grouped under an explicit criteria.

Clemm, et al. Expires April 30, 2017 [Page 4]

Internet-Draft Event Notifications October 2016

 Subscriber: An entity able to request and negotiate a contract for
 the receipt of event notifications from a publisher.

 Subscription: A contract with a publisher, stipulating which
 information receiver(s) wishes to have pushed from the publisher
 without the need for further solicitation.

1.3. Solution Overview

 This document describes mechanisms for subscribing and receiving
 event notifications from an event server publisher. This document
 builds on top of the capabilities defined in [RFC5277], extending
 them, and generalizing them to be protocol-agnostic.

 Some enhancements over RFC 5277 include the ability to have multiple
 subscriptions on a single transport session, to terminate a single
 subscriptions without terminating the transport session, and to
 modify existing subscriptions.

 These enhancements do not affect existing RFC 5277 subscribers that
 do not support these particular subscription requirements.

 The solution supports subscribing to event notifications using two
 mechanisms:

 1. Dynamic subscriptions, where a subscriber initiates a
 subscription negotiation with a publisher via RPC. A subscriber
 initiates a negotiation by issuing a subscription request. If
 the publisher wants to serve this request, it will accept it, and
 then start pushing event notifications as negotiated. If the
 publisher does not wish to serve it as requested, it may respond
 with subscription parameters which it would have accepted.

 2. Configured subscriptions, which is an optional mechanism that
 enables managing subscriptions via a configuration interface so
 that a publisher can send event notifications to configured
 receiver(s).

 Some key characteristics of configured and dynamic subscriptions
 include:

 o The lifetime of a dynamic subscription is limited by the lifetime
 of the subscriber session used to establish it. Typically loss of
 the transport session tears down any dependent dynamic
 subscriptions.

 o The lifetime of a configured subscription is driven by
 configuration being present on the running configuration. This

Clemm, et al. Expires April 30, 2017 [Page 5]

Internet-Draft Event Notifications October 2016

 implies configured subscriptions persist across reboots, and
 persists even when transport is unavailable. This also means
 configured subscriptions do not support negotiation.

 o Subscriptions can be modified or terminated at any point of their
 lifetime. configured subscriptions can be modified by any
 configuration client with write rights on the configuration of the
 subscription.

 Note that there is no mixing-and-matching of dynamic and configured
 subscriptions. Specifically, a configured subscription cannot be
 modified or deleted using RPC. Similarly, a subscription created via
 RPC cannot be modified through configuration operations.

 The publisher may decide to terminate a dynamic subscription at any
 time. Similarly, it may decide to temporarily suspend the sending of
 event notifications for either configured or dynamic subscriptions.
 Such termination or suspension may be driven by the publisher running
 out of resources to serve the subscription, or by internal errors on
 the publisher.

2. Solution

2.1. Event Streams

 An event stream is a set of events available for subscription from a
 publisher. It is out of the scope of this document to identify a)
 how streams are defined, b) how events are defined/generated, and c)
 how events are assigned to streams.

 That said, some event streams will be standardized whereas others may
 be vendor specific. One standardized event stream is the "NETCONF"
 notification event stream. The NETCONF event stream contains all
 NETCONF XML event notifications supported by the publisher, except
 for those belonging only to streams that explicitly indicate that
 they must be excluded from the NETCONF stream, such as notifications
 that serve OAM and signaling purposes.

 The following is a high-level description of the flow of a
 notification. Note that it does not mandate and/or preclude an
 implementation. As events are raised, they are assigned to streams.
 An event may be assigned to multiple streams. The event is
 distributed to subscribers and receivers based on the current
 subscriptions and access control. Access control is needed because
 if any receiver of that subscription does not have permission to
 receive an event, then it never makes it into a notification, and
 processing of the event is completed for that subscription.

Clemm, et al. Expires April 30, 2017 [Page 6]

Internet-Draft Event Notifications October 2016

2.2. Event Stream Discovery

 A publisher maintains a list of available event streams as
 operational data. This list contains both standardized and vendor-
 specific event streams. A client can retrieve this list like any
 other YANG-defined data, for example using the <get> operation when
 using NETCONF.

2.3. Filters

 a publisher implementation SHOULD support the ability to perform
 filtering of notification records per RFC 5277. (TODO: since 5277 is
 to be obsoleted, we should describe the filter here.)

2.4. Subscription State Model at the Publisher

 Below is the state machine of a subscription for the publisher. It
 is important to note that a subscription doesn’t exist at the
 publisher until it is accepted and made active. The mere request by
 a subscriber to establish a subscription is insufficient for that
 asserted subscription to be externally visible via this state
 machine.

 .-------.
 | start |
 ’-------’
 |
 establish
 |
 | .----------modify--------------.
 v v ’
 .-----------. .-----------.
 .--------. | |------>suspend------->| |
 modify ’| active | | suspended |
 ’--------->| |<----resume----<------| |
 ’-----------’ ’-----------’
 | |
 delete delete
 | |
 v |
 .-------. |
 | end |<-----------------------------’
 ’-------’

 Figure 1: Subscription states at publisher

 Of interest in this state machine are the following:

Clemm, et al. Expires April 30, 2017 [Page 7]

Internet-Draft Event Notifications October 2016

 o Successful <establish-subscription> or <modify-subscription>
 requests put the subscription into an active state.

 o Failed <modify-subscription> requests will leave the subscription
 in its previous state, with no visible change to any streaming
 updates.

 o A <delete-subscription> request will delete the entire
 subscription.

3. Data Model Trees for Event Notifications

 The YANG data model for event notifications is depicted in this
 section.

 module: ietf-event-notifications
 +--ro streams
 | +--ro stream* stream
 +--rw filters
 | +--rw filter* [filter-id]
 | +--rw filter-id filter-id
 | +--rw (filter-type)?
 | +--:(rfc5277)
 | +--rw filter?
 +--rw subscription-config {configured-subscriptions}?
 | +--rw subscription* [subscription-id]
 | +--rw subscription-id subscription-id
 | +--rw stream? stream
 | +--rw encoding? encoding
 | +--rw (filter-type)?
 | | +--:(rfc5277)
 | | | +--rw filter?
 | | +--:(by-reference)
 | | +--rw filter-ref? filter-ref
 | +--rw startTime? yang:date-and-time
 | +--rw stopTime? yang:date-and-time
 | +--rw receivers
 | | +--rw receiver* [address]
 | | +--rw address inet:host
 | | +--rw port inet:port-number
 | | +--rw protocol? transport-protocol
 | +--rw (push-source)?
 | +--:(interface-originated)
 | | +--rw source-interface? if:interface-ref
 | +--:(address-originated)
 | +--rw source-vrf? uint32
 | +--rw source-address inet:ip-address-no-zone
 +--ro subscriptions

Clemm, et al. Expires April 30, 2017 [Page 8]

Internet-Draft Event Notifications October 2016

 +--ro subscription* [subscription-id]
 +--ro subscription-id subscription-id
 +--ro configured-subscription?
 | empty {configured-subscriptions}?
 +--ro subscription-status? subscription-status
 +--ro stream? stream
 +--ro encoding? encoding
 +--ro (filter-type)?
 | +--:(rfc5277)
 | | +--ro filter?
 | +--:(by-reference)
 | +--ro filter-ref? filter-ref
 +--ro startTime? yang:date-and-time
 +--ro stopTime? yang:date-and-time
 +--ro receivers
 | +--ro receiver* [address]
 | +--ro address inet:host
 | +--ro port inet:port-number
 | +--ro protocol? transport-protocol
 +--ro (push-source)?
 +--:(interface-originated)
 | +--ro source-interface? if:interface-ref
 +--:(address-originated)
 +--ro source-vrf? uint32
 +--ro source-address inet:ip-address-no-zone

 rpcs:
 +---x establish-subscription
 | +---w input
 | | +---w stream? stream
 | | +---w encoding? encoding
 | | +---w (filter-type)?
 | | | +--:(rfc5277)
 | | | | +---w filter?
 | | | +--:(by-reference)
 | | | +---w filter-ref? filter-ref
 | | +---w startTime? yang:date-and-time
 | | +---w stopTime? yang:date-and-time
 | +--ro output
 | +--ro subscription-result subscription-result
 | +--ro (result)?
 | +--:(success)
 | | +--ro subscription-id subscription-id
 | +--:(no-success)
 | +--ro stream? stream
 | +--ro encoding? encoding
 | +--ro (filter-type)?
 | | +--:(rfc5277)

Clemm, et al. Expires April 30, 2017 [Page 9]

Internet-Draft Event Notifications October 2016

 | | | +--ro filter?
 | | +--:(by-reference)
 | | +--ro filter-ref? filter-ref
 | +--ro startTime? yang:date-and-time
 | +--ro stopTime? yang:date-and-time
 +---x create-subscription
 | +---w input
 | +---w stream? stream
 | +---w encoding? encoding
 | +---w (filter-type)?
 | | +--:(rfc5277)
 | | +---w filter?
 | +---w startTime? yang:date-and-time
 | +---w stopTime? yang:date-and-time
 +---x modify-subscription
 | +---w input
 | | +---w subscription-id? subscription-id
 | | +---w (filter-type)?
 | | | +--:(rfc5277)
 | | | | +---w filter?
 | | | +--:(by-reference)
 | | | +---w filter-ref? filter-ref
 | | +---w startTime? yang:date-and-time
 | | +---w stopTime? yang:date-and-time
 | +--ro output
 | +--ro subscription-result subscription-result
 | +--ro (result)?
 | +--:(success)
 | | +--ro subscription-id subscription-id
 | +--:(no-success)
 | +--ro stream? stream
 | +--ro encoding? encoding
 | +--ro (filter-type)?
 | | +--:(rfc5277)
 | | | +--ro filter?
 | | +--:(by-reference)
 | | +--ro filter-ref? filter-ref
 | +--ro startTime? yang:date-and-time
 | +--ro stopTime? yang:date-and-time
 +---x delete-subscription
 +---w input
 | +---w subscription-id subscription-id
 +--ro output
 +--ro subscription-result subscription-result

 notifications:
 +---n replay-complete
 | +--ro subscription-id subscription-id

Clemm, et al. Expires April 30, 2017 [Page 10]

Internet-Draft Event Notifications October 2016

 +---n notification-complete
 | +--ro subscription-id subscription-id
 +---n subscription-started
 | +--ro subscription-id subscription-id
 | +--ro stream? stream
 | +--ro encoding? encoding
 | +--ro (filter-type)?
 | | +--:(rfc5277)
 | | | +--ro filter?
 | | +--:(by-reference)
 | | +--ro filter-ref? filter-ref
 | +--ro startTime? yang:date-and-time
 | +--ro stopTime? yang:date-and-time
 +---n subscription-suspended
 | +--ro subscription-id subscription-id
 | +--ro reason? subscription-susp-reason
 +---n subscription-resumed
 | +--ro subscription-id subscription-id
 +---n subscription-modified
 | +--ro subscription-id subscription-id
 | +--ro stream? stream
 | +--ro encoding? encoding
 | +--ro (filter-type)?
 | | +--:(rfc5277)
 | | | +--ro filter?
 | | +--:(by-reference)
 | | +--ro filter-ref? filter-ref
 | +--ro startTime? yang:date-and-time
 | +--ro stopTime? yang:date-and-time
 +---n subscription-terminated
 +--ro subscription-id subscription-id
 +--ro reason? subscription-term-reason

 The data model is structured as follows:

 o "Streams" contains a list of event streams that are supported by
 the publisher and that can be subscribed to.

 o "Filters" contains a configurable list of filters that can be
 applied to a subscription. This allows users to reference an
 existing filter definition as an alternative to defining a filter
 inline for each subscription.

 o "Subscription-config" contains the configuration of configured
 subscriptions. The parameters of each configured subscription are
 a superset of the parameters of a dynamic subscription and use the
 same groupings. In addition, the configured subscriptions must

Clemm, et al. Expires April 30, 2017 [Page 11]

Internet-Draft Event Notifications October 2016

 also specify intended receivers and may specify the push source
 from which to send the stream of notification messages.

 o "Subscriptions" contains a list of all subscriptions on a
 publisher, both configured and dynamic. It can be used to
 retrieve information about the subscriptions which an publisher is
 serving.

 The data model also contains a number of notifications that allow a
 publisher to signal information about a subscription. Finally, the
 data model contains a number of RPC definitions that are used to
 manage dynamic subscriptions.

4. Dynamic Subscriptions

 Dynamic subscriptions are managed via RPC.

4.1. Establishing a Subscription

 This operation includes and extends the "create-subscription"
 operation defined in RFC 5277. It allows a subscriber to request the
 creation of a subscription both via RPC and configuration operations.
 When invoking the RPC, establish-subscription permits negotiating the
 subscription terms, changing them dynamically.

 The input parameters of the operation are those of create
 subscription plus:

 o filter-ref: filters that have been previously (and separately)
 configured can be referenced by a subscription. This mechanism
 enables the reuse of filters.

 o encoding: by default, updates are encoded using XML. Other
 encodings may be supported, such as JSON.

 If the publisher cannot satisfy the request, it sends a negative
 <subscription-result> element.

 If the subscriber has no authorization to establish the subscription,
 the <subscription-result> indicates an authorization error. If the
 request is rejected because the publisher is not able to serve it,
 the publisher SHOULD include in the returned error what subscription
 parameters would have been accepted for the request when it was
 processed. However, they is no guarantee that subsequent requests
 with those parameters for this subscriber or others will be accepted.
 For instance, consider a subscription from
 [I-D.ietf-netconf-yang-push], which augments the establish-
 subscription with some additional parameters, including "period".

Clemm, et al. Expires April 30, 2017 [Page 12]

Internet-Draft Event Notifications October 2016

 Subscription requests will fail if a filter with invalid syntax is
 provided or if the name of a non-existent stream is provided.

4.2. Modifying a Subscription

 This operation permits modifying the terms of a dynamic subscription
 previously established. Subscriptions created by configuration
 cannot be modified. Dynamic subscriptions can be modified one or
 multiple times. If the publisher accepts the request, it immediately
 starts sending events based on the new terms, completely ignoring the
 previous ones. If the publisher rejects the request, the
 subscription remains as prior to the request. That is, the request
 has no impact whatsoever. The contents of negative responses to
 modify-subscription requests are the subset of the establish
 subscription request parameters which are allowed to be dynamically
 modified.

 Dynamic subscriptions established via RPC can only be modified (or
 deleted) via RPC using the same transport session used to establish
 that subscription.

 Configured subscriptions cannot be modified (or deleted) using RPCs.
 Instead, configured subscriptions are modified (or deleted) as part
 of regular configuration operations. Publishers MUST reject any
 attempts to modify (or delete) configured subscriptions via RPC.

4.3. Deleting a Subscription

 This operation permits canceling a subscription previously
 established. If the publisher accepts the request, it immediately
 stops sending events for the subscription. If the publisher rejects
 the request, all subscriptions remain as prior to the request. That
 is, the request has no impact whatsoever.

 Subscriptions created via RPC can only be deleted via RPC using the
 same transport session used for subscription establishment.
 Configured subscriptions cannot be deleted using RPCs. Instead,
 configured subscriptions are deleted as part of regular configuration
 operations. Publishers MUST reject any RPC attempt to delete
 configured subscriptions.

 The only parameter to delete-subscription is the identifier of the
 subscription to delete.

 If the publisher can satisfy the request, it sends an OK element.

 If the publisher cannot satisfy the request, it sends an error-rpc
 element.

Clemm, et al. Expires April 30, 2017 [Page 13]

Internet-Draft Event Notifications October 2016

5. Configured Subscriptions

 A configured subscription is a subscription installed via a
 configuration interface.

 Configured subscriptions persist across reboots, and persist even
 when transport is unavailable. This also means configured
 subscriptions do not support negotiation.

 Configured subscriptions can be modified by any configuration client
 with write permissions for the configuration of the subscription.
 Subscriptions can be modified or terminated at any point of their
 lifetime.

 Supporting configured subscriptions is optional and advertised using
 the "configured-subscriptions" feature.

 In addition to subscription parameters that apply to dynamic
 subscriptions, the following additional parameters apply to
 configured subscriptions:

 o One or more receiver IP addresses (and corresponding ports)
 intended as the destination for push updates for each
 subscription. In addition, the transport protocol for each
 destination may be defined.

 o Optional parameters to identify an egress interface or IP address
 / VRF where a subscription updates should be pushed from the
 publisher.

5.1. Establishing a Configured Subscription

 Configured subscriptions are established using configuration
 operations against the top-level subtree subscription-config. There
 are two key differences between RPC and configuration operations for
 subscription establishment. Firstly, configuration operations do not
 support negotiation while RPCs do. Secondly, while RPCs mandate that
 the subscriber establishing the subscription is the only receiver of
 the notifications, configuration operations permit specifying
 receivers independent of any tracked subscriber. Immediately after a
 subscription is successfully established, the publisher sends to its
 receivers a control-plane notification stating the subscription has
 been established (subscription-started).

 Because there is no explicit association with an existing transport
 session, configured configuration operations require additional
 parameters to indicate the receivers of the notifications and

Clemm, et al. Expires April 30, 2017 [Page 14]

Internet-Draft Event Notifications October 2016

 possibly the source of the notifications such as a specific egress
 interface.

 For example at subscription establishment, a client may send:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <subscription-config
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.1">
 <subscription>
 <subscription-id>
 1922
 </subscription-id>
 <stream>
 foo
 </stream>
 <receiver>
 <address>
 1.2.3.4
 </address>
 <port>
 1234
 </port>
 </receiver>
 </subscription>
 </subscription-config>
 </edit-config>
 </rpc>

 Figure 2: Establish configured subscription

 if the request is accepted, the publisher would reply:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

 Figure 3: Response to a successful configured subscription
 establishment

 if the request is not accepted because the publisher cannot serve it,
 the publisher may reply:

Clemm, et al. Expires April 30, 2017 [Page 15]

Internet-Draft Event Notifications October 2016

 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>resource-denied</error-tag>
 <error-severity>error</error-severity>
 <error-message xml:lang="en">
 Temporarily the publisher cannot serve this
 subscription due to the current workload.
 </error-message>
 </rpc-error>
 </rpc-reply>

 Figure 4: Response to a failed configured subscription establishment

5.2. Modifying a Configured Subscription

 Configured subscriptions can be modified using configuration
 operations against the top-level subtree subscription-config.

 Immediately after a subscription is successfully modified, the
 publisher sends to the existing receivers a control-plane
 notification stating the subscription has been modified (i.e.,
 subscription-modified).

 If the modification involved adding and/or removing receivers, those
 modified receivers are sent control-plane notifications, indicating
 they have been added (i.e, subscription-started to a specific
 receiver) or removed (i.e., subscription-terminated to a specific
 receiver.)

5.3. Deleting a Configured Subscription

 Subscriptions can be deleted using configuration operations against
 the top-level subtree subscription-config. For example, in RESTCONF:

 DELETE /subscription-config/subscription=1922 HTTP/1.1
 Host: example.com

 HTTP/1.1 204 No Content
 Date: Sun, 24 Jul 2016 11:23:40 GMT
 Server: example-server

 Figure 5: Deleting a configured subscription

 Immediately after a subscription is successfully deleted, the
 publisher sends to all receivers a control-plane notification stating
 the subscription has been terminated (subscription-terminated).

Clemm, et al. Expires April 30, 2017 [Page 16]

Internet-Draft Event Notifications October 2016

6. Event (Data Plane) Notifications

 Once a subscription has been set up, the publisher streams
 (asynchronously) the event notifications per the terms of the
 subscription. We refer to these as data plane notifications. For
 dynamic subscriptions set up via RPC operations, event notifications
 are sent over the session used to create or establish the
 subscription. For configured subscriptions, event notifications are
 sent over the specified connections.

 An event notification is sent to the receiver(s) when an event of
 interest (i.e., meeting the specified filtering criteria) has
 occurred. An event notification is a complete and well-formed XML
 document. Note that <notification> is not a Remote Procedure Call
 (RPC) method but rather the top-level element identifying the one-way
 message as a notification. Note that event notifications never
 trigger responses.

 The event notification always includes an <eventTime> element. It is
 the time the event was generated by the event source. This parameter
 is of type dateTime and compliant to [RFC3339]. Implementations must
 support time zones.

 The event notifications must also include the subscription-id if the
 establish-subscription was used in its establishment, or if it was
 configured via an operational interface.

 The event notification also contains notification-specific tagged
 content, if any.

 The following is an example of an event notification from [RFC7950]:

 notification link-failure {
 description "A link failure has been detected";
 leaf if-name {
 type leafref {
 path "/interface/name";
 }
 }
 leaf if-admin-status {
 type admin-status;
 }
 leaf if-oper-status {
 type oper-status;
 }
 }

 Figure 6: Definition of a data plane notification

Clemm, et al. Expires April 30, 2017 [Page 17]

Internet-Draft Event Notifications October 2016

 <notification
 xmlns=" urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <link-failure xmlns="http://acme.example.com/system">
 <if-name>so-1/2/3.0</if-name>
 <if-admin-status>up</if-admin-status>
 <if-oper-status>down</if-oper-status>
 </link-failure>
 </notification>

 Figure 7: Data plane notification

 The equivalent using json encoding would be

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <notification-contents-json>
 {
 "acme-system:link-failure": {
 "if-name": "so-1/2/3.0",
 "if-admin-status": "up",
 "if-oper-status": "down "
 }
 }
 </notification-contents-json>
 </notification>

 Figure 8: Data plane notification using JSON encoding

7. Control Plane Notifications

 In addition to data plane notifications, a publisher may send control
 plane notifications to indicate to receivers that an event related to
 the subscription management has occurred.

 Control plane notifications are unlike other notifications in that
 they are not general-purpose notifications. They cannot be filtered
 out, and they are delivered only to the receiver of a subscription.
 The definition of control plane notifications is distinct from other
 notifications by making use of a YANG extension tagging them as
 control plane notification.

 Control plane notifications include indications that a replay of
 notifications has been completed, that a subscription is done sending
 notifications because an end time has been reached, and that a
 subscription has started, been modified, been terminated, or been
 suspended. They are described in the following subsections.

Clemm, et al. Expires April 30, 2017 [Page 18]

Internet-Draft Event Notifications October 2016

7.1. replayComplete

 This notification is originally defined in [RFC5277]. It is sent to
 indicate that all of the replay notifications have been sent. This
 notification must not be sent for any other reason.

 In the case of a subscription without a stop time or a stop time
 which has not been reached, after the <replayComplete> notification
 has been sent, it can be expected that any notifications generated
 since the start of the subscription creation will be sent, followed
 by notifications in sequence as they arise naturally within the
 system.

7.2. notificationComplete

 This notification is originally defined in [RFC5277]. It is sent to
 indicate that a subscription, which includes a stop time, has
 finished passing events.

7.3. subscription-started

 This notification indicates that a configured subscription has
 started and data updates are beginning to be sent. This notification
 includes the parameters of the subscription, except for the
 receiver(s) addressing information and push-source information. Note
 that for RPC-based subscriptions, no such notifications are sent.

7.4. subscription-modified

 This notification indicates that a configured subscription has been
 modified successfully. This notification includes the parameters of
 the subscription, except for the receiver(s) addressing information
 and push-source information. Note that for RPC-based subscriptions,
 no such notifications are sent.

7.5. subscription-terminated

 This notification indicates that a subscription has been terminated
 by the publisher. The notification includes the reason for the
 termination. The publisher may decide to terminate a subscription
 when it is running out of resources for serving it, an internal error
 occurs, etc. Publisher-driven terminations are notified to all
 receivers. The management plane can also terminate configured
 subscriptions using configuration operations.

 Subscribers can terminate via RPC subscriptions established via RPC.
 In such cases, no subscription-terminated notifications are sent.

Clemm, et al. Expires April 30, 2017 [Page 19]

Internet-Draft Event Notifications October 2016

7.6. subscription-suspended

 This notification indicates that a publisher has suspended a
 subscription. The notification includes the reason for the
 suspension. A possible reason is the lack of resources to serve it.
 No further data plane notifications will be sent until the
 subscription resumes. Suspensions are notified to the subscriber (in
 the case of dynamic subscriptions) and all receivers (in the case of
 configured subscriptions).

7.7. subscription-resumed

 This notification indicates that a previously suspended dubscription
 has been resumed. Data plane notifications generated in the future
 will be sent after the subscription terms. Resumptions are notified
 to the subscriber (in the case of dynamic subscriptions) and all
 receivers (in the case of configured subscriptions).

8. Data Model for Event Notifications

 <CODE BEGINS> file "ietf-event-notifications@2016-10-27.yang"
 module ietf-event-notifications {
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-event-notifications";

 prefix notif-bis;

 import ietf-yang-types {
 prefix yang;
 }
 import ietf-inet-types {
 prefix inet;
 }
 import ietf-interfaces {
 prefix if;
 }

 organization "IETF";
 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nokia.com>

Clemm, et al. Expires April 30, 2017 [Page 20]

Internet-Draft Event Notifications October 2016

 Editor: Alexander Clemm
 <mailto:alex@sympotech.com>

 Editor: Alberto Gonzalez Prieto
 <mailto:albertgo@cisco.com>

 Editor: Eric Voit
 <mailto:evoit@cisco.com>

 Editor: Einar Nilsen-Nygaard
 <mailto:einarnn@cisco.com>

 Editor: Ambika Prasad Tripathy
 <mailto:ambtripa@cisco.com>

 Editor: Sharon Chisholm
 <mailto:schishol@ciena.com>

 Editor: Hector Trevino
 <mailto:htrevino@cisco.com";

 description
 "This module contains conceptual YANG specifications
 for NETCONF Event Notifications.";

 revision 2016-10-27 {
 description
 "Tweaks to remove two notifications,
 RPC for create subscription refined with stream default,
 new grouping to eliminate some dymanically modifiable
 parameters in modifiy subscription RPC";
 reference
 "draft-ietf-netconf-rfc5277bis-01";
 }

 /*
 * FEATURES
 */

 feature json {
 description
 "This feature indicates that JSON encoding of notifications
 is supported.";
 }

 feature configured-subscriptions {
 description

Clemm, et al. Expires April 30, 2017 [Page 21]

Internet-Draft Event Notifications October 2016

 "This feature indicates that management plane configuration
 of subscription is supported.";
 }

 /*
 * EXTENSIONS
 */

 extension control-plane-notif {
 description
 "This statement applies only to notifications.
 It indicates that the notification is a control-plane
 notification (aka OAM notification). Therefore it does
 not participate in a regular event stream and does not
 need to be specifically subscribed to.";
 }

 /*
 * IDENTITIES
 */

 /* Identities for streams */
 identity stream {
 description
 "Base identity to represent a generic stream of event
 notifications.";
 }

 identity NETCONF {
 base stream;
 description
 "Default NETCONF event stream, containing events based on
 notifications defined as YANG modules that are supported
 by the system.";
 }

 /* Identities for subscription results */
 identity subscription-result {
 description
 "Base identity for RPC responses to requests surrounding
 management (e.g. creation, modification, deletion) of
 subscriptions.";
 }

 identity ok {
 base subscription-result;
 description
 "OK - RPC was successful and was performed as requested.";

Clemm, et al. Expires April 30, 2017 [Page 22]

Internet-Draft Event Notifications October 2016

 }

 identity error {
 base subscription-result;
 description
 "RPC was not successful.
 Base identity for error return codes.";
 }

 identity error-no-such-subscription {
 base error;
 description
 "A subscription with the requested subscription ID
 does not exist.";
 }

 identity error-no-such-option {
 base error;
 description
 "A requested parameter setting is not supported.";
 }

 identity error-insufficient-resources {
 base error;
 description
 "The publisher has insufficient resources to support the
 subscription as requested.";
 }

 identity error-configured-subscription {
 base error;
 description
 "Cannot apply RPC to a configured subscription, i.e.
 to a subscription that was not established via RPC.";
 }

 identity error-other {
 base error;
 description
 "An unspecified error has occurred (catch all).";
 }

 /* Identities for subscription stream status */
 identity subscription-stream-status {
 description
 "Base identity for the status of subscriptions and
 datastreams.";
 }

Clemm, et al. Expires April 30, 2017 [Page 23]

Internet-Draft Event Notifications October 2016

 identity active {
 base subscription-stream-status;
 description
 "Status is active and healthy.";
 }

 identity inactive {
 base subscription-stream-status;
 description
 "Status is inactive, for example outside the
 interval between start time and stop time.";
 }

 identity suspended {
 base subscription-stream-status;
 description
 "The status is suspended, meaning that the publisher
 is currently unable to provide the negotiated updates
 for the subscription.";
 }

 identity in-error {
 base subscription-stream-status;
 description
 "The status is in error or degraded, meaning that
 stream and/or subscription is currently unable to provide
 the negotiated notifications.";
 }

 /* Identities for subscription errors */
 identity subscription-errors {
 description
 "Base identity for subscription error status.
 This identity is not to be confused with error return
 codes for RPCs";
 }

 identity internal-error {
 base subscription-errors;
 description
 "Subscription failures caused by server internal error.";
 }

 identity no-resources {
 base subscription-errors;
 description
 "Lack of resources, e.g. CPU, memory, bandwidth";
 }

Clemm, et al. Expires April 30, 2017 [Page 24]

Internet-Draft Event Notifications October 2016

 identity subscription-deleted {
 base subscription-errors;
 description
 "The subscription was terminated because the subscription
 was deleted.";
 }

 identity other {
 base subscription-errors;
 description
 "Fallback reason - any other reason";
 }

 /* Identities for encodings */
 identity encodings {
 description
 "Base identity to represent data encodings";
 }

 identity encode-xml {
 base encodings;
 description
 "Encode data using XML";
 }

 identity encode-json {
 base encodings;
 description
 "Encode data using JSON";
 }

 /* Identities for transports */
 identity transport {
 description
 "An identity that represents a transport protocol for
 event notifications";
 }

 identity netconf {
 base transport;
 description
 "Netconf notifications as a transport.";
 }

 /*
 * TYPEDEFs
 */

Clemm, et al. Expires April 30, 2017 [Page 25]

Internet-Draft Event Notifications October 2016

 typedef subscription-id {
 type uint32;
 description
 "A type for subscription identifiers.";
 }

 typedef filter-id {
 type uint32;
 description
 "A type to identify filters which can be associated with a
 subscription.";
 }

 typedef subscription-result {
 type identityref {
 base subscription-result;
 }
 description
 "The result of a subscription operation";
 }

 typedef subscription-term-reason {
 type identityref {
 base subscription-errors;
 }
 description
 "Reason for a publisher to terminate a subscription.";
 }

 typedef subscription-susp-reason {
 type identityref {
 base subscription-errors;
 }
 description
 "Reason for a publisher to suspend a subscription.";
 }

 typedef encoding {
 type identityref {
 base encodings;
 }
 description
 "Specifies a data encoding, e.g. for a data subscription.";
 }

 typedef subscription-status {
 type identityref {
 base subscription-stream-status;

Clemm, et al. Expires April 30, 2017 [Page 26]

Internet-Draft Event Notifications October 2016

 }
 description
 "Specifies the status of a subscription or datastream.";
 }

 typedef transport-protocol {
 type identityref {
 base transport;
 }
 description
 "Specifies transport protocol used to send notifications to a
 receiver.";
 }

 typedef push-source {
 type enumeration {
 enum "interface-originated" {
 description
 "Notifications will be sent from a specific interface on
 a publisher";
 }
 enum "address-originated" {
 description
 "Notifications will be sent from a specific address on a
 publisher";
 }
 }
 description
 "Specifies from where notifications will be sourced when
 being sent by the publisher.";
 }

 typedef stream {
 type identityref {
 base stream;
 }
 description
 "Specifies a system-provided datastream.";
 }

 typedef filter-ref {
 type leafref {
 path "/notif-bis:filters/notif-bis:filter/notif-bis:filter-id";
 }
 description
 "This type is used to reference a filter.";
 }

Clemm, et al. Expires April 30, 2017 [Page 27]

Internet-Draft Event Notifications October 2016

 /*
 * GROUPINGS
 */

 grouping base-filter {
 description
 "This grouping defines the base for filters for
 notification events.
 It includes the filter defined in 5277 and
 it enables extending filtering to other
 types of filters";
 choice filter-type {
 description
 "A filter needs to be a single filter of a given type.
 Mixing and matching of multiple filters does not occur
 at the level of this grouping.";
 case rfc5277 {
 anyxml filter {
 description
 "Filter per RFC 5277. Notification filter.
 If a filter element is specified to look for data of a
 particular value, and the data item is not present
 within a particular event notification for its value to
 be checked against, the notification will be filtered
 out. For example, if one were to check for
 ’severity=critical’ in a configuration event
 notification where this field was not supported, then
 the notification would be filtered out. For subtree
 filtering, a non-empty node set means that the filter
 matches. For XPath filtering, the mechanisms defined
 in [XPATH] should be used to convert the returned
 value to boolean.";
 }
 }
 }
 }

 grouping subscription-info-basic-non-modifiable {
 description
 "This grouping describes the information in a basic
 subscription request.";
 leaf stream {
 type stream;
 description
 "Indicates which stream of events is of interest.
 If not present, events in the default NETCONF stream
 will be sent.";
 }

Clemm, et al. Expires April 30, 2017 [Page 28]

Internet-Draft Event Notifications October 2016

 leaf encoding {
 type encoding;
 default "encode-xml";
 description
 "The type of encoding for the subscribed data.
 Default is XML";
 }
 }

 grouping subscription-info-basic-modifiable {
 description
 "This grouping describes some objects which may be changed
 in a subscription via an RPC.";
 uses base-filter;
 leaf startTime {
 type yang:date-and-time;
 description
 "Used to trigger the replay feature
 and indicate that the replay should start at the time
 specified. If <startTime> is not present, this is not a
 replay subscription. It is not valid to specify start
 times that are later than the current time. If the
 <startTime> specified is earlier than the log can support,
 the replay will begin with the earliest available
 notification. This parameter is of type dateTime and
 compliant to [RFC3339]. Implementations must
 support time zones.";
 }
 leaf stopTime {
 type yang:date-and-time;
 must "current() > ../startTime" {
 description
 "stopTime must be used with and be later than <startTime>";
 }
 description
 "Used with the optional replay feature to indicate the
 newest notifications of interest. If <stopTime> is
 not present, the notifications will continue until the
 subscription is terminated. Must be used with and be
 later than <startTime>. Values of <stopTime> in the
 future are valid. This parameter is of type dateTime and
 compliant to [RFC3339]. Implementations must support time
 zones.";
 }
 }

 grouping subscription-info-all-modifiable {
 description

Clemm, et al. Expires April 30, 2017 [Page 29]

Internet-Draft Event Notifications October 2016

 "This grouping describes all rpc modifiable objects in a
 subscription.";
 uses subscription-info-basic-modifiable {
 augment "filter-type" {
 description
 "Post-5277 subscriptions allow references to existing
 filters";
 case by-reference {
 description
 "Incorporate a filter that has been configured
 separately.";
 leaf filter-ref {
 type filter-ref;
 description
 "References filter which is associated with the
 subscription.";
 }
 }
 }
 }
 }

 grouping subscription-info {
 description
 "This grouping describes information concerning a
 subscription.";
 uses subscription-info-basic-non-modifiable;
 uses subscription-info-all-modifiable;
 }

 grouping push-source-info {
 description
 "Defines the sender source from which notifications
 for a configured subscription are sent.";
 choice push-source {
 description
 "Identifies the egress interface on the Publisher from
 which notifications will or are being sent.";
 case interface-originated {
 description
 "When the push source is out of an interface on the
 Publisher established via static configuration.";
 leaf source-interface {
 type if:interface-ref;
 description
 "References the interface for notifications.";
 }
 }

Clemm, et al. Expires April 30, 2017 [Page 30]

Internet-Draft Event Notifications October 2016

 case address-originated {
 description
 "When the push source is out of an IP address on the
 Publisher established via static configuration.";
 leaf source-vrf {
 type uint32 {
 range "16..1048574";
 }
 description
 "Label of the vrf.";
 }
 leaf source-address {
 type inet:ip-address-no-zone;
 mandatory true;
 description
 "The source address for the notifications.";
 }
 }
 }
 }

 grouping receiver-info {
 description
 "Defines where and how to deliver notifications for a
 configured subscription. This includes
 specifying the receiver, as well as defining
 any network and transport aspects when sending of
 notifications occurs outside of Netconf.";
 container receivers {
 description
 "Set of receivers in a subscription.";
 list receiver {
 key "address";
 min-elements 1;
 description
 "A single host or multipoint address intended as a target
 for the notifications for a subscription.";
 leaf address {
 type inet:host;
 mandatory true;
 description
 "Specifies the address for the traffic to reach a
 remote host. One of the following must be
 specified: an ipv4 address, an ipv6 address,
 or a host name.";
 }
 leaf port {
 type inet:port-number;

Clemm, et al. Expires April 30, 2017 [Page 31]

Internet-Draft Event Notifications October 2016

 mandatory true;
 description
 "This leaf specifies the port number to use for
 messages destined for a receiver.";
 }
 leaf protocol {
 type transport-protocol;
 default "netconf";
 description
 "This leaf specifies the transport protocol used
 to deliver messages destined for the receiver.";
 }
 }
 }
 }

 grouping subscription-response {
 description
 "Defines the output to the rpc’s establish-subscription
 and modify-subscription.";
 leaf subscription-result {
 type subscription-result;
 mandatory true;
 description
 "Indicates whether subscription is operational,
 or if a problem was encountered.";
 }
 choice result {
 description
 "Depending on the subscription result, different
 data is returned.";
 case success {
 description
 "This case is used when the subscription request
 was successful and a subscription was created/modified
 as a result";
 leaf subscription-id {
 type subscription-id;
 mandatory true;
 description
 "Identifier used for this subscription.";
 }
 }
 case no-success {
 description
 "This case applies when a subscription request
 was not successful and no subscription was
 created (or modified) as a result. In this case,

Clemm, et al. Expires April 30, 2017 [Page 32]

Internet-Draft Event Notifications October 2016

 information MAY be returned that indicates
 suggested parameter settings that would have a
 high likelihood of succeeding in a subsequent
 establish-subscription or modify-subscription
 request.";
 uses subscription-info;
 }
 }
 }

 /*
 * RPCs
 */

 rpc establish-subscription {
 description
 "This RPC allows a subscriber to create
 (and possibly negotiate) a subscription on its own behalf.
 If successful, the subscription
 remains in effect for the duration of the subscriber’s
 association with the publisher, or until the subscription
 is terminated by virtue of a delete-subscription request.
 In case an error (as indicated by subscription-result)
 is returned, the subscription is
 not created. In that case, the RPC output
 MAY include suggested parameter settings
 that would have a high likelihood of succeeding in a
 subsequent establish-subscription request.";
 input {
 uses subscription-info;
 }
 output {
 uses subscription-response;
 }
 }

 rpc create-subscription {
 description
 "This operation initiates an event notification subscription
 that will send asynchronous event notifications to the
 initiator of the command until the association terminates.
 It is not possible to modify or delete a subscription
 that was created using this operation. It is included for
 reasons of backward compatibility with RFC 5277
 implementations.";
 input {
 uses subscription-info-basic-non-modifiable{
 refine "stream" {

Clemm, et al. Expires April 30, 2017 [Page 33]

Internet-Draft Event Notifications October 2016

 default "NETCONF";
 }
 }
 uses subscription-info-basic-modifiable;
 }
 }

 rpc modify-subscription {
 description
 "This RPC allows a subscriber to modify a subscription
 that was previously created using establish-subscription.
 If successful, the subscription
 remains in effect for the duration of the subscriber’s
 association with the publisher, or until the subscription
 is terminated by virtue of a delete-subscription request.
 In case an error is returned (as indicated by
 subscription-result), the subscription is
 not modified and the original subscription parameters
 remain in effect. In that case, the rpc error response
 MAY include suggested parameter settings
 that would have a high likelihood of succeeding in a
 subsequent modify-subscription request.";
 input {
 leaf subscription-id {
 type subscription-id;
 description
 "Identifier to use for this subscription.";
 }
 uses subscription-info-all-modifiable;
 }
 output {
 uses subscription-response;
 }
 }

 rpc delete-subscription {
 description
 "This RPC allows a subscriber to delete a subscription that
 was previously created using establish-subscription.";
 input {
 leaf subscription-id {
 type subscription-id;
 mandatory true;
 description
 "Identifier of the subscription that is to be deleted.
 Only subscriptions that were created using
 establish-subscription can be deleted via this RPC.";
 }

Clemm, et al. Expires April 30, 2017 [Page 34]

Internet-Draft Event Notifications October 2016

 }
 output {
 leaf subscription-result {
 type subscription-result;
 mandatory true;
 description
 "Indicates whether subscription is operational,
 or if a problem was encountered.";
 }
 }
 }

 /*
 * NOTIFICATIONS
 */

 notification replay-complete {
 notif-bis:control-plane-notif;
 description
 "This notification is sent to indicate that all of the
 replay notifications have been sent. It must not be
 sent for any other reason.";
 leaf subscription-id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 }

 notification notification-complete {
 notif-bis:control-plane-notif;
 description
 "This notification is sent to indicate that a
 subscription, which includes a stop time, has
 finished passing events.";
 leaf subscription-id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 }

 notification subscription-started {
 notif-bis:control-plane-notif;
 description

Clemm, et al. Expires April 30, 2017 [Page 35]

Internet-Draft Event Notifications October 2016

 "This notification indicates that a subscription has
 started and notifications are beginning to be sent.
 This notification shall only be sent to receivers
 of a subscription; it does not constitute a general-purpose
 notification.";
 leaf subscription-id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 uses subscription-info;
 }

 notification subscription-suspended {
 notif-bis:control-plane-notif;
 description
 "This notification indicates that a suspension of the
 subscription by the publisher has occurred. No further
 notifications will be sent until subscription
 resumes.
 This notification shall only be sent to receivers
 of a subscription; it does not constitute a general-purpose
 notification.";
 leaf subscription-id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 leaf reason {
 type subscription-susp-reason;
 description
 "Provides a reason for why the subscription was
 suspended.";
 }
 }

 notification subscription-resumed {
 notif-bis:control-plane-notif;
 description
 "This notification indicates that a subscription that had
 previously been suspended has resumed. Notifications
 will once again be sent.";
 leaf subscription-id {
 type subscription-id;
 mandatory true;
 description

Clemm, et al. Expires April 30, 2017 [Page 36]

Internet-Draft Event Notifications October 2016

 "This references the affected subscription.";
 }
 }

 notification subscription-modified {
 notif-bis:control-plane-notif;
 description
 "This notification indicates that a subscription has
 been modified. Notifications sent from this point
 on will conform to the modified terms of the
 subscription.";
 leaf subscription-id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 uses subscription-info;
 }

 notification subscription-terminated {
 notif-bis:control-plane-notif;
 description
 "This notification indicates that a subscription has been
 terminated.";
 leaf subscription-id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 leaf reason {
 type subscription-term-reason;
 description
 "Provides a reason for why the subscription was
 terminated.";
 }
 }

 /*
 * DATA NODES
 */

 container streams {
 config false;
 description
 "This container contains a leaf list of built-in

Clemm, et al. Expires April 30, 2017 [Page 37]

Internet-Draft Event Notifications October 2016

 streams that are provided by the system.";
 leaf-list stream {
 type stream;
 description
 "Identifies the built-in streams that are supported by the
 system. Built-in streams are associated with their own
 identities, each of which carries a special semantics.
 In case configurable custom streams are supported,
 as indicated by the custom-stream identity, the
 configuration of those custom streams is provided
 separately.";
 }
 }
 container filters {
 description
 "This container contains a list of configurable filters
 that can be applied to subscriptions. This facilitates
 the reuse of complex filters once defined.";
 list filter {
 key "filter-id";
 description
 "A list of configurable filters that can be applied to
 subscriptions.";
 leaf filter-id {
 type filter-id;
 description
 "An identifier to differentiate between filters.";
 }
 uses base-filter;
 }
 }
 container subscription-config {
 if-feature "configured-subscriptions";
 description
 "Contains the list of subscriptions that are configured,
 as opposed to established via RPC or other means.";
 list subscription {
 key "subscription-id";
 description
 "Content of a subscription.";
 leaf subscription-id {
 type subscription-id;
 description
 "Identifier to use for this subscription.";
 }
 uses subscription-info;
 uses receiver-info {
 if-feature "configured-subscriptions";

Clemm, et al. Expires April 30, 2017 [Page 38]

Internet-Draft Event Notifications October 2016

 }
 uses push-source-info {
 if-feature "configured-subscriptions";
 }
 }
 }
 container subscriptions {
 config false;
 description
 "Contains the list of currently active subscriptions,
 i.e. subscriptions that are currently in effect,
 used for subscription management and monitoring purposes.
 This includes subscriptions that have been setup via RPC
 primitives, e.g. create-subscription, establish-
 subscription, and modify-subscription, as well as
 subscriptions that have been established via
 configuration.";
 list subscription {
 key "subscription-id";
 config false;
 description
 "Content of a subscription.
 Subscriptions can be created using a control channel
 or RPC, or be established through configuration.";
 leaf subscription-id {
 type subscription-id;
 description
 "Identifier of this subscription.";
 }

 leaf configured-subscription {
 if-feature "configured-subscriptions";
 type empty;
 description
 "The presence of this leaf indicates that the
 subscription originated from configuration, not
 through a control channel or RPC.";
 }

 leaf subscription-status {
 type subscription-status;
 description
 "The status of the subscription.";
 }
 uses subscription-info;
 uses receiver-info {
 if-feature "configured-subscriptions";
 }

Clemm, et al. Expires April 30, 2017 [Page 39]

Internet-Draft Event Notifications October 2016

 uses push-source-info {
 if-feature "configured-subscriptions";
 }
 }
 }
 }
 <CODE ENDS>

9. Backwards Compatibility

 Capabilities are advertised in messages sent by each peer during
 session establishment [RFC6241]. Publishers supporting the features
 in this document must advertise both capabilities
 "urn:ietf:params:netconf:capability:notification:1.0" and
 "urn:ietf:params:netconf:capability:notification:1.1".

 An example of a hello message by a publisher during session
 establishment would be:

 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>
 urn:ietf:params:xml:ns:netconf:base:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:startup:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:notification:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:notification:1.1
 </capability>
 </capabilities>
 <session-id>4</session-id>
 </hello>

 Figure 9: Hello message

 Subscribers that only support [RFC5277] recognize capability
 "urn:ietf:params:netconf:capability:notification:1.0" and ignore
 capability "urn:ietf:params:netconf:capability:notification:1.1".
 This allows them interacting with the publisher as per [RFC5277].
 Subscribers that support the features in this document recognize both
 capabilities. This allows them interacting with the publisher as per
 this document.

Clemm, et al. Expires April 30, 2017 [Page 40]

Internet-Draft Event Notifications October 2016

 Note that to support backwards compatibility, the yang models in this
 document include two types of naming conventions. That used in
 [RFC5277], e.g., replayComplete; and that commonly used in yang
 models, e.g., subscription-started.

10. Security Considerations

 The <notification> elements are never sent before the transport
 layer, including capabilities exchange, has been established and the
 manager has been securely established.

 A secure transport is highly recommended and the publisher must
 ensure that the user has sufficient authorization to perform the
 function they are requesting against the specific subset of content
 involved. When a <get> is received that refers to the content
 defined in this memo, clients should only be able to view the content
 for which they have sufficient privileges. <create-subscription> and
 <establish-subscription> operations can be considered like deferred
 <get>, and the content that different users can access may vary.
 This different access is reflected in the <notificationt> to which
 different users are able to subscribe.

 The contents of notifications, as well as the names of event streams,
 may contain sensitive information and care should be taken to ensure
 that they are viewed only by authorized users. The publisher MUST
 NOT include any content in a notification that the user is not
 authorized to view.

 If a malicious or buggy subscriber sends a number of <create-
 subscription> requests, then these subscriptions accumulate and may
 use up system resources. In such a situation, subscriptions can be
 terminated by terminating the suspect underlying NETCONF sessions
 using the <kill-session> operation. If the subscriber uses
 <establish-subscription>, the publisher can also suspend or terminate
 subscriptions with per-subscription granularity.

 A subscription could be configured on another receiver’s behalf, with
 the goal of flooding that receiver with updates. One or more
 publishers could be used to overwhelm a receiver, which doesn’t even
 support subscriptions. Subscribers that do not want pushed data need
 only terminate or refuse any transport sessions from the publisher.
 In addition, the NETCONF Authorization Control Model [RFC6536] SHOULD
 be used to control and restrict authorization of subscription
 configuration. This control models permits specifying per-user
 permissions to receive specific event notification types. The
 permissions are specified as a set of access control rules.

Clemm, et al. Expires April 30, 2017 [Page 41]

Internet-Draft Event Notifications October 2016

 Note that streams can define additional authorization requirements.
 For instance, in [I-D.ietf-netconf-yang-push], each of the elements
 in its data plane notifications must also go through access control.

11. Acknowledgments

 For their valuable comments, discussions, and feedback, we wish to
 acknowledge Andy Bierman, Yang Geng, Peipei Guo, Susan Hares, Tim
 Jenkins, Balazs Lengyel, Kent Watsen, Michael Scharf, and Guangying
 Zheng.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <http://www.rfc-editor.org/info/rfc5277>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

 [RFC7950] Bjorklund, M., "The YANG 1.1 Data Modeling Language",
 RFC 7950, August 2016.

12.2. Informative References

Clemm, et al. Expires April 30, 2017 [Page 42]

Internet-Draft Event Notifications October 2016

 [I-D.ietf-netconf-netconf-event-notif]
 Gonzalez Prieto, Alberto., Clemm, Alexander., Voit, Eric.,
 Nilsen-Nygaard, E., Tripathy, A., Chisholm, S., and H.
 Trevino, "NETCONF support for event notifications", August
 2016, <https://datatracker.ietf.org/doc/draft-ietf-
 netconf-netconf-event-notifications/>.

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", I-D draft-ietf-netconf-restconf-17, September
 2016.

 [I-D.ietf-netconf-restconf-notif]
 Voit, Eric., Clemm, Alexander., Tripathy, A., Nilsen-
 Nygaard, E., and Alberto. Gonzalez Prieto, "Restconf and
 HTTP transport for event notifications", August 2016,
 <https://datatracker.ietf.org/doc/draft-ietf-netconf-
 restconf-notif/>.

 [I-D.ietf-netconf-yang-push]
 Clemm, Alexander., Gonzalez Prieto, Alberto., Voit, Eric.,
 Tripathy, A., and E. Nilsen-Nygaard, "Subscribing to YANG
 datastore push updates", June 2016,
 <https://datatracker.ietf.org/doc/draft-ietf-netconf-yang-
 push/>.

Appendix A. Issues that are currently being worked and resolved

 (To be removed by RFC editor prior to publication)

A.1. Unresolved and yet-to-be addressed issues

 EN1 - Definition of basic set of Stream types. What streams are
 provided and what do they contain (includes default 5277 stream).

 EN2 - Clarify interplay between filter definitions and different
 streams. Includes information in subtrees of event payloads.

 EN3 - Mechanisms for diagnostics, e.g. deal with dropped updates,
 monitoring when they occur, etc

A.2. Agreement in principal

 EN4 - How to allow for seamless integration with non-standard
 encodings and transports (like GPB/GRPC). Specify requirements
 encoding and transport must meet, provide examples.

Clemm, et al. Expires April 30, 2017 [Page 43]

Internet-Draft Event Notifications October 2016

 EN7 - Detecting loss of a sequential update notification, and
 mechanisms to resend. Implications to transports must be thought
 through.

 EN6 - Stream discovery. Allow to discover additional stream
 properties.

 EN12 - Test-only option for a subscription is desired. But it still
 needs to be defined.

 EN14 - Ensure that Configured Subscriptions are fully defined in YANG
 model.

A.3. Resolved Issues

 EN5 - This draft obsoletes 5277, as opposed to being in parallel with
 it

 EN8 - No mandatory transport

 EN15 - Term for Dynamic and Static Subscriptions (move to
 "Configured")

 EN9 - Multiple receivers per Configured Subscription is ok.

 EN13 - RFC6241 Subtree-filter definition in 5277bis cannot apply to
 elements of an event. Must explicitly define how 6241 doesn’t apply
 filtering within a 5277bis event.

 EN10 - Replay support will be provided for selected stream types
 (modify vs. delete)

 EN11 - Required layering security requirements/considerations will be
 added into the YANG model for Configured Subscriptions. It will be
 up to the transport to meet these requirements.

Appendix B. Changes between revisions

 (To be removed by RFC editor prior to publication)

 v00 - v01

 o YANG Model changes. New groupings for subscription info to allow
 restriction of what is changable via RPC. Removed notifications
 for adding and removing receivers of configured subscriptions.

Clemm, et al. Expires April 30, 2017 [Page 44]

Internet-Draft Event Notifications October 2016

 o Expanded/renamed defintions from event server to publisher, and
 client to subscriber as applicable. Updated the definitions to
 include and expand on RFC 5277.

 o Removal of redundant with other drafts

 o Many other clean-ups of wording and terminology

Authors’ Addresses

 Alexander Clemm
 Sympotech

 Email: alex@sympotech.com

 Alberto Gonzalez Prieto
 Cisco Systems

 Email: albertgo@cisco.com

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Einar Nilsen-Nygaard
 Cisco Systems

 Email: einarnn@cisco.com

 Ambika Prasad Tripathy
 Cisco Systems

 Email: ambtripa@cisco.com

 Sharon Chisholm
 Ciena

 Email: schishol@ciena.com

Clemm, et al. Expires April 30, 2017 [Page 45]

Internet-Draft Event Notifications October 2016

 Hector Trevino
 Cisco Systems

 Email: htrevino@cisco.com

Clemm, et al. Expires April 30, 2017 [Page 46]

NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Intended status: Standards Track G. Wu
Expires: May 7, 2017 Cisco Networks
 November 3, 2016

 SSH Client and Server Models
 draft-ietf-netconf-ssh-client-server-01

Abstract

 This document defines two YANG modules, one defines groupings for a
 generic SSH client and the other defines groupings for a generic SSH
 server. It is intended that these groupings will be used by
 applications using the SSH protocol.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 This document contains references to other drafts in progress, both
 in the Normative References section, as well as in body text
 throughout. Please update the following references to reflect their
 final RFC assignments:

 o draft-ietf-netconf-keystore

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

 o "YYYY" --> the assigned RFC value for draft-ietf-netconf-keystore

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2016-11-02" --> the publication date of this draft

 The following two Appendix sections are to be removed prior to
 publication:

 o Appendix A. Change Log

Watsen & Wu Expires May 7, 2017 [Page 1]

Internet-Draft SSH Client and Server Models November 2016

 o Appendix B. Open Issues

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 1.2. Tree Diagrams . 3
 2. The SSH Client Model . 4
 2.1. Tree Diagram . 4
 2.2. Example Usage . 6
 2.3. YANG Model . 6
 3. The SSH Server Model . 11
 3.1. Tree Diagram . 11
 3.2. Example Usage . 12
 3.3. YANG Model . 13
 4. Security Considerations 17

Watsen & Wu Expires May 7, 2017 [Page 2]

Internet-Draft SSH Client and Server Models November 2016

 5. IANA Considerations . 17
 5.1. The IETF XML Registry 17
 5.2. The YANG Module Names Registry 17
 6. Acknowledgements . 18
 7. References . 18
 7.1. Normative References 18
 7.2. Informative References 18
 Appendix A. Change Log . 20
 A.1. server-model-09 to 00 20
 Appendix B. Open Issues . 20
 Authors’ Addresses . 20

1. Introduction

 This document defines two YANG [RFC6020] modules, one defines
 groupings for a generic SSH client and the other defines groupings
 for a generic SSH server (SSH is defined in [RFC4252], [RFC4253], and
 [RFC4254]). It is intended that these groupings will be used by
 applications using the SSH protocol. For instance, these groupings
 could be used to help define the data model for an OpenSSH [OPENSSH]
 server or a NETCONF over SSH [RFC6242] based server.

 The two YANG modules in this document each define two groupings. One
 grouping defines everything other than what’s needed for the TCP
 [RFC793] protocol layer. The other grouping uses the first grouping
 while adding TCP layer specifics (e.g., addresses to connect to,
 ports to listen on, etc.). This separation is done in order to
 enable applications the opportunity to define their own strategy for
 how the underlying TCP connection is established. For instance,
 applications supporting NETCONF Call Home
 [draft-ietf-netconf-call-home] could use the first grouping for the
 SSH parts it provides, while adding data nodes for the reversed TCP
 layer.

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Tree Diagrams

 A simplified graphical representation of the data models is used in
 this document. The meaning of the symbols in these diagrams is as
 follows:

 o Brackets "[" and "]" enclose list keys.

Watsen & Wu Expires May 7, 2017 [Page 3]

Internet-Draft SSH Client and Server Models November 2016

 o Braces "{" and "}" enclose feature names, and indicate that the
 named feature must be present for the subtree to be present.

 o Abbreviations before data node names: "rw" means configuration
 (read-write) and "ro" state data (read-only).

 o Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list and leaf-list.

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

2. The SSH Client Model

 The SSH client model presented in this section contains two YANG
 groupings, one for a client that initiates the underlying TCP
 connection and another for a client that has had the TCP connection
 opened for it already (e.g., call home).

 Both of these groupings reference data nodes defined by the Keystore
 model [draft-ietf-netconf-keystore]. For instance, a reference to
 the keystore model is made to indicate which trusted CA certificate a
 client should use to authenticate X.509v3 certificate based host keys
 [RFC6187].

2.1. Tree Diagram

 The following tree diagram presents the data model for the two
 groupings defined in the ietf-ssh-client module.

Watsen & Wu Expires May 7, 2017 [Page 4]

Internet-Draft SSH Client and Server Models November 2016

 module: ietf-ssh-client
 groupings:
 initiating-ssh-client-grouping
 +---- server-auth
 | +---- trusted-ssh-host-keys? -> /ks:keystore/trusted-ssh-hos
 t-keys/name
 | +---- trusted-ca-certs? -> /ks:keystore/trusted-certifi
 cates/name {ssh-x509-certs}?
 | +---- trusted-server-certs? -> /ks:keystore/trusted-certifi
 cates/name
 +---- client-auth
 +---- matches* [name]
 +---- name? string
 +---- match* [name]
 | +---- name? string
 | +---- trusted-ssh-host-keys? -> /ks:keystore/trusted-s
 sh-host-keys/name
 | +---- trusted-ca-certs? -> /ks:keystore/trusted-c
 ertificates/name
 | +---- trusted-server-certs? -> /ks:keystore/trusted-c
 ertificates/name
 +---- user-auth-credentials? -> /ks:keystore/user-auth-cr
 edentials/user-auth-credential/username

 listening-ssh-client-grouping
 +---- address? inet:ip-address
 +---- port? inet:port-number
 +---- server-auth
 | +---- trusted-ssh-host-keys? -> /ks:keystore/trusted-ssh-hos
 t-keys/name
 | +---- trusted-ca-certs? -> /ks:keystore/trusted-certifi
 cates/name {ssh-x509-certs}?
 | +---- trusted-server-certs? -> /ks:keystore/trusted-certifi
 cates/name
 +---- client-auth
 +---- matches* [name]
 +---- name? string
 +---- match* [name]
 | +---- name? string
 | +---- trusted-ssh-host-keys? -> /ks:keystore/trusted-s
 sh-host-keys/name
 | +---- trusted-ca-certs? -> /ks:keystore/trusted-c
 ertificates/name
 | +---- trusted-server-certs? -> /ks:keystore/trusted-c
 ertificates/name
 +---- user-auth-credentials? -> /ks:keystore/user-auth-cr
 edentials/user-auth-credential/username

Watsen & Wu Expires May 7, 2017 [Page 5]

Internet-Draft SSH Client and Server Models November 2016

2.2. Example Usage

 This section shows how it would appear if the initiating-ssh-client-
 grouping were populated with some data. This example is consistent
 with the examples presented in Section 2.2 of
 [draft-ietf-netconf-keystore].

 FIXME (how to do an example for a module that only has groupings?)

2.3. YANG Model

 This YANG module has a normative references to [RFC6991] and
 [draft-ietf-netconf-keystore].

 <CODE BEGINS> file "ietf-ssh-client@2016-11-02.yang"

 module ietf-ssh-client {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-ssh-client";
 prefix "sshc";

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-keystore {
 prefix ks;
 reference
 "RFC YYYY: Keystore Model";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nsn.com>

 WG Chair: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

Watsen & Wu Expires May 7, 2017 [Page 6]

Internet-Draft SSH Client and Server Models November 2016

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description
 "This module defines a reusable grouping for a SSH client that
 can be used as a basis for specific SSH client instances.

 Copyright (c) 2014 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2016-11-02" {
 description
 "Initial version";
 reference
 "RFC XXXX: SSH Client and Server Models";
 }

 feature ssh-x509-certs {
 description
 "The ssh-x509-certs feature indicates that the SSH
 client supports RFC 6187";
 reference
 "RFC 6187: X.509v3 Certificates for Secure Shell
 Authentication";
 }

 grouping initiating-ssh-client-grouping {
 description
 "A reusable grouping for a SSH client that initiates the
 underlying TCP transport connection.";

 container server-auth {
 description
 "Trusted server identities.";

Watsen & Wu Expires May 7, 2017 [Page 7]

Internet-Draft SSH Client and Server Models November 2016

 leaf trusted-ssh-host-keys {
 type leafref {
 path "/ks:keystore/ks:trusted-ssh-host-keys/ks:name";
 }
 description
 "A reference to a list of SSH host keys used by the
 SSH client to authenticate SSH server host keys.
 A server host key is authenticate if it is an exact
 match to a configured trusted SSH host key.";
 }

 leaf trusted-ca-certs {
 if-feature ssh-x509-certs;
 type leafref {
 path "/ks:keystore/ks:trusted-certificates/ks:name";
 }
 description
 "A reference to a list of certificate authority (CA)
 certificates used by the SSH client to authenticate
 SSH server certificates.";
 }

 leaf trusted-server-certs {
 type leafref {
 path "/ks:keystore/ks:trusted-certificates/ks:name";
 }
 description
 "A reference to a list of server certificates used by
 the SSH client to authenticate SSH server certificates.
 A server certificate is authenticated if it is an
 exact match to a configured trusted server certificate.";
 }
 }

 container client-auth {
 description
 "The credentials used by the client to authenticate to
 the SSH server.";

 list matches {
 key name;
 description
 "A matches expression, which performs like a firewall
 rulebase in that each matches expression is considered
 for a match before moving onto the next matches
 expression. The first matching expression terminates
 the search, and its ’user-auth-credentials’ are used
 to log into the SSH server.";

Watsen & Wu Expires May 7, 2017 [Page 8]

Internet-Draft SSH Client and Server Models November 2016

 leaf name {
 type string;
 description
 "An arbitrary name for this matches expression.";
 }
 list match {
 key name;
 description
 "A match rule. The presented SSH server’s host key
 is matched against possible trusted SSH host keys
 and certificates. If a match is found, the specified
 ’user-auth-credentials’ is used to log into the
 SSH server.";
 leaf name {
 type string;
 description
 "An arbitrary name for this match rule.";
 }
 leaf trusted-ssh-host-keys {
 type leafref {
 path "/ks:keystore/ks:trusted-ssh-host-keys/ks:name";
 }
 description
 "A test to see if the presented SSH host key
 matches any of the host keys in the specified
 ’trusted-ssh-host-keys’ list maintained by the
 keystore module.";
 }
 leaf trusted-ca-certs {
 type leafref {
 path "/ks:keystore/ks:trusted-certificates/ks:name";
 }
 description
 "A test to see if the presented SSH host key matches
 any of the trusted CA certificates in the specified
 ’trusted-certificates’ list maintained by the
 keystore module.";
 }
 leaf trusted-server-certs {
 type leafref {
 path "/ks:keystore/ks:trusted-certificates/ks:name";
 }
 description
 "A test to see if the presented SSH host key matches
 any of the trusted server certificates in the specified
 ’trusted-certificates’ list maintained by the
 keystore module.";
 }

Watsen & Wu Expires May 7, 2017 [Page 9]

Internet-Draft SSH Client and Server Models November 2016

 }
 leaf user-auth-credentials {
 type leafref {
 path "/ks:keystore/ks:user-auth-credentials/"
 + "ks:user-auth-credential/ks:username";
 }
 description
 "The specific user authentication credentials to use if
 all of the above ’match’ expressions match.";
 }
 }
 }
 } // end initiating-ssh-client-grouping

 grouping listening-ssh-client-grouping {
 description
 "A reusable grouping for a SSH client that does not
 the underlying TCP transport connection have been
 established using some other mechanism.";
 leaf address {
 type inet:ip-address;
 description
 "The IP address to listen for call-home connections on.";
 }
 leaf port {
 type inet:port-number;
 description
 "The port number to listen for call-home connections.
 When this grouping is used, it is RECOMMENED that
 refine statement is used to either set a default port
 value or to set mandatory true.";
 }
 uses initiating-ssh-client-grouping;
 }

 }

 <CODE ENDS>

Watsen & Wu Expires May 7, 2017 [Page 10]

Internet-Draft SSH Client and Server Models November 2016

3. The SSH Server Model

 The SSH server model presented in this section contains two YANG
 groupings, one for a server that opens a socket to accept TCP
 connections and another for a server that has had the TCP connection
 opened for it already (e.g., inetd).

 Both of these groupings reference data nodes defined by the Keystore
 model [draft-ietf-netconf-keystore]. For instance, a reference to
 the keystore model is made to indicate which host key a server should
 present.

3.1. Tree Diagram

 The following tree diagram presents the data model for the two
 groupings defined in the ietf-ssh-server module.

Watsen & Wu Expires May 7, 2017 [Page 11]

Internet-Draft SSH Client and Server Models November 2016

 module: ietf-ssh-server
 groupings:
 listening-ssh-server-grouping
 +---- address? inet:ip-address
 +---- port? inet:port-number
 +---- host-keys
 | +---- host-key* [name]
 | +---- name? string
 | +---- (host-key-type)
 | +--:(public-key)
 | | +---- public-key? -> /ks:keystore/private-keys/pri
 vate-key/name
 | +--:(certificate)
 | +---- certificate? -> /ks:keystore/private-keys/pri
 vate-key/certificate-chains/certificate-chain/name {ssh-x509-certs}?
 +---- client-cert-auth {ssh-x509-certs}?
 +---- trusted-ca-certs? -> /ks:keystore/trusted-certific
 ates/name
 +---- trusted-client-certs? -> /ks:keystore/trusted-certific
 ates/name

 non-listening-ssh-server-grouping
 +---- host-keys
 | +---- host-key* [name]
 | +---- name? string
 | +---- (host-key-type)
 | +--:(public-key)
 | | +---- public-key? -> /ks:keystore/private-keys/pri
 vate-key/name
 | +--:(certificate)
 | +---- certificate? -> /ks:keystore/private-keys/pri
 vate-key/certificate-chains/certificate-chain/name {ssh-x509-certs}?
 +---- client-cert-auth {ssh-x509-certs}?
 +---- trusted-ca-certs? -> /ks:keystore/trusted-certific
 ates/name
 +---- trusted-client-certs? -> /ks:keystore/trusted-certific
 ates/name

3.2. Example Usage

 This section shows how it would appear if the listening-ssh-server-
 grouping were populated with some data. This example is consistent
 with the examples presented in Section 2.2 of
 [draft-ietf-netconf-keystore].

Watsen & Wu Expires May 7, 2017 [Page 12]

Internet-Draft SSH Client and Server Models November 2016

 <listening-ssh-server
 xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-server">
 <port>830</port>
 <host-keys>
 <host-key>
 <name>deployment-specific-certificate</name>
 <certificate>ex-key-sect571r1-cert</certificate>
 </host-key>
 </host-keys>
 </certificates>
 <client-cert-auth>
 <trusted-ca-certs>
 deployment-specific-ca-certs
 </trusted-ca-certs>
 <trusted-client-certs>
 explicitly-trusted-client-certs
 </trusted-client-certs>
 </client-cert-auth>
 </listening-ssh-server>

3.3. YANG Model

 This YANG module has a normative references to [RFC4253], [RFC6991],
 and [draft-ietf-netconf-keystore].

 <CODE BEGINS> file "ietf-ssh-server@2016-11-02.yang"

 module ietf-ssh-server {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-ssh-server";
 prefix "sshs";

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-keystore {
 prefix ks;
 reference
 "RFC YYYY: Keystore Model";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

Watsen & Wu Expires May 7, 2017 [Page 13]

Internet-Draft SSH Client and Server Models November 2016

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nsn.com>

 WG Chair: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 Editor: Kent Watsen
 <mailto:kwatsen@juniper.net>";

 description
 "This module defines a reusable grouping for a SSH server that
 can be used as a basis for specific SSH server instances.

 Copyright (c) 2014 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2016-11-02" {
 description
 "Initial version";
 reference
 "RFC XXXX: SSH Client and Server Models";
 }

 // features
 feature ssh-x509-certs {
 description
 "The ssh-x509-certs feature indicates that the NETCONF
 server supports RFC 6187";
 reference
 "RFC 6187: X.509v3 Certificates for Secure Shell
 Authentication";
 }

Watsen & Wu Expires May 7, 2017 [Page 14]

Internet-Draft SSH Client and Server Models November 2016

 // grouping
 grouping non-listening-ssh-server-grouping {
 description
 "A reusable grouping for a SSH server that can be used as a
 basis for specific SSH server instances.";

 container host-keys {
 description
 "The list of host-keys the SSH server will present when
 establishing a SSH connection.";
 list host-key {
 key name;
 min-elements 1;
 ordered-by user;
 description
 "An ordered list of host keys the SSH server will use to
 construct its ordered list of algorithms, when sending
 its SSH_MSG_KEXINIT message, as defined in Section 7.1
 of RFC 4253.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
 leaf name {
 type string;
 description
 "An arbitrary name for this host-key";
 }
 choice host-key-type {
 mandatory true;
 description
 "The type of host key being specified";
 leaf public-key {
 type leafref {
 path "/ks:keystore/ks:private-keys/ks:private-key/"
 + "ks:name";
 }
 description
 "The public key is actually identified by the name of
 its cooresponding private-key in the keystore.";
 }
 leaf certificate {
 if-feature ssh-x509-certs;
 type leafref {
 path "/ks:keystore/ks:private-keys/ks:private-key/"
 + "ks:certificate-chains/ks:certificate-chain/"
 + "ks:name";
 }
 description
 "The name of a certificate in the keystore.";

Watsen & Wu Expires May 7, 2017 [Page 15]

Internet-Draft SSH Client and Server Models November 2016

 }
 }
 }
 }

 container client-cert-auth {
 if-feature ssh-x509-certs;
 description
 "A reference to a list of trusted certificate authority (CA)
 certificates and a reference to a list of trusted client
 certificates.";
 leaf trusted-ca-certs {
 type leafref {
 path "/ks:keystore/ks:trusted-certificates/ks:name";
 }
 description
 "A reference to a list of certificate authority (CA)
 certificates used by the SSH server to authenticate
 SSH client certificates.";
 }

 leaf trusted-client-certs {
 type leafref {
 path "/ks:keystore/ks:trusted-certificates/ks:name";
 }
 description
 "A reference to a list of client certificates used by
 the SSH server to authenticate SSH client certificates.
 A clients certificate is authenticated if it is an
 exact match to a configured trusted client certificate.";
 }
 }
 }

 grouping listening-ssh-server-grouping {
 description
 "A reusable grouping for a SSH server that can be used as a
 basis for specific SSH server instances.";
 leaf address {
 type inet:ip-address;
 description
 "The IP address of the interface to listen on. The SSH
 server will listen on all interfaces if no value is
 specified. Please note that some addresses have special
 meanings (e.g., ’0.0.0.0’ and ’::’).";
 }
 leaf port {

Watsen & Wu Expires May 7, 2017 [Page 16]

Internet-Draft SSH Client and Server Models November 2016

 type inet:port-number;
 description
 "The local port number on this interface the SSH server
 listens on. When this grouping is used, it is RECOMMENED
 that refine statement is used to either set a default port
 value or to set mandatory true.";
 }
 uses non-listening-ssh-server-grouping;
 }
 }

 <CODE ENDS>

4. Security Considerations

5. IANA Considerations

5.1. The IETF XML Registry

 This document registers two URIs in the IETF XML registry [RFC2119].
 Following the format in [RFC3688], the following registrations are
 requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-ssh-client
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-ssh-server
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

5.2. The YANG Module Names Registry

 This document registers two YANG modules in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registrations are requested:

 name: ietf-ssh-client
 namespace: urn:ietf:params:xml:ns:yang:ietf-ssh-client
 prefix: sshc
 reference: RFC XXXX

 name: ietf-ssh-server
 namespace: urn:ietf:params:xml:ns:yang:ietf-ssh-server
 prefix: sshs
 reference: RFC XXXX

Watsen & Wu Expires May 7, 2017 [Page 17]

Internet-Draft SSH Client and Server Models November 2016

6. Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Benoit Claise, Mehmet Ersue, David Lamparter, Alan Luchuk,
 Ladislav Lhotka, Radek Krejci, Tom Petch, Juergen Schoenwaelder, Phil
 Shafer, Sean Turner, Michal Vasko, and Bert Wijnen.

7. References

7.1. Normative References

 [draft-ietf-netconf-keystore]
 Watsen, K., "Keystore Model", draft-ieft-netconf-
 keystore-00 (work in progress), 2016,
 <https://datatracker.ietf.org/html/draft-ieft-netconf-
 keystore>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6187] Igoe, K. and D. Stebila, "X.509v3 Certificates for Secure
 Shell Authentication", RFC 6187, DOI 10.17487/RFC6187,
 March 2011, <http://www.rfc-editor.org/info/rfc6187>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <http://www.rfc-editor.org/info/rfc6991>.

7.2. Informative References

 [draft-ietf-netconf-call-home]
 Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 draft-ieft-netconf-call-home-17 (work in progress), 2015,
 <https://datatracker.ietf.org/html/draft-ieft-netconf-
 call-home-17>.

 [OPENSSH] "OpenSSH", 2016, <http://www.openssh.com>.

Watsen & Wu Expires May 7, 2017 [Page 18]

Internet-Draft SSH Client and Server Models November 2016

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC4252] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252,
 January 2006, <http://www.rfc-editor.org/info/rfc4252>.

 [RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <http://www.rfc-editor.org/info/rfc4253>.

 [RFC4254] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Connection Protocol", RFC 4254, DOI 10.17487/RFC4254,
 January 2006, <http://www.rfc-editor.org/info/rfc4254>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <http://www.rfc-editor.org/info/rfc6242>.

 [RFC793] Postel, J., "TRANSMISSION CONTROL PROTOCOL", STD 7,
 September 1981, <https://www.ietf.org/rfc/rfc793.txt>.

Watsen & Wu Expires May 7, 2017 [Page 19]

Internet-Draft SSH Client and Server Models November 2016

Appendix A. Change Log

A.1. server-model-09 to 00

 o This draft was split out from draft-ietf-netconf-server-model-09.

 o Added in previously missing ietf-ssh-client module.

 o Noted that ’0.0.0.0’ and ’::’ might have special meanings.

Appendix B. Open Issues

 Please see: https://github.com/netconf-wg/ssh-client-server/issues.

Authors’ Addresses

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

 Gary Wu
 Cisco Networks

 EMail: garywu@cisco.com

Watsen & Wu Expires May 7, 2017 [Page 20]

NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Intended status: Standards Track November 3, 2016
Expires: May 7, 2017

 TLS Client and Server Models
 draft-ietf-netconf-tls-client-server-01

Abstract

 This document defines two YANG modules, one defines groupings for a
 generic TLS client and the other defines groupings for a generic TLS
 server. It is intended that these groupings will be used by
 applications using the TLS protocol.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 This document contains references to other drafts in progress, both
 in the Normative References section, as well as in body text
 throughout. Please update the following references to reflect their
 final RFC assignments:

 o draft-ietf-netconf-keystore

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

 o "YYYY" --> the assigned RFC value for draft-ietf-netconf-keystore

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2016-11-02" --> the publication date of this draft

 The following two Appendix sections are to be removed prior to
 publication:

 o Appendix A. Change Log

 o Appendix B. Open Issues

Watsen Expires May 7, 2017 [Page 1]

Internet-Draft TLS Client and Server Models November 2016

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 1.2. Tree Diagrams . 3
 2. The TLS Client Model . 4
 2.1. Tree Diagram . 4
 2.2. Example Usage . 4
 2.3. YANG Model . 5
 3. The TLS Server Model . 7
 3.1. Tree Diagram . 7
 3.2. Example Usage . 8
 3.3. YANG Model . 8
 4. Security Considerations 11
 5. IANA Considerations . 11
 5.1. The IETF XML Registry 11

Watsen Expires May 7, 2017 [Page 2]

Internet-Draft TLS Client and Server Models November 2016

 5.2. The YANG Module Names Registry 12
 6. Acknowledgements . 12
 7. References . 12
 7.1. Normative References 12
 7.2. Informative References 13
 Appendix A. Change Log . 14
 A.1. server-model-09 to 00 14
 Appendix B. Open Issues . 14
 Author’s Address . 14

1. Introduction

 This document defines two YANG [RFC6020] modules, one defines
 groupings for a generic TLS client and the other defines groupings
 for a generic TLS server (TLS is defined in [RFC5246]). It is
 intended that these groupings will be used by applications using the
 TLS protocol. For instance, these groupings could be used to help
 define the data model for an HTTPS [RFC2818] server or a NETCONF over
 TLS [RFC7589] based server.

 The two YANG modules in this document each define two groupings. One
 grouping defines everything other than what’s needed for the TCP
 [RFC793] protocol layer. The other grouping uses the first grouping
 while adding TCP layer specifics (e.g., addresses to connect to,
 ports to listen on, etc.). This separation is done in order to
 enable applications the opportunity to define their own strategy for
 how the underlying TCP connection is established. For instance,
 applications supporting NETCONF Call Home
 [draft-ietf-netconf-call-home] could use the first grouping for the
 TLS parts it provides, while adding data nodes for the reversed TCP
 layer.

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Tree Diagrams

 A simplified graphical representation of the data models is used in
 this document. The meaning of the symbols in these diagrams is as
 follows:

 o Brackets "[" and "]" enclose list keys.

 o Braces "{" and "}" enclose feature names, and indicate that the
 named feature must be present for the subtree to be present.

Watsen Expires May 7, 2017 [Page 3]

Internet-Draft TLS Client and Server Models November 2016

 o Abbreviations before data node names: "rw" means configuration
 (read-write) and "ro" state data (read-only).

 o Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list and leaf-list.

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

2. The TLS Client Model

 EDITOR NOTE: Please ignore this section, it is incomplete.

 The TLS client model presented in this section contains two YANG
 groupings, one for a client that initiates the underlying TCP
 connection and another for a client that has had the TCP connection
 opened for it already (e.g., call home).

 Both of these groupings reference data nodes defined by the Keystore
 model [draft-ietf-netconf-keystore]. For instance, a reference to
 the keystore model is made to indicate which trusted CA certificate a
 client should use to authenticate the server’s certificate.

2.1. Tree Diagram

 The following tree diagram presents the data model for the two
 groupings defined in the ietf-tls-client module.

 module: ietf-tls-client
 groupings:
 initiating-tls-client-grouping
 +---- some-TBD-tcp-client-stuff? string
 +---- some-TBD-tls-client-stuff? string

 non-initiating-tls-client-grouping
 +---- some-TBD-tls-client-stuff? string

2.2. Example Usage

 This section shows how it would appear if the initiating-tls-client-
 grouping were populated with some data. This example is consistent
 with the examples presented in Section 2.2 of
 [draft-ietf-netconf-keystore].

Watsen Expires May 7, 2017 [Page 4]

Internet-Draft TLS Client and Server Models November 2016

 FIXME

2.3. YANG Model

 This YANG module has a normative references to [RFC6991] and
 [draft-ietf-netconf-keystore].

 <CODE BEGINS> file "ietf-tls-client@2016-11-02.yang"

 // Editor’s Note:
 // This module is incomplete at this time. Below is
 // just a skeleton so there’s something in the draft.
 // Please ignore this module for now!

 module ietf-tls-client {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-tls-client";
 prefix "tlsc";
 /*
 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-keystore {
 prefix ks;
 reference
 "RFC YYYY: Keystore Model";
 }
 */
 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nsn.com>

 WG Chair: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 Editor: Kent Watsen
 <mailto:kwatsen@juniper.net>";

Watsen Expires May 7, 2017 [Page 5]

Internet-Draft TLS Client and Server Models November 2016

 description
 "This module defines a reusable grouping for a TLS client that
 can be used as a basis for specific TLS client instances.

 Copyright (c) 2014 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2016-11-02" {
 description
 "Initial version";
 reference
 "RFC XXXX: TLS Client and Server Models";
 }

 grouping initiating-tls-client-grouping {
 description
 "A reusable grouping for a TLS client that initiates the
 underlying TCP transport connection.";
 leaf some-TBD-tcp-client-stuff {
 type string;
 description "";
 }
 uses non-initiating-tls-client-grouping;
 }

 grouping non-initiating-tls-client-grouping {
 description
 "A reusable grouping for a TLS client that does not initiate
 the underlying TCP transport connection.";
 leaf some-TBD-tls-client-stuff {
 type string;
 description "";
 }
 }

 }

Watsen Expires May 7, 2017 [Page 6]

Internet-Draft TLS Client and Server Models November 2016

 <CODE ENDS>

3. The TLS Server Model

 The TLS server model presented in this section contains two YANG
 groupings, one for a server that opens a socket to accept TCP
 connections and another for a server that has had the TCP connection
 opened for it already (e.g., inetd).

 Both of these groupings reference data nodes defined by the Keystore
 model [draft-ietf-netconf-keystore]. For instance, a reference to
 the keystore model is made to indicate the certificate a server
 should present.

3.1. Tree Diagram

 The following tree diagram presents the data model for the two
 groupings defined in the ietf-tls-server module.

 module: ietf-tls-server
 groupings:
 listening-tls-server-grouping
 +---- address? inet:ip-address
 +---- port? inet:port-number
 +---- certificates
 | +---- certificate* [name]
 | +---- name? -> /ks:keystore/private-keys/private-key/cert
 ificate-chains/certificate-chain/name
 +---- client-auth
 +---- trusted-ca-certs? -> /ks:keystore/trusted-certific
 ates/name
 +---- trusted-client-certs? -> /ks:keystore/trusted-certific
 ates/name

 non-listening-tls-server-grouping
 +---- certificates
 | +---- certificate* [name]
 | +---- name? -> /ks:keystore/private-keys/private-key/cert
 ificate-chains/certificate-chain/name
 +---- client-auth
 +---- trusted-ca-certs? -> /ks:keystore/trusted-certific
 ates/name
 +---- trusted-client-certs? -> /ks:keystore/trusted-certific
 ates/name

Watsen Expires May 7, 2017 [Page 7]

Internet-Draft TLS Client and Server Models November 2016

3.2. Example Usage

 This section shows how it would appear if the listening-tls-server-
 grouping were populated with some data. This example is consistent
 with the examples presented in Section 2.2 of
 [draft-ietf-netconf-keystore].

 <listening-tls-server
 xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server">
 <port>6513</port>
 <certificates>
 <certificate>
 <name>ex-key-sect571r1-cert</name>
 </certificate>
 </certificates>
 <client-auth>
 <trusted-ca-certs>
 deployment-specific-ca-certs
 </trusted-ca-certs>
 <trusted-client-certs>
 explicitly-trusted-client-certs
 </trusted-client-certs>
 </client-auth>
 </listening-tls-server>

3.3. YANG Model

 This YANG module has a normative references to [RFC6991], and
 [draft-ietf-netconf-keystore].

 <CODE BEGINS> file "ietf-tls-server@2016-11-02.yang"

 module ietf-tls-server {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-tls-server";
 prefix "tlss";

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-keystore {
 prefix ks;
 reference

Watsen Expires May 7, 2017 [Page 8]

Internet-Draft TLS Client and Server Models November 2016

 "RFC YYYY: Keystore Model";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nsn.com>

 WG Chair: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 Editor: Kent Watsen
 <mailto:kwatsen@juniper.net>";

 description
 "This module defines a reusable grouping for a TLS server that
 can be used as a basis for specific TLS server instances.

 Copyright (c) 2014 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2016-11-02" {
 description
 "Initial version";
 reference
 "RFC XXXX: TLS Client and Server Models";
 }

 // grouping
 grouping non-listening-tls-server-grouping {
 description

Watsen Expires May 7, 2017 [Page 9]

Internet-Draft TLS Client and Server Models November 2016

 "A reusable grouping for a TLS server that can be used as a
 basis for specific TLS server instances.";
 container certificates {
 description
 "The list of certificates the TLS server will present when
 establishing a TLS connection in its Certificate message,
 as defined in Section 7.4.2 in RRC 5246.";
 reference
 "RFC 5246:
 The Transport Layer Security (TLS) Protocol Version 1.2";
 list certificate {
 key name;
 min-elements 1;
 description
 "An unordered list of certificates the TLS server can pick
 from when sending its Server Certificate message.";
 reference
 "RFC 5246: The TLS Protocol, Section 7.4.2";
 leaf name {
 type leafref {
 path "/ks:keystore/ks:private-keys/ks:private-key/"
 + "ks:certificate-chains/ks:certificate-chain/"
 + "ks:name";
 }
 description
 "The name of the certificate in the keystore.";
 }
 }
 }

 container client-auth {
 description
 "A reference to a list of trusted certificate authority (CA)
 certificates and a reference to a list of trusted client
 certificates.";
 leaf trusted-ca-certs {
 type leafref {
 path "/ks:keystore/ks:trusted-certificates/ks:name";
 }
 description
 "A reference to a list of certificate authority (CA)
 certificates used by the TLS server to authenticate
 TLS client certificates.";
 }

 leaf trusted-client-certs {
 type leafref {
 path "/ks:keystore/ks:trusted-certificates/ks:name";

Watsen Expires May 7, 2017 [Page 10]

Internet-Draft TLS Client and Server Models November 2016

 }
 description
 "A reference to a list of client certificates used by
 the TLS server to authenticate TLS client certificates.
 A clients certificate is authenticated if it is an
 exact match to a configured trusted client certificate.";
 }
 }
 }

 grouping listening-tls-server-grouping {
 description
 "A reusable grouping for a TLS server that can be used as a
 basis for specific TLS server instances.";
 leaf address {
 type inet:ip-address;
 description
 "The IP address of the interface to listen on. The TLS
 server will listen on all interfaces if no value is
 specified. Please note that some addresses have special
 meanings (e.g., ’0.0.0.0’ and ’::’).";
 }
 leaf port {
 type inet:port-number;
 description
 "The local port number on this interface the TLS server
 listens on. When this grouping is used, it is RECOMMENDED
 that refine statement is used to either set a default port
 value or to set mandatory true.";
 }
 uses non-listening-tls-server-grouping;
 }
 }

 <CODE ENDS>

4. Security Considerations

5. IANA Considerations

5.1. The IETF XML Registry

 This document registers two URIs in the IETF XML registry [RFC2119].
 Following the format in [RFC3688], the following registrations are
 requested:

Watsen Expires May 7, 2017 [Page 11]

Internet-Draft TLS Client and Server Models November 2016

 URI: urn:ietf:params:xml:ns:yang:ietf-tls-client
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-tls-server
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

5.2. The YANG Module Names Registry

 This document registers two YANG modules in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registrations are requested:

 name: ietf-tls-client
 namespace: urn:ietf:params:xml:ns:yang:ietf-tls-client
 prefix: tlsc
 reference: RFC XXXX

 name: ietf-tls-server
 namespace: urn:ietf:params:xml:ns:yang:ietf-tls-server
 prefix: tlss
 reference: RFC XXXX

6. Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Benoit Claise, Mehmet Ersue, David Lamparter, Alan Luchuk,
 Ladislav Lhotka, Radek Krejci, Tom Petch, Juergen Schoenwaelder, Phil
 Shafer, Sean Turner, and Bert Wijnen.

7. References

7.1. Normative References

 [draft-ietf-netconf-keystore]
 Watsen, K., "Keystore Model", draft-ieft-netconf-
 keystore-00 (work in progress), 2016,
 <https://datatracker.ietf.org/html/draft-ieft-netconf-
 keystore>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

Watsen Expires May 7, 2017 [Page 12]

Internet-Draft TLS Client and Server Models November 2016

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <http://www.rfc-editor.org/info/rfc6991>.

 [RFC7589] Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
 NETCONF Protocol over Transport Layer Security (TLS) with
 Mutual X.509 Authentication", RFC 7589,
 DOI 10.17487/RFC7589, June 2015,
 <http://www.rfc-editor.org/info/rfc7589>.

7.2. Informative References

 [draft-ietf-netconf-call-home]
 Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 draft-ieft-netconf-call-home-17 (work in progress), 2015,
 <https://datatracker.ietf.org/html/draft-ieft-netconf-
 call-home-17>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <http://www.rfc-editor.org/info/rfc2818>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC793] Postel, J., "TRANSMISSION CONTROL PROTOCOL", STD 7,
 September 1981, <https://www.ietf.org/rfc/rfc793.txt>.

Watsen Expires May 7, 2017 [Page 13]

Internet-Draft TLS Client and Server Models November 2016

Appendix A. Change Log

A.1. server-model-09 to 00

 o This draft was split out from draft-ietf-netconf-server-model-09.

 o Noted that ’0.0.0.0’ and ’::’ might have special meanings.

Appendix B. Open Issues

 Please see: https://github.com/netconf-wg/tls-client-server/issues.

Author’s Address

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

Watsen Expires May 7, 2017 [Page 14]

Network Working Group A. Clemm
Internet-Draft Sympotech
Intended status: Standards Track E. Voit
Expires: May 1, 2017 A. Gonzalez Prieto
 A. Tripathy
 E. Nilsen-Nygaard
 Pre-release version Cisco Systems
 A. Bierman
 YumaWorks
 B. Lengyel
 Ericsson
 October 28, 2016

 Subscribing to YANG datastore push updates
 draft-ietf-netconf-yang-push-04

Abstract

 This document defines a subscription and push mechanism for YANG
 datastores. This mechanism allows subscriber applications to request
 updates from a YANG datastore, which are then pushed by the publisher
 to a receiver per a subscription policy, without requiring additional
 subscriber requests.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 1, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Clemm, et al. Expires May 1, 2017 [Page 1]

Internet-Draft YANG-Push October 2016

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 3
 2. Definitions and Acronyms 5
 3. Solution Overview . 6
 3.1. Subscription Model 6
 3.2. Negotiation of Subscription Policies 8
 3.3. On-Change Considerations 9
 3.4. Data Encodings . 10
 3.5. YANG object filters 11
 3.6. Push Data Stream and Transport Mapping 11
 3.7. Subscription management 15
 3.8. Other considerations 16
 4. A YANG data model for management of datastore push
 subscriptions . 20
 4.1. Overview . 20
 4.2. Update streams . 26
 4.3. Filters . 27
 4.4. Subscription configuration 27
 4.5. Subscription monitoring 29
 4.6. Notifications . 29
 4.7. RPCs . 31
 5. YANG module . 35
 6. Security Considerations 47
 7. Acknowledgments . 48
 8. References . 48

Clemm, et al. Expires May 1, 2017 [Page 2]

Internet-Draft YANG-Push October 2016

 8.1. Normative References 48
 8.2. Informative References 48
 Appendix A. Issues that are currently being worked and resolved 49
 A.1. Unresolved and yet-to-be addressed issues 49
 A.2. Agreement in principal 49
 Appendix B. Changes between revisions 50
 Authors’ Addresses . 50

1. Introduction

 YANG [RFC7950] was originally designed for the Netconf protocol
 [RFC6241] which focused on configuration data. However, YANG can be
 used to model both configuration and operational data. It is
 therefore reasonable to expect YANG datastores will increasingly be
 used to support applications that care about about both.

 For example, service assurance applications will need to be aware of
 any remote updates to configuration and operational objects. Rapid
 awareness of object changes will enable such things as validating and
 maintaining cross-network integrity and consistency, or monitoring
 state and key performance indicators of remote devices.

 Traditional approaches to remote visibility have been built on
 polling. With polling, data is periodically explicitly retrieved by
 a client from a server to stay up-to-date. However, there are issues
 associated with polling-based management:

 o It introduces additional load on network, devices, and
 applications. Each polling cycle requires a separate yet arguably
 redundant request that results in an interrupt, requires parsing,
 consumes bandwidth.

 o It lacks robustness. Polling cycles may be missed, requests may
 be delayed or get lost, often particularly in cases when the
 network is under stress and hence exactly when the need for the
 data is the greatest.

 o Data may be difficult to calibrate and compare. Polling requests
 may undergo slight fluctuations, resulting in intervals of
 different lengths which makes data hard to compare. Likewise,
 pollers may have difficulty issuing requests that reach all
 devices at the same time, resulting in offset polling intervals
 which again make data hard to compare.

 A more effective alternative to polling is when an application can
 request to be automatically updated on current relevant content of a
 datastore. If such a request is accepted, interesting updates will
 subsequently be pushed from that datastore.

Clemm, et al. Expires May 1, 2017 [Page 3]

Internet-Draft YANG-Push October 2016

 Dependence on polling-based management is typically considered an
 important shortcoming of applications that rely on MIBs polled using
 SNMP [RFC1157]. However, without a provision to support a push-based
 alternative, there is no reason to believe that management
 applications that operate on YANG datastores will be any more
 effective, as they would follow the same request/response pattern.

 While YANG allows the definition of push notifications, such
 notifications generally indicate the occurrence of certain well-
 specified event conditions, such as the onset of an alarm condition
 or the occurrence of an error. A capability to subscribe to and
 deliver such pre-defined event notifications has been defined in
 [RFC5277]. In addition, configuration change notifications have been
 defined in [RFC6470]. These change notifications pertain only to
 configuration information, not to operational state, and convey the
 root of the subtree to which changes were applied along with the
 edits, but not the modified data nodes and their values.
 Furthermore, while delivery of updates using notifications is a
 viable option, some applications desire the ability to stream updates
 using other transports.

 Accordingly, there is a need for a service that allows applications
 to dynamically subscribe to updates of a YANG datastore and that
 allows the publisher to push those updates, possibly using one of
 several delivery mechanisms. Additionally, support for subscriptions
 configured directly on the publisher are also useful when dynamic
 signaling is undesirable or unsupported. The requirements for such a
 service are documented in [RFC7923].

 This document proposes a solution. The solution builds on top of the
 Netconf Event Model [I-D.ietf-netconf-5277bis] which defines a
 mechanism for the management of event subscriptions. At its core,
 the solution defined here introduces a new set of event streams which
 maybe subscribed, introduces datastore push update mechanisms, and
 provides extensions to the event subscription model. The document
 also includes YANG data model augmentations which extend the model
 and RPCs defined within [I-D.ietf-netconf-5277bis].

 Key capabilities worth highlighting include:

 o An extension to event subscription mechanisms allowing clients to
 subscribe to event streams containing automatic datastore updates.
 The subscription allows clients to specify which data they are
 interested in, what types of updates (e.g. create, delete,
 modify), and to provide optional filters with criteria that data
 must meet for updates to be sent. Furthermore, subscriptions can
 specify a policy that directs when updates are provided. For

Clemm, et al. Expires May 1, 2017 [Page 4]

Internet-Draft YANG-Push October 2016

 example, a client may request to be updated periodically in
 certain intervals, or whenever data changes occur.

 o Format and contents of the YANG push updates themselves.

 o The ability for a publisher to push back on requested subscription
 parameters. Because not every publisher may support every
 requested update policy for every piece of data, it is necessary
 for a publisher to be able to indicate whether or not it is
 capable of supporting a requested subscription, and possibly allow
 to negotiate push update subscription parameters. For example,
 some publishers may have a lower limit to the period with which
 they can send updates, or they may not support on-change updates
 for every piece of data.

 o Subscription parameters which allow the specification of QoS
 extensions to address prioritization between independent streams
 of updates.

2. Definitions and Acronyms

 Many of the terms in this document are defined in
 [I-D.ietf-netconf-5277bis]. Please see that document for these
 definitions.

 Data node: An instance of management information in a YANG datastore.

 Data node update: A data item containing the current value/property
 of a Data node at the time the data node update was created.

 Data record: A record containing a set of one or more data node
 instances and their associated values.

 Datastore: A conceptual store of instantiated management information,
 with individual data items represented by data nodes which are
 arranged in hierarchical manner.

 Datastream: A continuous stream of data records, each including a set
 of updates, i.e. data node instances and their associated values.

 Data subtree: An instantiated data node and the data nodes that are
 hierarchically contained within it.

 Push-update stream: A conceptual data stream of a datastore that
 streams the entire datastore contents continuously and perpetually.

 Update: A data item containing the current value of a data node.

Clemm, et al. Expires May 1, 2017 [Page 5]

Internet-Draft YANG-Push October 2016

 Update notification: An Event Notification including those data node
 update(s) to be pushed in order to meet the obligations of a single
 Subscription. All included data node updates must reflect the state
 of a Datastore at a snapshot in time.

 Update record: A representation of a data node update as a data
 record. An update record can be included as part of an update
 stream. It can also be logged for retrieval. In general, an update
 record will include the value/property of a data node. It may also
 include information about the type of data node update, i.e. whether
 the data node was modified/updated, or newly created, or deleted.

 Update trigger: A mechanism, as specified by a Subscription Policy,
 that determines when a data node update is to be communicated. (e.g.,
 a change trigger, invoked when the value of a data node changes or a
 data node is created or deleted, or a time trigger, invoked after the
 laps of a periodic time interval.)

 YANG object filter: A filter that contains evaluation criteria which
 are evaluated against YANG objects of a subscription. An update is
 only published if the object meets the specified filter criteria.

 YANG-Push: The subscription and push mechanism for YANG datastores
 that is specified in this document.

3. Solution Overview

 This document specifies a solution for a push update subscription
 service. This solution supports the dynamic as well as configured
 subscriptions to information updates from YANG datastores. A
 subscription might target exposed operational and/or configuration
 YANG objects on a device. YANG objects are subsequently pushed from
 the publisher to the receiver per the terms of the subscription.

3.1. Subscription Model

 YANG-push subscriptions are defined using a data model that is itself
 defined in YANG. This model augments the event subscription model
 defined in [I-D.ietf-netconf-5277bis] and introduces several new
 parameters that allow subscribers to specify what to include in an
 update notification and what triggers such an update notification.

 The subscription model assumes the presence of one or more conceptual
 perpetual datastreams of continuous subscribable YANG updates. There
 are several datastreams with predefined semantics, such as the stream
 of updates of all operational data or the stream of updates of all
 config data. In addition, it is possible to define custom streams
 with customizable semantics. The model includes the list of update

Clemm, et al. Expires May 1, 2017 [Page 6]

Internet-Draft YANG-Push October 2016

 datastreams that are supported by a system and available for
 subscription.

 The subscription model augments the [I-D.ietf-netconf-5277bis]
 subscription model with a set of parameters:

 o Anydata encoding for periodic and on-change push updates.

 o A subscription policy definition regarding the update trigger when
 to send new update notifications.

 * For periodic subscriptions, the trigger is defined by two
 parameters that defines the interval with which updates are to
 be pushed. These parameters are the period/interval of
 reporting duration, and an anchor time which can be used to
 calculate at which times updates needs to be assembled and
 sent.

 * EDITOR’S NOTE: A possible option to discuss concerns the
 introduction of an additional parameter "changes-only" for
 periodic subscription. Including this flag would results in
 sending at the end of each period an update containing only
 changes since the last update (i.e. a change-update as in the
 case of an on-change subscription), not a full snapshot of the
 subscribed information. Such an option might be interesting in
 case of data that is largely static and bandwidth-constrained
 environments.

 * For on-change subscriptions, the trigger occurs whenever a
 change in the subscribed information is detected. On-change
 subscriptions have more complex semantics that can be guided by
 additional parameters. Please refer also to Section 3.3.

 + One parameter specifies the dampening period, i.e. the
 interval that must pass before a successive update
 notification for the same Subscription is sent. Note that
 the dampening period applies to the set of all data nodes
 within a single subscription. This means that on the first
 change of an object, an update notification containing that
 object is sent either immediately or at the end of a
 dampening period already in effect.

 + Another parameter allows to restrict the types of changes
 for which updates are sent (changes to object values, object
 creation or deletion events). It is conceivable to augment
 the data model with additional parameters in the future to
 specify even more refined policies, such as parameters that

Clemm, et al. Expires May 1, 2017 [Page 7]

Internet-Draft YANG-Push October 2016

 specify the magnitude of a change that must occur before an
 update is triggered.

 + A third parameter specifies whether or not a complete update
 with all the subscribed data should be sent at the beginning
 of a subscription to facilitate synchronization and
 establish the frame of reference for subsequent updates.

 o Optionally, a filter, or set of filters, describing the subset of
 data node updates that are of interest to the subscriber. The
 publisher must only send to the subscriber those data node updates
 that can traverse applied filter(s). The absence of a filter
 indicates that all data items from the stream are of interest to
 the subscriber and all data records must be sent in their entirety
 to the subscriber. The following types of filters are supported:
 subtree filters, with the same semantics as defined in
 [RFC6241][RFC6241], and XPath filters. Additional filter types
 can be added through augmentations. Filters can be specified
 "inline" as part of the subscription, or can be configured
 separately and referenced by a subscription, in order to
 facilitate reuse of complex filters.

 The subscription data model is specified as part of the YANG data
 model described later in this specification. It is conceivable that
 additional subscription parameters might be added in the future.
 This can be accomplished through augmentation of the subscription
 data model.

3.2. Negotiation of Subscription Policies

 Dynamic subscriptions must support a simple negotiation between
 subscribers and publishers for subscription parameters. This
 negotiation is limited to a single pair of subscription request and
 response messages. For negative response messages, the publisher
 SHOULD include in the returned error what subscription parameters
 would have been accepted for the request. The returned acceptable
 parameters constitute suggestions that, when followed, increase the
 likelihood of success for subsequent requests. However, there are no
 guarantee that subsequent requests for this subscriber will in fact
 be accepted.

 A subscription request might be declined based on publisher’s
 assessment that it may be unable to provide a filtered update
 notification stream that would meet the terms of the establish-
 subscription request.

Clemm, et al. Expires May 1, 2017 [Page 8]

Internet-Draft YANG-Push October 2016

 In case a subscriber requests an encoding other than XML, and this
 encoding is not supported by the publisher, the publisher simply
 indicates in the response that the encoding is not supported.

 A subscription negotiation capability has been introduced as part of
 the NETCONF Event Notifications model. However, the ability to
 negotiate subscriptions is of particular importance in conjunction
 with push updates, as publisher implementations may have limitations
 with regards to what updates can be generated and at what velocity.

3.3. On-Change Considerations

 On-change subscriptions allow subscribers to subscribe to updates
 whenever changes to objects occur. As such, on-change subscriptions
 are of particular interest for data that changes relatively
 infrequently, yet that require applications to be notified with
 minimal delay when changes do occur.

 On-change subscriptions tend to be more difficult to implement than
 periodic subscriptions. Specifically, on-change subscriptions may
 involve a notion of state to see if a change occurred between past
 and current state, or the ability to tap into changes as they occur
 in the underlying system. Accordingly, on-change subscriptions may
 not be supported by all implementations or for every object.

 When an on-change subscription is requested for a datastream with a
 given subtree filter, where not all objects support on-change update
 triggers, the subscription request MUST be rejected. As a result,
 on-change subscription requests will tend to be directed at very
 specific, targeted subtrees with only few objects.

 Any updates for an on-change subscription will include only objects
 for which a change was detected. To avoid flooding receivers with
 repeated updates for fast-changing objects, or objects with
 oscillating values, an on-change subscription allows for the
 definition of a dampening period. Once an update for a given object
 is sent, no other updates for this particular object are sent until
 the end of the dampening period. Values sent at the end of the
 dampening period are the values current when that dampening period
 expires. In addition, updates include information about objects that
 were deleted and ones that were newly created.

 On-change subscriptions can be refined to let users subscribe only to
 certain types of changes, for example, only to object creations and
 deletions, but not to modifications of object values.

 Additional refinements are conceivable. For example, in order to
 avoid sending updates on objects whose values undergo only a

Clemm, et al. Expires May 1, 2017 [Page 9]

Internet-Draft YANG-Push October 2016

 negligible change, additional parameters might be added to an on-
 change subscription specifying a YANG object filter that states how
 large or "significant" a change has to be before an update is sent.
 A simple policy is a "delta-policy" that states, for integer-valued
 data nodes, the minimum difference between the current value and the
 value that was last reported that triggers an update. Also more
 sophisticated policies are conceivable, such as policies specified in
 percentage terms or policies that take into account the rate of
 change. While not specified as part of this draft, such policies can
 be accommodated by augmenting the subscription data model
 accordingly.

3.4. Data Encodings

 Subscribed data is encoded in either XML or JSON format. A publisher
 MUST support XML encoding and MAY support JSON encoding.

 It is conceivable that additional encodings may be supported as
 options in the future. This can be accomplished by augmenting the
 subscription data model with additional identity statements used to
 refer to requested encodings.

3.4.1. Periodic Subscriptions

 In a periodic subscription, the data included as part of an update
 corresponds to data that could have been simply retrieved using a get
 operation and is encoded in the same way. XML encoding rules for
 data nodes are defined in [RFC7950]. JSON encoding rules are defined
 in [RFC7951]. This encoding is valid JSON, but also has special
 encoding rules to identify module namespaces and provide consistent
 type processing of YANG data.

3.4.2. On-Change Subscriptions

 In an on-change subscription, updates need to indicate not only
 values of changed data nodes but also the types of changes that
 occurred since the last update, such as whether data nodes were newly
 created since the last update or whether they were merely modified,
 as well as which data nodes were deleted.

 Encoding rules for data in on-change updates correspond to how data
 would be encoded in a YANG-patch operation as specified in
 [I-D.ietf-netconf-yang-patch]. The "YANG-patch" would in this case
 be applied to the earlier state reported by the preceding update, to
 result in the now-current state of YANG data. Of course, contrary to
 a YANG-patch operation, the data is sent from the publisher to the
 receiver and is not restricted to configuration data.

Clemm, et al. Expires May 1, 2017 [Page 10]

Internet-Draft YANG-Push October 2016

3.5. YANG object filters

 Subscriptions can specify filters for subscribed data. The following
 filters are supported:

 o subtree-filter: A subtree filter specifies a subtree that the
 subscription refers to. When specified, updates will only concern
 data nodes from this subtree. Syntax and semantics correspond to
 that specified for [RFC6241] section 6.

 o xpath-filter: An XPath filter specifies an XPath expression
 applied to the data in an update, assuming XML-encoded data.

 Only a single filter can be applied to a subscription at a time.

 It is conceivable for implementations to support other filters. For
 example, an on-change filter might specify that changes in values
 should be sent only when the magnitude of the change since previous
 updates exceeds a certain threshold. It is possible to augment the
 subscription data model with additional filter types.

3.6. Push Data Stream and Transport Mapping

 Pushing data based on a subscription could be considered analogous to
 a response to a data retrieval request, e.g. a "get" request.
 However, contrary to such a request, multiple responses to the same
 request may get sent over a longer period of time.

 An applicable mechanism is that of a notification. There are however
 some specifics that need to be considered. Contrary to other
 notifications that are associated with alarms and unexpected event
 occurrences, update notifications are solicited, i.e. tied to a
 particular subscription which triggered the notification.

 A push update notification contains several parameters:

 o A subscription correlator, referencing the name of the
 subscription on whose behalf the notification is sent.

 o Data nodes containing a representation of the datastore subtree(s)
 containing the updates. In all cases, the subtree(s) are filtered
 per access control rules to contain only data that the subscriber
 is authorized to see. For on-change subscriptions, the subtree
 may only contain the data nodes which have changed since the start
 of the previous dampening interval.

 This document introduces two generic notifications: "push-update" and
 "push-change-update". Those notifications may be encapsulated on a

Clemm, et al. Expires May 1, 2017 [Page 11]

Internet-Draft YANG-Push October 2016

 transport (e.g. Netconf notifications and HTTP) to carry data
 records with updates of datastore contents as specified by a
 subscription. It is possible also map notifications to other
 transports and encodings and use the same subscription model;
 however, the definition of such mappings is outside the scope of this
 document.

 A push-update notification defines a complete update of the datastore
 per the terms of a subscription. This type of notification is used
 for continuous updates of periodic subscriptions. A push-update
 notification can also used be for the on-change subscriptions in two
 cases. First it will be used as the initial push-update if there is
 a need to synchronize the receiver at the start of a new
 subscription. It also may be sent if the publisher later chooses to
 resynch a previously synched on-change subscription. The push-update
 record contains a data snippet that contains an instantiated subtree
 with the subscribed contents. The content of the update notification
 is equivalent to the contents that would be obtained had the same
 data been explicitly retrieved using e.g. a Netconf "get"-operation,
 with the same filters applied.

 The contents of the notification conceptually represents the union of
 all data nodes in the yang modules supported by the publisher.
 However, in a YANG data model, it is not practical to model the
 precise data contained in the updates as part of the notification.
 This is because the specific data nodes supported depend on the
 implementing system and may even vary dynamically. Therefore, to
 capture this data, a single parameter that can represent any
 datastore contents is used, not parameters that represent data nodes
 one at a time.

 A push-change-update notification is the most common type of update
 for on-change subscriptions. It is not used for periodic
 subscriptions. The update record in this case contains a data
 snippet that indicates the full set of changes that data nodes have
 undergone since the last notification of YANG objects. In other
 words, this indicates which data nodes have been created, deleted, or
 have had changes to their values. The format of the data snippet
 follows YANG-patch [I-D.ietf-netconf-yang-patch], i.e. the same
 format that would be used with a YANG-patch operation to apply
 changes to a data tree, indicating the creates, deletes, and
 modifications of data nodes. Please note that as the update can
 include a mix of configuration and operational data

 The following is an example of push notification. It contains an
 update for subscription 1011, including a subtree with root foo that
 contains a leaf, bar:

Clemm, et al. Expires May 1, 2017 [Page 12]

Internet-Draft YANG-Push October 2016

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2015-03-09T19:14:56Z</eventTime>
 <push-update
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <subscription-id>1011</subscription-id>
 <time-of-update>2015-03-09T19:14:56.233Z</time-of-update>
 <datastore-contents-xml>
 <foo>
 <bar>some_string</bar>
 </foo>
 </datastore-contents-xml>
 </push-update>
 </notification>

 Figure 1: Push example

 The following is an example of an on-change notification. It
 contains an update for subscription 89, including a new value for a
 leaf called beta, which is a child of a top-level container called
 alpha:

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2015-03-09T19:14:56Z</eventTime>
 <push-change-update xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <subscription-id>89</subscription-id>
 <time-of-update>2015-03-09T19:14:56.233Z</time-of-update>
 <datastore-changes-xml>
 <alpha xmlns="http://example.com/sample-data/1.0" >
 <beta>1500</beta>
 </alpha>
 </datastore-changes-xml>
 </push-change-update>
 </notification>

 Figure 2: Push example for on change

 The equivalent update when requesting json encoding:

Clemm, et al. Expires May 1, 2017 [Page 13]

Internet-Draft YANG-Push October 2016

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2015-03-09T19:14:56Z</eventTime>
 <push-change-update xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <subscription-id>89</subscription-id>
 <time-of-update>2015-03-09T19:14:56.233Z</time-of-update>
 <datastore-changes-json>
 {
 "ietf-yang-patch:yang-patch": {
 "patch-id": [
 null
],
 "edit": [
 {
 "edit-id": "edit1",
 "operation": "merge",
 "target": "/alpha/beta",
 "value": {
 "beta": 1500
 }
 }
]
 }
 }
 </datastore-changes-json>
 </push-change-update>
 </notification>

 Figure 3: Push example for on change with JSON

 When the beta leaf is deleted, the publisher may send

Clemm, et al. Expires May 1, 2017 [Page 14]

Internet-Draft YANG-Push October 2016

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2015-03-09T19:14:56Z</eventTime>
 <push-change-update xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <subscription-id>89</subscription-id>
 <time-of-update>2015-03-09T19:14:56.233Z</time-of-update>
 <datastore-changes-xml>
 <alpha xmlns="http://example.com/sample-data/1.0" >
 <beta urn:ietf:params:xml:ns:netconf:base:1.0:
 operation="delete"/>
 </alpha>
 </datastore-changes-xml>
 </push-change-update>
 </notification>

 Figure 4: 2nd push example for on change update

3.7. Subscription management

 A [[I-D.ietf-netconf-5277bis] subscription needs enhancment to
 support YANG Push subscription negotiation. Specifically, these
 enhancements are needed to signal to the subscriber why an attempt
 has failed.

 A subscription can be rejected for multiple reasons, including the
 lack of authorization to establish a subscription, the lack of read
 authorization on the requested data node, or the inability of the
 publisher to provide a stream with the requested semantics. In such
 cases, no subscription is established. Instead, the subscription-
 result with the failure reason is returned as part of the RPC
 response. In addition, a set of alternative subscription parameters
 MAY be returned that would likely have resulted in acceptance of the
 subscription request, which the subscriber may try for a future
 subscription attempt.

 It should be noted that a rejected subscription does not result in
 the generation of an rpc-reply with an rpc-error element, as neither
 the specification of YANG-push specific errors nor the specification
 of additional data parameters to be returned in an error case are
 supported as part of a YANG data model.

 For instance, for the following request:

Clemm, et al. Expires May 1, 2017 [Page 15]

Internet-Draft YANG-Push October 2016

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <stream>push-update</stream>
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/sample-data/1.0"
 select="/ex:foo"/>
 <period>500</period>
 <encoding>encode-xml</encoding>
 </establish-subscription>
 </netconf:rpc>

 Figure 5: Establish-Subscription example

 the publisher might return:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="http://urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 error-insufficient-resources
 </subscription-result>
 <period>2000</period>
 </rpc-reply>

 Figure 6: Error response example

3.8. Other considerations

3.8.1. Authorization

 A receiver of subscription data may only be sent updates for which
 they have proper authorization. Data that is being pushed therefore
 needs to be subjected to a filter that applies all corresponding
 rules applicable at the time of a specific pushed update, silently
 removing any non-authorized data from subtrees.

 The authorization model for data in YANG datastores is described in
 the Netconf Access Control Model [RFC6536]. However, some
 clarifications to that RFC are needed so that the desired access
 control behavior is applied to pushed updates.

 One of these clarifications is that a subscription may only be
 established if the receiver has read access to the target data node.

Clemm, et al. Expires May 1, 2017 [Page 16]

Internet-Draft YANG-Push October 2016

 +-------------+ +-------------+
 subscription | protocol | | target |
 request --> | operation | -------------> | data node |
 | allowed? | datastore | access |
 +-------------+ or state | allowed? |
 data access +-------------+

 Figure 7: Access control for subscription

 Likewise if a receiver no longer has read access permission to a
 target data node, the subscription must be abnormally terminated
 (with loss of access permission as the reason provided).

 Another clarification to [RFC6536] is that each of the individual
 nodes in a pushed update must also go through access control
 filtering. This includes new nodes added since the last update
 notification, as well as existing nodes. For each of these read
 access must be verified. The methods of doing this efficiently are
 left to implementation.

 +-------------+ +-------------------+
 subscription | data node | yes | |
 update --> | access | ---> | add data node |
 | allowed? | | to update message |
 +-------------+ +-------------------+

 Figure 8: Access control for push updates

 If there are read access control changes applied under the target
 node, no notifications indicating the fact that this has occurred
 should be provided.

3.8.2. Robustness and reliability considerations

 Particularly in the case of on-change push updates, it is important
 that push updates do not get lost.

 Update notifications will typically traverse a secure and reliable
 transport. Notifications will not be reordered, and will also
 contain a time stamp. Despite these protections for on-change, it is
 possible that complete update notifications get lost. For this
 reason, patch-ids may be included in a subscription so that an
 application can determine if an update has been lost.

 At the same time, it is conceivable that under certain circumstances,
 a publisher will recognize that it is unable to include within an
 update notification the full set of objects desired per the terms of

Clemm, et al. Expires May 1, 2017 [Page 17]

Internet-Draft YANG-Push October 2016

 a subscription. In this case, the publisher must take one or more of
 the following actions.

 o A publisher must set the updates-not-sent flag on any update
 notification which is known to be missing information.

 o It may choose to suspend and resume a subscription as per
 [I-D.ietf-netconf-5277bis].

 o When resuming an on-change subscription, the publisher should
 generate a complete patch from the previous update notification.
 If this is not possible and the synch-on-start option is
 configured, then the full datastore contents may be sent instead
 (effectively replacing the previous contents). If neither of
 these are possible, then an updates-not-sent flag must be included
 on the next push-change-update.

3.8.3. Update size and fragmentation considerations

 Depending on the subscription, the volume of updates can become quite
 large. There is no inherent limitation to the amount of data that
 can be included in a notification. That said, it may not always be
 practical to send the entire update in a single chunk.
 Implementations MAY therefore choose, at their discretion, to "chunk"
 updates and break them out into several update notifications.

3.8.4. Push data streams

 There are several conceptual data streams introduced in this
 specification:

 o yang-push includes the entirety of YANG data, including both
 configuration and operational data.

 o operational-push includes all operational (read-only) YANG data

 o config-push includes all YANG configuration data.

 It is conceivable to introduce other data streams with more limited
 scope, for example:

 o operdata-nocounts-push, a datastream containing all operational
 (read-only) data with the exception of counters

 o other custom datastreams

 Those data streams make particular sense for use cases involving
 service assurance (not relying on operational data), and for use

Clemm, et al. Expires May 1, 2017 [Page 18]

Internet-Draft YANG-Push October 2016

 cases requiring on-change update triggers which make no sense to
 support in conjunction with fast-changing counters. While it is
 possible to specify subtree filters on yang-push to the same effect,
 having those data streams greatly simplifies articulating
 subscriptions in such scenarios.

3.8.5. Implementation considerations

 Implementation specifics are outside the scope of this specification.
 That said,it should be noted that monitoring of operational state
 changes inside a system can be associated with significant
 implementation challenges.

 Even periodic retrieval and push of operational counters may consume
 considerable system resources. In addition the on-change push of
 small amounts of configuration data may, depending on the
 implementation, require invocation of APIs, possibly on an object-by-
 object basis, possibly involving additional internal interrupts, etc.

 For those reasons, it is important for an implementation to
 understand what subscriptions it can or cannot support. It is far
 preferable to decline a subscription request then to accept such a
 request when it cannot be met.

 Whether or not a subscription can be supported will in general be
 determined by a combination of several factors, including the
 subscription policy (on-change or periodic, with on-change in general
 being the more challenging of the two), the period in which to report
 changes (1 second periods will consume more resources than 1 hour
 periods), the amount of data in the subtree that is being subscribed
 to, and the number and combination of other subscriptions that are
 concurrently being serviced.

 When providing access control to every node in a pushed update, it is
 possible to make and update efficient access control filters for an
 update. These filters can be set upon subscription and applied
 against a stream of updates. These filters need only be updated when
 (a) there is a new node added/removed from the subscribed tree with
 different permissions than its parent, or (b) read access permissions
 have been changed on nodes under the target node for the subscriber.

3.8.6. Not Notifiable YANG Objects

 In some cases, a publisher supporting "on-change" notifications may
 not be able to push updates for some object types "on-change".
 Reasons for this might be that the value of the data node changes
 frequently (e.g., a received-octets-counter), that small object
 changes are frequent and meaningless (e.g., a temperature gauge

Clemm, et al. Expires May 1, 2017 [Page 19]

Internet-Draft YANG-Push October 2016

 changing 0.1 degrees), or that the implementation is not capable of
 on-change notification of an object type.

 The default assumption is that changes on all data nodes will be
 reported on-change. However if a certain data node cannot do this,
 it SHOULD be marked with the YANG extension not-notifiable-on-change.

4. A YANG data model for management of datastore push subscriptions

4.1. Overview

 The YANG data model for datastore push subscriptions is depicted in
 the following figure. Following Yang tree convention in the
 depiction, brackets enclose list keys, "rw" means configuration, "ro"
 operational state data, "?" designates optional nodes, "*" designates
 nodes that can have multiple instances. Parantheses with a name in
 the middle enclose choice and case nodes. A "+" at the end of a line
 indicates that the line is to be concatenated with the subsequent
 line. New YANG tree notation is the i] which indicates that the node
 in that line has been brought in / imported from another model, and
 an (a) which indicates this is the specific imported node augmented.
 In the figure below, all have been imported from 5277bis. The model
 consists mostly of augmentations to RPCs and notifications defined in
 the data model for subscriptions for event notifications of
 [I-D.ietf-netconf-5277bis].

 module: ietf-yang-push
 i] +--ro streams
 i] | +--ro stream* stream
 i] +--rw filters
 i] | +--rw filter* [filter-id]
 i] | +--rw filter-id filter-id
 i] | +--rw (filter-type)?
 i] | +--:(rfc5277)
 i] | | +--rw filter?
 | +--:(update-filter)
 | +--rw (update-filter)?
 | +--:(subtree)
 | | +--rw subtree-filter?
 | +--:(xpath)
 | +--rw xpath-filter? yang:xpath1.0
 i] +--rw subscription-config {configured-subscriptions}?
 i] | +--rw subscription* [subscription-id]
 i] | +--rw subscription-id subscription-id
 i] | +--rw stream? stream
 i] | +--rw encoding? encoding
 (a) | +--rw (filter-type)?
 i] | | +--:(rfc5277)

Clemm, et al. Expires May 1, 2017 [Page 20]

Internet-Draft YANG-Push October 2016

 i] | | | +--rw filter?
 | | +--:(update-filter)
 | | | +--rw (update-filter)?
 | | | +--:(subtree)
 | | | | +--ro subtree-filter?
 | | | +--:(xpath)
 | | | +--rw xpath-filter? yang:xpath1.0
 i] | | +--:(by-reference)
 i] | | +--rw filter-ref? filter-ref
 i] | +--rw startTime? yang:date-and-time
 i] | +--rw stopTime? yang:date-and-time
 | +--rw (update-trigger)?
 | | +--:(periodic)
 | | | +--rw period yang:timeticks
 | | | +--rw anchor-time? yang:date-and-time
 | | +--:(on-change) {on-change}?
 | | +--rw no-synch-on-start? empty
 | | +--rw dampening-period yang:timeticks
 | | +--rw excluded-change* change-type
 i] | +--rw receivers
 i] | | +--rw receiver* [address]
 i] | | +--rw address inet:host
 i] | | +--rw port inet:port-number
 i] | | +--rw protocol? transport-protocol
 i] | +--rw (push-source)?
 i] | | +--:(interface-originated)
 i] | | | +--rw source-interface? if:interface-ref
 i] | | +--:(address-originated)
 i] | | +--rw source-vrf? uint32
 i] | | +--rw source-address inet:ip-address-no-zone
 | +--rw dscp? inet:dscp
 | +--rw subscription-priority? uint8
 | +--rw subscription-dependency? string
 (a) +--ro subscriptions
 i] +--ro subscription*
 i] +--ro subscription-id
 i] +--ro configured-subscription?
 i] +--ro subscription-status?
 i] +--ro stream?
 i] +--ro encoding?
 (a) +--ro (filter-type)?
 i] | +--:(rfc5277)
 i] | | +--ro filter?
 | +--:(update-filter)
 | | +--ro (update-filter)?
 | | +--:(subtree)
 | | | +--ro subtree-filter?
 | | +--:(xpath)

Clemm, et al. Expires May 1, 2017 [Page 21]

Internet-Draft YANG-Push October 2016

 | | +--ro xpath-filter?
 i] | +--:(by-reference)
 i] | +--ro filter-ref?
 i] +--ro startTime?
 i] +--ro stopTime?
 +--ro (update-trigger)?
 | +--:(periodic)
 | | +--ro period
 | | +--ro anchor-time?
 | +--:(on-change) {on-change}?
 | +--ro no-synch-on-start?
 | +--ro dampening-period
 | +--ro excluded-change*
 i] +--ro receivers
 i] | +--ro receiver*
 i] | +--ro address
 i] | +--ro port
 i] | +--ro protocol?
 i] +--ro (push-source)?
 i] | +--:(interface-originated)
 i] | | +--ro source-interface?
 i] | +--:(address-originated)
 i] | +--ro source-vrf?
 i] | +--ro source-address
 +--ro dscp?
 +--ro subscription-priority?
 +--ro subscription-dependency?
 i] rpcs:
 i] +---x establish-subscription
 (a) | +---w input
 i] | | +---w stream?
 i] | | +---w encoding?
 (a) | | +---w (filter-type)?
 i] | | | +--:(rfc5277)
 i] | | | | +---w filter?
 | | | +--:(update-filter)
 | | | | +---w (update-filter)?
 | | | | +--:(subtree)
 | | | | | +---w subtree-filter?
 | | | | +--:(xpath)
 | | | | +---w xpath-filter?
 i] | | | +--:(by-reference)
 i] | | | +---w filter-ref?
 i] | | +---w startTime?
 i] | | +---w stopTime?
 | | +---w (update-trigger)?
 | | | +--:(periodic)
 | | | | +---w period

Clemm, et al. Expires May 1, 2017 [Page 22]

Internet-Draft YANG-Push October 2016

 | | | | +---w anchor-time?
 | | | +--:(on-change) {on-change}?
 | | | +---w no-synch-on-start?
 | | | +---w dampening-period
 | | | +---w excluded-change*
 | | +---w dscp?
 | | +---w subscription-priority?
 | | +---w subscription-dependency?
 i] | +--ro output
 i] | +--ro subscription-result
 i] | +--ro (result)?
 i] | +--:(success)
 i] | | +--ro subscription-id
 (a) | +--:(no-success)
 i] | +--ro stream?
 i] | +--ro encoding?
 (a) | +--ro (filter-type)?
 i] | | +--:(rfc5277)
 i] | | | +--ro filter?
 | | +--:(update-filter)
 | | | +---w (update-filter)?
 | | | +--:(subtree)
 | | | | +---w subtree-filter?
 | | | +--:(xpath)
 | | | +---w xpath-filter?
 i] | | +--:(by-reference)
 i] | | +--ro filter-ref?
 i] | +--ro startTime?
 i] | +--ro stopTime?
 | +--ro (update-trigger)?
 | | +--:(periodic)
 | | | +--ro period
 | | | +--ro anchor-time?
 | | +--:(on-change) {on-change}?
 | | +--ro no-synch-on-start?
 | | +--ro dampening-period
 | | +--ro excluded-change*
 | +--ro dscp?
 | +--ro subscription-priority?
 | +--ro subscription-dependency?
 i] +---x modify-subscription
 i] | +---w input
 i] | | +---w subscription-id?
 i] | | +---w (filter-type)?
 i] | | | +--:(rfc5277)
 i] | | | | +---w filter?
 | | | +--:(update-filter)
 | | | | +---w (update-filter)?

Clemm, et al. Expires May 1, 2017 [Page 23]

Internet-Draft YANG-Push October 2016

 | | | | +--:(subtree)
 | | | | | +---w subtree-filter?
 | | | | +--:(xpath)
 | | | | +---w xpath-filter?
 i] | | | +--:(by-reference)
 i] | | | +---w filter-ref?
 i] | | +---w startTime?
 i] | | +---w stopTime?
 | | +---w (update-trigger)?
 | | +--:(periodic)
 | | | +---w period
 | | | +---w anchor-time?
 | | +--:(on-change) {on-change}?
 | | +---w dampening-period
 | | +---w excluded-change*
 i] | +--ro output
 i] | +--ro subscription-result
 i] | +--ro (result)?
 i] | +--:(success)
 i] | | +--ro subscription-id
 i] | +--:(no-success)
 i] | +--ro stream?
 i] | +--ro encoding?
 i] | +--ro (filter-type)?
 i] | | +--:(rfc5277)
 i] | | | +--ro filter?
 | | +--:(update-filter)
 | | | +---w (update-filter)?
 | | | +--:(subtree)
 | | | | +---w subtree-filter?
 | | | +--:(xpath)
 | | | +---w xpath-filter?
 i] | | +--:(by-reference)
 i] | | +--ro filter-ref?
 i] | +--ro startTime?
 i] | +--ro stopTime?
 | +--ro (update-trigger)?
 | | +--:(periodic)
 | | | +--ro period
 | | | +--ro anchor-time?
 | | +--:(on-change) {on-change}?
 | | +--ro no-synch-on-start?
 | | +--ro dampening-period
 | | +--ro excluded-change*
 | +--ro dscp?
 | +--ro subscription-priority?
 | +--ro subscription-dependency?
 i] +---x delete-subscription

Clemm, et al. Expires May 1, 2017 [Page 24]

Internet-Draft YANG-Push October 2016

 i] +---w input
 i] | +---w subscription-id
 i] +--ro output
 i] +--ro subscription-result

 (a) notifications
 (a) +---n subscription-started
 i] | +--ro subscription-id
 i] | +--ro stream?
 i] | +--ro encoding?
 (a) | +--ro (filter-type)?
 i] | | +--:(rfc5277)
 i] | | | +--ro filter?
 | | +--:(update-filter)
 | | | +--rw (update-filter)?
 | | | +--:(subtree)
 | | | | +--ro subtree-filter?
 | | | +--:(xpath)
 | | | +--rw xpath-filter?
 i] | | +--:(by-reference)
 i] | | +--ro filter-ref?
 i] | +--ro startTime?
 i] | +--ro stopTime?
 | +--ro (update-trigger)?
 | | +--:(periodic)
 | | | +--ro period
 | | | +--ro anchor-time?
 | | +--:(on-change) {on-change}?
 | | +--ro no-synch-on-start?
 | | +--ro dampening-period
 | | +--ro excluded-change*
 | +--ro dscp?
 | +--ro subscription-priority?
 | +--ro subscription-dependency?
 (a) +---n subscription-modified
 i] | +--ro subscription-id
 i] | +--ro stream?
 i] | +--ro encoding?
 (a) | +--ro (filter-type)?
 i] | | +--:(rfc5277)
 i] | | | +--ro filter?
 | | +--:(update-filter)
 | | | +--rw (update-filter)?
 | | | +--:(subtree)
 | | | | +--ro subtree-filter?
 | | | +--:(xpath)
 | | | +--rw xpath-filter?
 i] | | +--:(by-reference)

Clemm, et al. Expires May 1, 2017 [Page 25]

Internet-Draft YANG-Push October 2016

 i] | | +--ro filter-ref?
 i] | +--ro startTime?
 i] | +--ro stopTime?
 | +--ro (update-trigger)?
 | | +--:(periodic)
 | | | +--ro period
 | | | +--ro anchor-time?
 | | +--:(on-change) {on-change}?
 | | +--ro no-synch-on-start?
 | | +--ro dampening-period
 | | +--ro excluded-change*
 | +--ro dscp?
 | +--ro subscription-priority?
 | +--ro subscription-dependency?
 i] +---n subscription-terminated
 i] | +--ro subscription-id
 i] | +--ro reason?
 i] +---n subscription-suspended
 i] | +--ro subscription-id
 i] | +--ro reason?
 i] +---n subscription-resumed
 i] | +--ro subscription-id
 i] +---n replay-complete
 i] | +--ro subscription-id
 i] +---n notification-complete
 i] | +--ro subscription-id
 +---n push-update
 | +--ro subscription-id
 | +--ro time-of-update?
 | +--ro updates-not-sent?
 | +--ro datastore-contents?
 +---n push-change-update {on-change}?
 +--ro subscription-id
 +--ro time-of-update?
 +--ro updates-not-sent?
 +--ro datastore-changes?

 Figure 9: Model structure

 The components of the model are described in the following
 subsections.

4.2. Update streams

 Container "update-streams" is used to indicate which data streams are
 provided by the system and can be subscribed to. For this purpose,
 it contains a leaf list of data nodes identifying the supported
 streams.

Clemm, et al. Expires May 1, 2017 [Page 26]

Internet-Draft YANG-Push October 2016

4.3. Filters

 Container "filters" contains a list of configurable data filters,
 each specified in its own list element. This allows users to
 configure filters separately from an actual subscription, which can
 then be referenced from a subscription. This facilitates the reuse
 of filter definitions, which can be important in case of complex
 filter conditions.

 One of three types of filters can be specified as part of a filter
 list element. Subtree filters follow syntax and semantics of RFC
 6241 and allow to specify which subtree(s) to subscribe to. In
 addition, XPath filters can be specified for more complex filter
 conditions. Finally, filters can be specified using syntax and
 semantics of RFC5277.

 It is conceivable to introduce other types of filters; in that case,
 the data model needs to be augmented accordingly.

4.4. Subscription configuration

 As an optional feature, configured-subscriptions, allows for the
 configuration of subscriptions as opposed to RPC. Subscriptions
 configurations are represented by list subscription-config. Each
 subscription is represented through its own list element and includes
 the following components:

 o "subscription-id" is an identifier used to refer to the
 subscription.

 o "stream" refers to the stream being subscribed to. The
 subscription model assumes the presence of perpetual and
 continuous streams of updates. Various streams are defined:
 "push-update" covers the entire set of YANG data in the publisher.
 "operational-push" covers all operational data, while "config-
 push" covers all configuration data. Other streams could be
 introduced in augmentations to the model by introducing additional
 identities.

 o "encoding" refers to the encoding requested for the data updates.
 By default, updates are encoded using XML. However, JSON can be
 requested as an option if the json-enconding feature is supported.
 Other encodings may be supported in the future.

 o "anchor-time" is a timestamp. When used in conjunction with
 period, the boundaries of periodic update periods may be
 calculated.

Clemm, et al. Expires May 1, 2017 [Page 27]

Internet-Draft YANG-Push October 2016

 o Filters for a subscription can be specified using a choice,
 allowing to either reference a filter that has been separately
 configured or entering its definition inline.

 o A choice of subscription policies allows to define when to send
 new updates - periodic or on change.

 * For periodic subscriptions, the trigger is defined by a
 "period", a parameter that defines the interval with which
 updates are to be pushed. The start time of the subscription
 serves as anchor time, defining one specific point in time at
 which an update needs to be sent. Update intervals always fall
 on the points in time that are a multiple of a period after the
 start time.

 * For on-change subscriptions, the trigger occurs whenever a
 change in the subscribed information is detected. On-change
 subscriptions have more complex semantics that is guided by
 additional parameters. "dampening-period" specifies the
 interval that must pass before a successive update for the same
 data node is sent. The first time a change is detected, the
 update is sent immediately. If a subsequent change is
 detected, another update is only sent once the dampening period
 has passed, containing the value of the data node that is then
 valid. "excluded-change" allows to restrict the types of
 changes for which updates are sent (changes to object values,
 object creation or deletion events). "no-synch-on-start" is a
 flag that allows to specify whether or not a complete update
 with all the subscribed data should be sent at the beginning of
 a subscription; if the flag is omitted, a complete update is
 sent to facilitate synchronization. It is conceivable to
 augment the data model with additional parameters in the future
 to specify even more refined policies, such as parameters that
 specify the magnitude of a change that must occur before an
 update is triggered.

 o This is followed with a list of receivers for the subscription,
 indicating for each receiver the transport that should be used for
 push updates (if options other than Netconf are supported). It
 should be noted that the receiver does not have to be the same
 system that configures the subscription.

 o Finally, "push-source" can be used to specify the source of push
 updates, either a specific interface or publisher address.

 A subscription established through configuration cannot be deleted
 using an RPC. Likewise, subscriptions established through RPC cannot
 be deleted through configuration.

Clemm, et al. Expires May 1, 2017 [Page 28]

Internet-Draft YANG-Push October 2016

 The deletion of a subscription, whether through RPC or configuration,
 results in immediate termination of the subsciption.

4.5. Subscription monitoring

 Subscriptions can be subjected to management themselves. For
 example, it is possible that a publisher may no longer be able to
 serve a subscription that it had previously accepted. Perhaps it has
 run out of resources, or internal errors may have occurred. When
 this is the case, a publisher needs to be able to temporarily suspend
 the subscription, or even to terminate it. More generally, the
 publisher should provide a means by which the status of subscriptions
 can be monitored.

 Container "subscriptions" contains the state of all subscriptions
 that are currently active. This includes subscriptions that were
 established (and have not yet been deleted) using RPCs, as well as
 subscriptions that have been configured as part of configuration.

 Each subscription is represented as a list element "datastore-push-
 subscription". The associated information includes an identifier for
 the subscription, a subscription status, as well as the various
 subscription parameters that are in effect. The subscription status
 indicates whether the subscription is currently active and healthy,
 or if it is degraded in some form. Leaf "configured-subscription"
 indicates whether the subscription came into being via configuration
 or via RPC.

 Subscriptions that were established by RPC are removed from the list
 once they expire (reaching stop-time)or when they are terminated.
 Subscriptions that were established by configuration need to be
 deleted from the configuration by a configuration editing operation.

4.6. Notifications

4.6.1. Monitoring and OAM Notifications

 OAM notifications are reused from [I-D.ietf-netconf-5277bis]. Some
 have augmentations to include new objects defined in this draft.

 Still to be investigated is whether a publisher might also provide
 additional information about subscriptions, such as statistics about
 the number of data updates that were sent. However, such information
 is currently outside the scope of this specification.

Clemm, et al. Expires May 1, 2017 [Page 29]

Internet-Draft YANG-Push October 2016

4.6.2. Update Notifications

 The data model introduces two YANG notifications for the actual
 updates themselves.

 Notification "push-update" is used to send a complete snapshot of the
 data that has been subscribed to, with all YANG object filters
 applied. The notification is used for periodic subscription updates
 in a periodic subscription.

 The notification can also be used in an on-change subscription for
 the purposes of allowing a receiver to "synch". Specifically, it is
 used at the start of an on-change subscription, unless no-synch-on-
 start is specified for the subscription. In addition, it MAY be used
 during the subscription, for example if change updates were not sent
 as indicated by the "updates-not-sent" flag (see below), or for synch
 updates at longer period intervals (such as once per day) to mitigate
 the possibility of any application-dependent synchronization drift.
 The trigger for sending a push-update notification in conjunction
 with on-change subscriptions are at this point outside the scope of
 the specification.

 The format and syntax of the contained data corresponds to the format
 and syntax of data that would be returned in a corresponding get
 operation with the same filter parameters applied.

 Notification "push-change-update" is used to send data updates for
 changes that have occurred in the subscribed data. This notification
 is used only in conjunction with on-change subscriptions.

 The data updates are encoded analogous to the syntax of a
 corresponding yang-patch operation. It corresponds to the data that
 would be contained in a yang-patch operation applied to the YANG
 datastore at the previous update, to result in the current state (and
 applying it also to operational data).

 In rare circumstances, the notification can include a flag "updates-
 not-sent". This is a flag which indicates that not all changes which
 have occurred since the last update are actually included with this
 update. In other words, the publisher has failed to fulfill its full
 subscription obligations, for example in cases where it was not able
 to keep up with a change burst. To facilitate synchronization, a
 publisher MAY subsequently send a push-update containing a full
 snapshot of subscribed data. Such a push-update might also be
 triggered by a subscriber requesting an on-demand synchronization.

Clemm, et al. Expires May 1, 2017 [Page 30]

Internet-Draft YANG-Push October 2016

4.7. RPCs

 YANG-Push subscriptions are established, modified, and deleted using
 three RPCs.

4.7.1. Establish-subscription RPC

 The subscriber sends an establish-subscription RPC with the
 parameters in section 3.1. For instance

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <stream>push-update</stream>
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/sample-data/1.0"
 select="/ex:foo"/>
 <period>500</period>
 <encoding>encode-xml</encoding>
 </establish-subscription>
 </netconf:rpc>

 Figure 10: Establish-subscription RPC

 The publisher must respond explicitly positively (i.e., subscription
 accepted) or negatively (i.e., subscription rejected) to the request.
 Positive responses include the subscription-id of the accepted
 subscription. In that case a publisher may respond:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 ok
 </subscription-result>
 <subscription-id
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 52
 </subscription-id>
 </rpc-reply>

 Figure 11: Establish-subscription positive RPC response

 A subscription can be rejected for multiple reasons, including the
 lack of authorization to establish a subscription, the lack of read
 authorization on the requested data node, or the inability of the
 publisher to provide a stream with the requested semantics.

Clemm, et al. Expires May 1, 2017 [Page 31]

Internet-Draft YANG-Push October 2016

 When the requester is not authorized to read the requested data node,
 the returned "error-info"; indicates an authorization error and the
 requested node. For instance, if the above request was unauthorized
 to read node "ex:foo" the publisher may return:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 error-data-not-authorized
 </subscription-result>
 </rpc-reply>

 Figure 12: Establish-subscription access denied response

 If a request is rejected because the publisher is not able to serve
 it, the publisher SHOULD include in the returned error what
 subscription parameters would have been accepted for the request.
 However, there are no guarantee that subsequent requests for this
 subscriber or others will in fact be accepted.

 For example, for the following request:

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <stream>push-update</stream>
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/sample-data/1.0"
 select="/ex:foo"/>
 <dampening-period>10</dampening-period>
 <encoding>encode-xml</encoding>
 </establish-subscription>
 </netconf:rpc>

 Figure 13: Establish-subscription request example 2

 A publisher that cannot serve on-change updates but periodic updates
 might return the following:

Clemm, et al. Expires May 1, 2017 [Page 32]

Internet-Draft YANG-Push October 2016

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 error-no-such-option
 </subscription-result>
 <period>100</period>
 </rpc-reply>

 Figure 14: Establish-subscription error response example 2

4.7.2. Modify-subscription RPC

 The subscriber may send a modify-subscription PRC for a subscription
 previously established using RPC The subscriber may change any
 subscription parameters by including the new values in the modify-
 subscription RPC. Parameters not included in the rpc should remain
 unmodified. For illustration purposes we include an exchange example
 where a subscriber modifies the period of the subscription.

 <netconf:rpc message-id="102"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modify-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <stream>push-update</stream>
 <subscription-id>
 1011
 </subscription-id>
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/sample-data/1.0"
 select="/ex:foo"/>
 <period>250</period>
 <encoding>encode-xml</encoding>
 </modify-subscription>
 </netconf:rpc>

 Figure 15: Modify subscription request

 The publisher must respond explicitly positively (i.e., subscription
 accepted) or negatively (i.e., subscription rejected) to the request.
 Positive responses include the subscription-id of the accepted
 subscription. In that case a publisher may respond:

Clemm, et al. Expires May 1, 2017 [Page 33]

Internet-Draft YANG-Push October 2016

 <rpc-reply message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 ok
 </subscription-result>
 <subscription-id
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 1011
 </subscription-id>
 </rpc-reply>

 Figure 16: Modify subscription response

 If the subscription modification is rejected, the publisher must send
 a response like it does for an establish-subscription and maintain
 the subscription as it was before the modification request. A
 subscription may be modified multiple times.

 A configured subscription cannot be modified using modify-
 subscription RPC. Instead, the configuration needs to be edited as
 needed.

4.7.3. Delete-subscription RPC

 To stop receiving updates from a subscription and effectively delete
 a subscription that had previously been established using an
 establish-subscription RPC, a subscriber can send a delete-
 subscription RPC, which takes as only input the subscription-id. For
 example:

 <netconf:rpc message-id="103"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <delete-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <subscription-id>
 1011
 </subscription-id>
 </delete-subscription>
 </netconf:rpc>

 <rpc-reply message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

 Figure 17: Delete subscription

Clemm, et al. Expires May 1, 2017 [Page 34]

Internet-Draft YANG-Push October 2016

 Configured subscriptions cannot be deleted via RPC, but have to be
 removed from the configuration.

4.7.4. YANG Module Synchronization

 In order to fully support datastore replication, the receiver needs
 to know the YANG module library that is in use by server that is
 being replicated. The YANG 1.0 module library information is sent by
 a NETCONF server in the NETCONF ’hello’ message. For YANG 1.1
 modules and all modules used with the RESTCONF
 [I-D.ietf-netconf-restconf] protocol, this information is provided by
 the YANG Library module (ietf-yang-library.yang from [RFC7895]. The
 YANG library information is important for the receiver to reproduce
 the set of object definitions used by the replicated datastore.

 The YANG library includes a module list with the name, revision,
 enabled features, and applied deviations for each YANG YANG module
 implemented by the server. The receiver is expected to know the YANG
 library information before starting a subscription. The "/modules-
 state/module-set-id" leaf in the "ietf-yang-library" module can be
 used to cache the YANG library information. [ED. NOTE: Should
 "module-set-id" be added to establish-subscription response?]

 The set of modules, revisions, features, and deviations can change at
 run-time (if supported by the server implementation). In this case,
 the receiver needs to be informed of module changes before data nodes
 from changed modules can be processed correctly. The YANG library
 provides a simple "yang-library-change" notification that informs the
 client that the library has changed somehow. The receiver then needs
 to re-read the entire YANG library data for the replicated server in
 order to detect the specific YANG library changes. The "ietf-
 netconf-notifications" module defined in [RFC6470] contains a
 "netconf-capability-change" notification that can identify specific
 module changes. For example, the module URI capability of a newly
 loaded module will be listed in the "added-capability" leaf-list, and
 the module URI capability of an removed module will be listed in the
 "deleted-capability" leaf-list.

5. YANG module

 <CODE BEGINS> file "ietf-yang-push@2016-10-28.yang"
 module ietf-yang-push {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-push";
 prefix yp;

 import ietf-inet-types {
 prefix inet;

Clemm, et al. Expires May 1, 2017 [Page 35]

Internet-Draft YANG-Push October 2016

 }
 import ietf-yang-types {
 prefix yang;
 }
 import ietf-event-notifications {
 prefix notif-bis;
 }

 organization "IETF";
 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nokia.com>

 Editor: Alexander Clemm
 <mailto:alex@sympotech.com>

 Editor: Eric Voit
 <mailto:evoit@cisco.com>

 Editor: Alberto Gonzalez Prieto
 <mailto:albertgo@cisco.com>

 Editor: Ambika Prasad Tripathy
 <mailto:ambtripa@cisco.com>

 Editor: Einar Nilsen-Nygaard
 <mailto:einarnn@cisco.com>

 Editor: Andy Bierman
 <mailto:andy@yumaworks.com>

 Editor: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>";

 description
 "This module contains conceptual YANG specifications
 for YANG push.";

 revision 2016-10-28 {
 description
 "Updates to simplify modify-subscription, add anchor-time";
 reference "YANG Datastore Push, draft-ietf-netconf-yang-push-04";

Clemm, et al. Expires May 1, 2017 [Page 36]

Internet-Draft YANG-Push October 2016

 }

 feature on-change {
 description
 "This feature indicates that on-change updates are
 supported.";
 }

 /*
 * IDENTITIES
 */

 /* Additional errors for subscription operations */
 identity error-data-not-authorized {
 base notif-bis:error;
 description
 "No read authorization for a requested data node.";
 }

 /* Additional types of streams */
 identity update-stream {
 description
 "Base identity to represent a conceptual system-provided
 datastream of datastore updates with predefined semantics.";
 }

 identity yang-push {
 base update-stream;
 description
 "A conceptual datastream consisting of all datastore
 updates, including operational and configuration data.";
 }

 identity operational-push {
 base update-stream;
 description
 "A conceptual datastream consisting of updates of all
 operational data.";
 }

 identity config-push {
 base update-stream;
 description
 "A conceptual datastream consisting of updates of all
 configuration data.";
 }

Clemm, et al. Expires May 1, 2017 [Page 37]

Internet-Draft YANG-Push October 2016

 identity custom-stream {
 base update-stream;
 description
 "A conceptual datastream for datastore
 updates with custom updates as defined by a user.";
 }

 /* Additional transport option */
 identity http2 {
 base notif-bis:transport;
 description
 "HTTP2 notifications as a transport";
 }

 /*
 * TYPE DEFINITIONS
 */

 typedef filter-id {
 type uint32;
 description
 "A type to identify filters which can be associated with a
 subscription.";
 }

 typedef change-type {
 type enumeration {
 enum "create" {
 description
 "A new data node was created";
 }
 enum "delete" {
 description
 "A data node was deleted";
 }
 enum "modify" {
 description
 "The value of a data node has changed";
 }
 }
 description
 "Specifies different types of changes that may occur
 to a datastore.";
 }

 typedef update-stream {
 type identityref {
 base update-stream;

Clemm, et al. Expires May 1, 2017 [Page 38]

Internet-Draft YANG-Push October 2016

 }
 description
 "Specifies a system-provided datastream.";
 }

 grouping update-filter {
 description
 "This groupings defines filters for push updates for a
 datastore tree. The filters define which updates are of
 interest in a push update subscription. Mixing and matching
 of multiple filters does not occur at the level of this
 grouping. When a push-update subscription is created, the
 filter can be a regular subscription filter, or one of the
 additional filters that are defined in this grouping.";
 choice update-filter {
 description
 "Define filters regarding which data nodes to include
 in push updates";
 case subtree {
 description
 "Subtree filter.";
 anyxml subtree-filter {
 description
 "Subtree-filter used to specify the data nodes targeted
 for subscription within a subtree, or subtrees, of a
 conceptual YANG datastore. Objects matching the filter
 criteria will traverse the filter. The syntax follows
 the subtree filter syntax specified in RFC 6241,
 section 6.";
 reference "RFC 6241 section 6";
 }
 }
 case xpath {
 description
 "XPath filter";
 leaf xpath-filter {
 type yang:xpath1.0;
 description
 "Xpath defining the data items of interest.";
 }
 }
 }
 }

 grouping update-policy {
 description
 "This grouping describes the conditions under which an
 update will be sent as part of an update stream.";

Clemm, et al. Expires May 1, 2017 [Page 39]

Internet-Draft YANG-Push October 2016

 choice update-trigger {
 description
 "Defines necessary conditions for sending an event to
 the subscriber.";
 case periodic {
 description
 "The agent is requested to notify periodically the
 current values of the datastore or the subset
 defined by the filter.";
 leaf period {
 type yang:timeticks;
 mandatory true;
 description
 "Duration of time which should occur between periodic
 push updates. Where the anchor of a start-time is
 available, the push will include the objects and their
 values which exist at an exact multiple of timeticks
 aligning to this start-time anchor.";
 }
 leaf anchor-time {
 type yang:date-and-time;
 description
 "Designates a timestamp from which the series of
 periodic push updates are computed. The next update
 will take place at the next period interval from the
 anchor time. For example, for an anchor time at the
 top of a minute and a period interval of a minute,
 the next update will be sent at the top of the next
 minute.";
 }
 }
 case on-change {
 if-feature "on-change";
 description
 "The agent is requested to notify changes in
 values in the datastore or a subset of it defined
 by a filter.";
 leaf no-synch-on-start {
 type empty;
 description
 "This leaf acts as a flag that determines behavior at the
 start of the subscription. When present,
 synchronization of state at the beginning of the
 subscription is outside the scope of the subscription.
 Only updates about changes that are observed from the
 start time, i.e. only push-change-update notifications
 are sent.
 When absent (default behavior), in order to facilitate

Clemm, et al. Expires May 1, 2017 [Page 40]

Internet-Draft YANG-Push October 2016

 a receiver’s synchronization, a full update is sent
 when the subscription starts using a push-update
 notification, just like in the case of a periodic
 subscription. After that, push-change-update
 notifications only are sent unless the Publisher chooses
 to resynch the subscription again.";
 }
 leaf dampening-period {
 type yang:timeticks;
 mandatory true;
 description
 "Minimum amount of time that needs to have
 passed since the last time an update was
 provided.";
 }
 leaf-list excluded-change {
 type change-type;
 description
 "Use to restrict which changes trigger an update.
 For example, if modify is excluded, only creation and
 deletion of objects is reported.";
 }
 }
 }
 }

 grouping subscription-qos {
 description
 "This grouping describes Quality of Service information
 concerning a subscription. This information is passed to lower
 layers for transport priortization and treatment";
 leaf dscp {
 if-feature "notif-bis:configured-subscriptions";
 type inet:dscp;
 default "0";
 description
 "The push update’s IP packet transport priority.
 This is made visible across network hops to receiver.
 The transport priority is shared for all receivers of
 a given subscription.";
 }
 leaf subscription-priority {
 type uint8;
 description
 "Relative priority for a subscription. Allows an
 underlying transport layer perform informed load
 balance allocations between various subscriptions";
 }

Clemm, et al. Expires May 1, 2017 [Page 41]

Internet-Draft YANG-Push October 2016

 leaf subscription-dependency {
 type string;
 description
 "Provides the Subscription ID of a parent subscription
 without which this subscription should not exist. In
 other words, there is no reason to stream these objects
 if another subscription is missing.";
 }
 }

 augment "/notif-bis:establish-subscription/notif-bis:input" {
 description
 "Define additional subscription parameters that apply
 specifically to push updates";
 uses update-policy;
 uses subscription-qos;
 }
 augment "/notif-bis:establish-subscription/notif-bis:input/"+
 "notif-bis:filter-type" {
 description
 "Add push filters to selection of filter types.";
 case update-filter {
 description
 "Additional filter options for push subscription.";
 uses update-filter;
 }
 }
 augment "/notif-bis:establish-subscription/notif-bis:output" {
 description
 "Allow to return additional subscription parameters that apply
 specifically to push updates.";
 uses update-policy;
 uses subscription-qos;
 }
 augment "/notif-bis:establish-subscription/notif-bis:output/"+
 "notif-bis:result/notif-bis:no-success/notif-bis:filter-type" {
 description
 "Add push filters to selection of filter types.";
 case update-filter {
 description
 "Additional filter options for push subscription.";
 uses update-filter;
 }
 }
 augment "/notif-bis:modify-subscription/notif-bis:input" {
 description
 "Define additional subscription parameters that apply
 specifically to push updates.";

Clemm, et al. Expires May 1, 2017 [Page 42]

Internet-Draft YANG-Push October 2016

 uses update-policy;
 }
 augment "/notif-bis:modify-subscription/notif-bis:input/"+
 "notif-bis:filter-type" {
 description
 "Add push filters to selection of filter types.";
 case update-filter {
 description
 "Additional filter options for push subscription.";
 uses update-filter;
 }
 }
 augment "/notif-bis:modify-subscription/notif-bis:output" {
 description
 "Allow to retun additional subscription parameters that apply
 specifically to push updates.";
 uses update-policy;
 uses subscription-qos;
 }
 augment "/notif-bis:modify-subscription/notif-bis:output/"+
 "notif-bis:result/notif-bis:no-success/notif-bis:filter-type" {
 description
 "Add push filters to selection of filter types.";
 case update-filter {
 description
 "Additional filter options for push subscription.";
 uses update-filter;
 }
 }
 notification push-update {
 description
 "This notification contains a push update, containing
 data subscribed to via a subscription.
 This notification is sent for periodic updates, for a
 periodic subscription. It can also be used for
 synchronization updates of an on-change subscription.
 This notification shall only be sent to receivers
 of a subscription; it does not constitute a general-purpose
 notification.";
 leaf subscription-id {
 type notif-bis:subscription-id;
 mandatory true;
 description
 "This references the subscription because of which the
 notification is sent.";
 }
 leaf time-of-update {
 type yang:date-and-time;

Clemm, et al. Expires May 1, 2017 [Page 43]

Internet-Draft YANG-Push October 2016

 description
 "This leaf contains the time of the update.";
 }
 leaf updates-not-sent {
 type empty;
 description
 "This is a flag which indicates that not all data nodes
 subscribed to are included included with this
 update. In other words, the publisher has failed to
 fulfill its full subscription obligations.
 This may lead to intermittent loss of synchronization
 of data at the client. Synchronization at the client
 can occur when the next push-update is received.";
 }
 anydata datastore-contents {
 description
 "This contains the updated data. It constitutes a snapshot
 at the time-of-update of the set of data that has been
 subscribed to. The format and syntax of the data
 corresponds to the format and syntax of data that would be
 returned in a corresponding get operation with the same
 filter parameters applied.";
 }
 }
 notification push-change-update {
 if-feature "on-change";
 description
 "This notification contains an on-change push update.
 This notification shall only be sent to the receivers
 of a subscription; it does not constitute a general-purpose
 notification.";
 leaf subscription-id {
 type notif-bis:subscription-id;
 mandatory true;
 description
 "This references the subscription because of which the
 notification is sent.";
 }
 leaf time-of-update {
 type yang:date-and-time;
 description
 "This leaf contains the time of the update, i.e. the
 time at which the change was observed.";
 }
 leaf updates-not-sent {
 type empty;
 description
 "This is a flag which indicates that not all changes which

Clemm, et al. Expires May 1, 2017 [Page 44]

Internet-Draft YANG-Push October 2016

 have occured since the last update are included with this
 update. In other words, the publisher has failed to
 fulfill its full subscription obligations, for example in
 cases where it was not able to keep up with a change burst.
 To facilitate synchronization, a publisher MAY subsequently
 send a push-update containing a full snapshot of subscribed
 data. Such a push-update might also be triggered by a
 subscriber requesting an on-demand synchronization.";
 }
 anydata datastore-changes {
 description
 "This contains datastore contents that has changed
 since the previous update, per the terms of the
 subscription. Changes are encoded analogous to
 the syntax of a corresponding yang-patch operation,
 i.e. a yang-patch operation applied to the YANG datastore
 implied by the previous update to result in the current
 state (and assuming yang-patch could also be applied to
 operational data).";
 }
 }
 augment "/notif-bis:subscription-started" {
 description
 "This augmentation adds push subscription parameters
 to the notification that a subscription has
 started and data updates are beginning to be sent.
 This notification shall only be sent to receivers
 of a subscription; it does not constitute a general-purpose
 notification.";
 uses update-policy;
 uses subscription-qos;
 }
 augment "/notif-bis:subscription-started/notif-bis:filter-type" {
 description
 "This augmentation allows to include additional update filters
 options to be included as part of the notification that a
 subscription has started.";
 case update-filter {
 description
 "Additional filter options for push subscription.";
 uses update-filter;
 }
 }
 augment "/notif-bis:subscription-modified" {
 description
 "This augmentation adds push subscription parameters
 to the notification that a subscription has
 been modified.

Clemm, et al. Expires May 1, 2017 [Page 45]

Internet-Draft YANG-Push October 2016

 This notification shall only be sent to receivers
 of a subscription; it does not constitute a general-purpose
 notification.";
 uses update-policy;
 uses subscription-qos;
 }
 augment "/notif-bis:subscription-modified/notif-bis:filter-type" {
 description
 "This augmentation allows to include additional update
 filters options to be included as part of the notification
 that a subscription has been modified.";
 case update-filter {
 description
 "Additional filter options for push subscription.";
 uses update-filter;
 }
 }
 augment "/notif-bis:filters/notif-bis:filter/"+
 "notif-bis:filter-type" {
 description
 "This container adds additional update filter options
 to the list of configurable filters
 that can be applied to subscriptions. This facilitates
 the reuse of complex filters once defined.";
 case update-filter {
 uses update-filter;
 }
 }
 augment "/notif-bis:subscription-config/notif-bis:subscription" {
 description
 "Contains the list of subscriptions that are configured,
 as opposed to established via RPC or other means.";
 uses update-policy;
 uses subscription-qos;
 }
 augment "/notif-bis:subscription-config/notif-bis:subscription/"+
 "notif-bis:filter-type" {
 description
 "Add push filters to selection of filter types.";
 case update-filter {
 uses update-filter;
 }
 }
 augment "/notif-bis:subscriptions/notif-bis:subscription" {
 description
 "Contains the list of currently active subscriptions,
 i.e. subscriptions that are currently in effect,
 used for subscription management and monitoring purposes.

Clemm, et al. Expires May 1, 2017 [Page 46]

Internet-Draft YANG-Push October 2016

 This includes subscriptions that have been setup via RPC
 primitives, e.g. establish-subscription, delete-subscription,
 and modify-subscription, as well as subscriptions that
 have been established via configuration.";
 uses update-policy;
 uses subscription-qos;
 }
 augment "/notif-bis:subscriptions/notif-bis:subscription/"+
 "notif-bis:filter-type" {
 description
 "Add push filters to selection of filter types.";
 case update-filter {
 description
 "Additional filter options for push subscription.";
 uses update-filter;
 }
 }
 }

 <CODE ENDS>

6. Security Considerations

 Subscriptions could be used to attempt to overload publishers of YANG
 datastores. For this reason, it is important that the publisher has
 the ability to decline a subscription request if it would deplete its
 resources. In addition, a publisher needs to be able to suspend an
 existing subscription when needed. When this occur, the subscription
 status is updated accordingly and the receivers are notified.
 Likewise, requests for subscriptions need to be properly authorized.

 A subscription could be used to retrieve data in subtrees that a
 receiver has no authorized access to. Therefore it is important that
 data pushed based on subscriptions is authorized in the same way that
 regular data retrieval operations are. Data being pushed to a
 receiver needs therefore to be filtered accordingly, just like if the
 data were being retrieved on-demand. The Netconf Authorization
 Control Model applies.

 A subscription could be configured on another receiver’s behalf, with
 the goal of flooding that receiver with updates. One or more
 publishers could be used to overwhelm a receiver which doesn’t even
 support subscriptions. Receivers which do not want pushed data need
 only terminate or refuse any transport sessions from the publisher.
 In addition, the Netconf Authorization Control Model SHOULD be used
 to control and restrict authorization of subscription configuration.

Clemm, et al. Expires May 1, 2017 [Page 47]

Internet-Draft YANG-Push October 2016

7. Acknowledgments

 For their valuable comments, discussions, and feedback, we wish to
 acknowledge Tim Jenkins, Kent Watsen, Susan Hares, Yang Geng, Peipei
 Guo, Michael Scharf, Sharon Chisholm, and Guangying Zheng.

8. References

8.1. Normative References

 [I-D.ietf-netconf-5277bis]
 Clemm, A., Gonzalez Prieto, A., Voit, E., Tripathy, A.,
 Nilsen-Nygaard, E., Chisholm, S., and H. Trevino,
 "Subscribing to YANG-Defined Event Notifications", draft-
 ietf-netconf-5277bis-01 (work in progress), October 2016.

 [I-D.ietf-netconf-yang-patch]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Patch
 Media Type", draft-ietf-netconf-yang-patch-12 (work in
 progress), September 2016.

 [RFC6470] Bierman, A., "Network Configuration Protocol (NETCONF)
 Base Notifications", RFC 6470, February 2012.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536, March
 2012.

 [RFC7895] Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", RFC 7895, June 2016.

 [RFC7950] Bjorklund, M., "The YANG 1.1 Data Modeling Language",
 RFC 7950, August 2016.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, August 2016.

8.2. Informative References

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", I-D draft-ietf-netconf-restconf-17, September
 2016.

 [RFC1157] Case, J., "A Simple Network Management Protocol (SNMP)",
 RFC 1157, May 1990.

Clemm, et al. Expires May 1, 2017 [Page 48]

Internet-Draft YANG-Push October 2016

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, July 2008.

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)",
 RFC 6241, June 2011.

 [RFC7923] Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923, June 2016.

Appendix A. Issues that are currently being worked and resolved

 (To be removed by RFC editor prior to publication)

A.1. Unresolved and yet-to-be addressed issues

 Which stream types to introduce, if any based on implications of
 opstate. Current list includes streams for all operational and for
 all config data. Consider adding stream for operational data minus
 counters.

 We need a new Metadata filter. But so does traditional GET. This
 should be relevant independent of subscriptions. This has
 implications of ephemeral requirements from I2RS

 Should we allow an interplay of filter types in a single
 subscription. Or should we keep them fully independent.

 Do we add a counter for the number of object changes during a
 dampening period?

A.2. Agreement in principal

 Do we need an extension for NACM to support filter out datastore
 nodes for which the receiver has no read access? (And how does this
 differ from existing GET, which must do the same filtering?) In
 5277, such filtering is done at the notification level. Yang-push
 includes notification-content filtering. This may be very expensive
 in terms of processing. Andy suggestion: only accept Yang-push
 subscriptions for subtrees the user has rights for all the nodes in
 the subtree. Changes to those rights trigger a subscription
 termination. Should we codify this, or let vendors determine when
 per subtree filtering might be applied?

 Need to add a new RPC to request enabling a resynch for an existing
 on-change subscription exposed on publisher

Clemm, et al. Expires May 1, 2017 [Page 49]

Internet-Draft YANG-Push October 2016

Appendix B. Changes between revisions

 (To be removed by RFC editor prior to publication)

 v03 to v04

 o Updates-not-sent flag added

 o Not notifiable extension added

 o Dampening period is for whole subscription, not single objects

 o Moved start/stop into rfc5277bis

 o Client and Server changed to subscriber, publisher, and receiver

 o Anchor time for periodic

 o Message format for synchronization (i.e. synch-on-start)

 o Material moved into 5277bis

 o QoS parameters supported, by not allowed to be modified by RPC

 o Text updates throughout

Authors’ Addresses

 Alexander Clemm
 Sympotech

 Email: alex@sympotech.com

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Alberto Gonzalez Prieto
 Cisco Systems

 Email: albertgo@cisco.com

Clemm, et al. Expires May 1, 2017 [Page 50]

Internet-Draft YANG-Push October 2016

 Ambika Prasad Tripathy
 Cisco Systems

 Email: ambtripa@cisco.com

 Einar Nilsen-Nygaard
 Cisco Systems

 Email: einarnn@cisco.com

 Andy Bierman
 YumaWorks

 Email: andy@yumaworks.com

 Balazs Lengyel
 Ericsson

 Email: balazs.lengyel@ericsson.com

Clemm, et al. Expires May 1, 2017 [Page 51]

NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Intended status: Standards Track M. Abrahamsson
Expires: May 4, 2017 T-Systems
 October 31, 2016

 Zero Touch Provisioning for NETCONF or RESTCONF based Management
 draft-ietf-netconf-zerotouch-11

Abstract

 This draft presents a secure technique for establishing a NETCONF or
 RESTCONF connection between a newly deployed device, configured with
 just its factory default settings, and its deployment specific
 network management system (NMS).

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. Please note
 that no other RFC Editor instructions are specified anywhere else in
 this document.

 This document contains references to other drafts in progress, both
 in the Normative References section, as well as in body text
 throughout. Please update the following references to reflect their
 final RFC assignments:

 o draft-ietf-netconf-call-home

 o draft-ietf-netconf-restconf

 o draft-ieft-netconf-server-model

 o draft-ietf-anima-bootstrapping-keyinfra

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2016-10-31" --> the publication date of this draft

Watsen & Abrahamsson Expires May 4, 2017 [Page 1]

Internet-Draft Zero Touch October 2016

 The following one Appendix section is to be removed prior to
 publication:

 o Appendix A. Change Log

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Use Cases . 4
 1.2. Terminology . 5
 1.3. Requirements Language 6
 1.4. Tree Diagram Notation 7
 2. Guiding Principles . 7
 2.1. Trust Anchors . 7
 2.2. Conveying Trust . 7
 2.3. Conveying Ownership 8

Watsen & Abrahamsson Expires May 4, 2017 [Page 2]

Internet-Draft Zero Touch October 2016

 3. Types of Information . 9
 3.1. Redirect Information 9
 3.2. Bootstrap Information 10
 4. Artifacts . 11
 4.1. Information Type . 11
 4.2. Signature . 11
 4.3. Ownership Voucher . 11
 4.4. Owner Certificate . 12
 4.5. Voucher Revocation 12
 4.6. Certificate Revocation 13
 5. Artifact Groupings . 14
 5.1. Unsigned Information 15
 5.2. Signed Information (without Revocations) 15
 5.3. Signed Information (with Revocations) 16
 6. Sources of Bootstrapping Data 16
 6.1. Removable Storage . 16
 6.2. DNS Server . 18
 6.3. DHCP Server . 19
 6.4. Bootstrap Server . 20
 7. Workflow Overview . 22
 7.1. Onboarding and Ordering Devices 22
 7.2. Owner Stages the Network for Bootstrap 25
 7.3. Device Powers On . 27
 8. Device Details . 29
 8.1. Factory Default State 29
 8.2. Boot Sequence . 30
 8.3. Processing a Source of Bootstrapping Data 31
 8.4. Validating Signed Data 32
 8.5. Processing Redirect Information 33
 8.6. Processing Bootstrap Information 34
 9. RESTCONF API for Bootstrap Servers 35
 9.1. Tree Diagram . 35
 9.2. YANG Module . 37
 10. Security Considerations 49
 10.1. Immutable storage for trust anchors 50
 10.2. Clock Sensitivity 50
 10.3. Blindly authenticating a bootstrap server 50
 10.4. Entropy loss over time 51
 10.5. Serial Numbers . 51
 10.6. Sequencing Sources of Bootstrapping Data 51
 11. IANA Considerations . 51
 11.1. The BOOTP Manufacturer Extensions and DHCP Options
 Registry . 51
 11.1.1. DHCP v4 Option 51
 11.1.2. DHCP v6 Option 52
 11.2. The IETF XML Registry 53
 11.3. The YANG Module Names Registry 53
 12. Other Considerations . 53

Watsen & Abrahamsson Expires May 4, 2017 [Page 3]

Internet-Draft Zero Touch October 2016

 13. Acknowledgements . 53
 14. References . 53
 14.1. Normative References 54
 14.2. Informative References 55
 Appendix A. API Examples . 57
 A.1. Unsigned Redirect Information 57
 A.2. Signed Redirect Information 58
 A.3. Unsigned Bootstrap Information 61
 A.4. Signed Bootstrap Information 63
 A.5. Progress Notifications 67
 Appendix B. Artifact Examples 69
 B.1. Redirect Information 69
 B.2. Bootstrap Information 69
 Appendix C. Change Log . 69
 C.1. ID to 00 . 69
 C.2. 00 to 01 . 70
 C.3. 01 to 02 . 70
 C.4. 02 to 03 . 71
 C.5. 03 to 04 . 71
 C.6. 04 to 05 . 71
 C.7. 05 to 06 . 71
 C.8. 06 to 07 . 72
 C.9. 07 to 08 . 72
 C.10. 08 to 09 . 72
 C.11. 09 to 10 . 72
 C.12. 10 to 11 . 73
 Authors’ Addresses . 73

1. Introduction

 A fundamental business requirement for any network operator is to
 reduce costs where possible. For network operators, deploying
 devices to many locations can be a significant cost, as sending
 trained specialists to each site to do installations is both cost
 prohibitive and does not scale.

 This document defines a bootstrapping strategy enabling devices to
 securely obtain bootstrapping data with no installer input, beyond
 physical placement and connecting network and power cables. The
 ultimate goal of this document is to enable a secure NETCONF
 [RFC6241] or RESTCONF [draft-ietf-netconf-restconf] connection to the
 deployment specific network management system (NMS).

1.1. Use Cases

 o Connecting to a remotely administered network

Watsen & Abrahamsson Expires May 4, 2017 [Page 4]

Internet-Draft Zero Touch October 2016

 This use-case involves scenarios, such as a remote branch
 office or convenience store, whereby a device connects as an
 access gateway to an ISP’s network. Assuming it is not
 possible to customize the ISP’s network to provide any
 bootstrapping support, and with no other nearby device to
 leverage, the device has no recourse but to reach out to an
 Internet-based bootstrap server to bootstrap off of.

 o Connecting to a locally administered network

 This use-case covers all other scenarios and differs only in
 that the device may additionally leverage nearby devices, which
 may direct it to use a local service to bootstrap off of. If
 no such information is available, or the device is unable to
 use the information provided, it can then reach out to network
 just as it would for the remotely administered network use-
 case.

1.2. Terminology

 This document uses the following terms:

 Artifact: The term "artifact" is used throughout to represent the
 any of the six artifacts defined in Section 4. These artifacts
 collectively provide all the bootstrapping data a device needs.

 Bootstrapping Data: The term "bootstrapping data" is used throughout
 this document to refer to the collection of data that a device
 may obtain from any source of bootstrapping data. Specifically,
 it refers to the artifacts defined in Section 4.

 Bootstrap Information: The term "bootstrap information" is used
 herein to refer to one of the bootstrapping artifacts defined in
 Section 4. Specifically, bootstrap information is the
 bootstrapping data that guides a device to, for instance, install
 a specific boot-image and commit a specific configuration.

 Bootstrap Server: The term "bootstrap server" is used within this
 document to mean any RESTCONF server implementing the YANG module
 defined in Section 9.2.

 Device: The term "device" is used throughout this document to refer
 to the network element that needs to be bootstrapped. See
 Section 8 for more information about devices.

 Initial Secure Device Identifier (IDevID): The term "IDevID" is
 defined in [Std-802.1AR-2009] as the secure device identifier
 (DevID) installed on the device by the manufacturer. This

Watsen & Abrahamsson Expires May 4, 2017 [Page 5]

Internet-Draft Zero Touch October 2016

 identifier is used in this document to enable a Bootstrap Server
 to securely identify and authenticate a device.

 Manufacturer: The term "manufacturer is used herein to refer to the
 manufacturer of a device or a delegate of the manufacturer.

 Network Management System (NMS): The acronym "NMS" is used
 throughout this document to refer to the deployment specific
 management system that the bootstrapping process is responsible
 for introducing devices to. From a device’s perspective, when
 the bootstrapping process has completed, the NMS is a NETCONF or
 RESTCONF client.

 Owner: See Rightful Owner.

 Redirect Information: The term "bootstrap information" is used
 herein to refer to one of the bootstrapping artifacts defined in
 Section 4. Specifically, redirect information is the
 bootstrapping data that directs a device to connect to a
 bootstrap server.

 Redirect Server: The term "redirect server" is used to refer to a
 subset of bootstrap servers that only returns redirect
 information. A redirect server is particularly useful when
 hosted by a manufacturer, to redirect devices to deployment-
 specific bootstrap servers.

 Rightful Owner: The term "rightful owner" is used herein to refer to
 the person or organization that purchased or otherwise owns a
 device. Ownership is further described in Section 2.3.

 Signed Data: The term "signed data" is used throughout to mean
 either redirect information or bootstrap information that has
 been signed by a device’s rightful owner’s private key.

 Unsigned Data: The term "unsigned data" is used throughout to mean
 either redirect rnformation or bootstrap information that has not
 been signed by a device’s rightful owner’s private key.

1.3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in the
 sections below are to be interpreted as described in RFC 2119
 [RFC2119].

Watsen & Abrahamsson Expires May 4, 2017 [Page 6]

Internet-Draft Zero Touch October 2016

1.4. Tree Diagram Notation

 A simplified graphical representation of the data models is used in
 this document. The meaning of the symbols in these diagrams is as
 follows:

 o Brackets "[" and "]" enclose list keys.

 o Braces "{" and "}" enclose feature names, and indicate that the
 named feature must be present for the subtree to be present.

 o Abbreviations before data node names: "rw" (read-write) represents
 configuration data and "ro" (read-only) represents state data.

 o Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list and leaf-list.

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

2. Guiding Principles

 This section provides overarching principles guiding the solution
 presented in this document.

2.1. Trust Anchors

 A trust anchor is used in cryptography to represent an entity in
 which trust is implicit and not derived. In public key
 infrastructure using X.509 certificates, a root certificate is the
 trust anchor, from which a chain of trust is derived. The solution
 presented in this document requires that all the entities involved
 (e.g., devices, bootstrap servers, NMSs) possess specific trust
 anchors in order to ensure mutual authentication throughout the zero
 touch bootstrapping process.

2.2. Conveying Trust

 A device in its factory default state possesses a limited set of
 manufacturer specified trust anchors. In this document, there are
 two types of trust anchors of interest. The first type of trust
 anchor is used to authenticate a secure (e.g., HTTPS) connection to,
 for instance, a manufacturer-hosted Internet-based bootstrap server.
 The second type of trust anchor is used to authenticate manufacturer-

Watsen & Abrahamsson Expires May 4, 2017 [Page 7]

Internet-Draft Zero Touch October 2016

 signed data, such as the ownership voucher artifact described in
 Section 4.3.

 Using the first type of trust anchor, trust is conveyed by the device
 first authenticating the server (e.g., a bootstrap server), and then
 by the device trusting that the server would only provide data that
 its rightful owner staged for it to find. Thereby the device can
 trust any information returned from the server.

 Using the second type of trust anchor, trust is conveyed by the
 device first authenticating that an artifact has been signed by its
 rightful owner, and thereby can trust any information held within the
 artifact.

 Notably, redirect information, as described in Section 3.1, may
 include more trust anchors, which illustrates another way in which
 trust can be conveyed.

2.3. Conveying Ownership

 The ultimate goal of this document is to enable a device to establish
 a secure connection with its rightful owner’s NMS. This entails the
 manufacturer being able to track who is the rightful owner of a
 device (not defined in this document), as well as an ability to
 convey that information to devices (defined in this document).

 Matching the two ways to convey trust (Section 2.2), this document
 provides two ways to convey ownership, by using a trusted bootstrap
 server (Section 6.4) or by using an ownership voucher (Section 4.3).

 When a device connects to a trusted bootstrap server, one that was
 preconfigured into its factory default configuration, it implicitly
 trusts that the bootstrap server would only provide data that its
 rightful owner staged for it to find. That is, ownership is conveyed
 by the administrator of the bootstrap server (e.g., a manufacturer)
 taking the onus of ensuring that only data configured by a device’s
 rightful owner is made available to the device. With this approach,
 the assignment of a device to an owner is ephemeral, as the
 administrator can reassign a device to another owner at any time.

 When a device is presented signed bootstrapping data, it can
 authenticate that its rightful owner provided the data by verifying
 the signature over the data using an additional artifact defined
 within this document, the ownership voucher. With this approach,
 ownership is conveyed by the manufacturer (or delegate) taking the
 onus of ensuring that the ownership vouchers it issues are accurate
 and, in some cases, also ensuring timely voucher revocations
 (Section 4.5).

Watsen & Abrahamsson Expires May 4, 2017 [Page 8]

Internet-Draft Zero Touch October 2016

3. Types of Information

 This document defines two types of information, redirect information
 and bootstrap information, that devices access during the
 bootstrapping process. These two types of information are described
 in this section.

3.1. Redirect Information

 Redirect information provides information to redirect a device to a
 bootstrap server. Redirect information encodes a list of bootstrap
 servers, each defined by its hostname or IP address, an optional
 port, and an optional trust anchor certificate.

 Redirect information is YANG modeled data formally defined by the
 "redirect-information" grouping in the YANG module presented in
 Section 9.2. This grouping has the tree diagram shown below. Please
 see Section 1.4 for tree diagram notation.

 +--:(redirect-information)
 +--ro redirect-information
 +--ro bootstrap-server* [address]
 +--ro address inet:host
 +--ro port? inet:port-number
 +--ro trust-anchor? binary

 Redirect information MAY be trusted or untrusted. The redirect
 information is trusted whenever it is obtained via a secure
 connection to a trusted bootstrap server, or whenever it is signed by
 the device’s rightful owner. In all other cases, the redirect
 information is untrusted.

 Trusted redirect information is useful for enabling a device to
 establish a secure connection to a bootstrap server, which is
 possible when the redirect information includes the bootstrap
 server’s trust anchor certificate. When a device is able to
 establish a secure connection to a bootstrap server, the
 bootstrapping data does not have to be signed in order to be trusted,
 as described in Section 2.2.

 Untrusted redirect information is useful for directing a device to a
 bootstrap server where signed data has been staged for it to obtain.
 When the redirect information is untrusted, the device MUST discard
 any potentially included trust anchor certificates. When the
 redirect information is untrusted, a device MAY establish a
 provisional connection to any of the specified bootstrap servers. A
 provisional connection is accomplished by the device blindly
 accepting the bootstrap server’s TLS certificate. In this case, the

Watsen & Abrahamsson Expires May 4, 2017 [Page 9]

Internet-Draft Zero Touch October 2016

 device MUST NOT trust the bootstrap server, and data provided by the
 bootstrap server MUST be signed for it to be of any use to the
 device.

 How devices process redirect information is described more formally
 in Section 8.5.

3.2. Bootstrap Information

 Bootstrap information provides all the data necessary for a device to
 bootstrap itself, in order to be considered ready to be managed
 (e.g., by an NMS). As defined in this document, this data includes
 information about a boot image the device MUST be running, an initial
 configuration the device MUST commit, and optional scripts that, if
 specified, the device MUST successfully execute.

 Bootstrap information is YANG modeled data formally defined by the
 "bootstrap-information" grouping in the YANG module presented in
 Section 9.2. This grouping has the tree diagram shown below. Please
 see Section 1.4 for tree diagram notation.

 +--:(bootstrap-information)
 +--ro bootstrap-information
 +--ro boot-image
 | +--ro name string
 | +--ro (hash-algorithm)
 | | +--:(sha256)
 | | +--ro sha256? string
 | +--ro uri* inet:uri
 +--ro configuration-handling enumeration
 +--ro pre-configuration-script? script
 +--ro configuration?
 +--ro post-configuration-script? script

 Bootstrap information MUST be trusted for it to be of any use to a
 device. There is no option for a device to process untrusted
 bootstrap information.

 Bootstrap information is trusted whenever it is obtained via a secure
 connection to a trusted bootstrap server, or whenever it is signed by
 the device’s rightful owner. In all other cases, the bootstrap
 information is untrusted.

 How devices process bootstrap information is described more formally
 in Section 8.6.

Watsen & Abrahamsson Expires May 4, 2017 [Page 10]

Internet-Draft Zero Touch October 2016

4. Artifacts

 This document defines six artifacts that can be made available to
 devices while they are bootstrapping. As will be seen in Section 6,
 each source of bootstrapping information specifies a means for
 providing each of the artifacts defined in this section.

4.1. Information Type

 The information type artifact encodes the essential bootstrapping
 data for the device. This artifact is used to encode the redirect
 information and bootstrap information types discussed in Section 3.

 The information type artifact is YANG modeled data formally defined
 by the "information-type" choice node in Section 9.2 and can be
 encoded using any standard YANG encoding (e.g., XML, JSON).

4.2. Signature

 The signature artifact is used by a device to verify that an
 information type artifact was created by the device’s rightful owner.
 The signature is generated using the owner’s private key over the
 information-type artifact, in whatever encoding it is presented in
 (e.g., XML, JSON, etc.). How signed data is validated is formally
 described in Section 8.4.

 The signature artifact is formally a PKCS#7 SignedData structure as
 specified by Section 9.1 of [RFC2315], containing just the signature
 (no content, certificates, or CRLs), encoded using ASN.1
 distinguished encoding rules (DER), as specified in ITU-T X.690.

4.3. Ownership Voucher

 The ownership voucher is used to securely identify a device’s owner,
 as it is known to the manufacturer. The ownership voucher is signed
 by the device’s manufacturer or delegate.

 The ownership voucher is used by a device to verify the owner
 certificate (Section 4.4) that the device SHOULD have also received,
 as described in Section 5. In particular, the device verifies that
 owner certificate’s chain of trust includes the trusted certificate
 included in the voucher, and also verifies that the owner certificate
 contains an identifier matching the one specified in the voucher.

 In order to validate the voucher, a device MUST verify that the
 voucher was signed by the private key associated with a trusted
 certificate known to the device in its factory default state, as
 described in Section 8.1, and the device MUST verify that the

Watsen & Abrahamsson Expires May 4, 2017 [Page 11]

Internet-Draft Zero Touch October 2016

 voucher’s expression for the devices that it applies to includes the
 device’s unique identifier (e.g., serial number) and, for devices
 that insist on verifying voucher revocation status, the device MUST
 verify that the voucher has neither expired nor been revoked.

 The ownership voucher artifact, including its encoding, is formally
 defined in [draft-kwatsen-netconf-voucher].

4.4. Owner Certificate

 The owner certificate artifact is a certificate that is used to
 identify an ’owner’ (e.g., an organization), as known to a trusted
 certificate authority. The owner certificate is signed by the
 trusted certificate authority.

 The owner certificate is used by a device to verify the signature
 artifact (Section 4.2) that the device SHOULD have also received, as
 described in Section 5. In particular, the device verifies signature
 using the public key in the owner certificate over the information
 type artifact (Section 4.1).

 In order to validate the owner certificate, a device MUST verify that
 the owner certificate’s certificate chain includes the certificate
 specified by the ownership voucher (Section 4.3) that the device
 SHOULD have also received, as described in Section 5, and the device
 MUST verify that owner certificate contains an identifier matching
 the one specified in the voucher and, for devices that insist on
 verifying certificate revocation status, the device MUST verify that
 the certificate has neither expired nor been revoked.

 The owner certificate artifact is formally an unsigned PKCS #7
 SignedData structure as specified by RFC 2315 [RFC2315], Section 9.1,
 containing just certificates (no content, signatures, or CRLs),
 encoded using ASN.1 distinguished encoding rules (DER), as specified
 in ITU-T X.690.

 The owner certificate artifact contains, in order, the owner
 certificate itself and all intermediate certificates leading up to a
 trust anchor certificate. The owner certificate MAY optionally
 include the trust anchor certificate.

4.5. Voucher Revocation

 The voucher revocation artifact is used to verify the revocation
 status of vouchers. Voucher revocations are signed by the
 manufacturer or delegate (i.e. the issuer of the voucher).

Watsen & Abrahamsson Expires May 4, 2017 [Page 12]

Internet-Draft Zero Touch October 2016

 Voucher revocations are generally needed when it is critical for
 devices to know that assurances implied at the time the voucher was
 signed are still valid at the time the voucher is being processed.

 The need for devices to insist on verifying voucher revocation status
 is a decision for each manufacturer. If voucher revocation status
 verification is not asserted, then the ownership vouchers are
 essentially forever, which may be acceptable for various kinds of
 devices. If revocations are supported, then it becomes possible to
 support various scenarios such as handling a key compromise or change
 in ownership.

 If voucher revocations are supported, devices MAY dynamically obtain
 the voucher revocation artifact (or equivalents) from an Internet
 based resource. If the access to the Internet based resource is
 sufficiently reliable, then there may not be a need for the voucher
 revocation artifact to be supplied by any other means (e.g.,
 Section 6). However, since the access may not be sufficiently
 reliable, support for this artifact is defined herein.

 The voucher revocation artifact is used by a device to verify the
 ownership voucher (Section 4.3) that the device SHOULD have also
 received, as described in Section 5. In particular, the device
 verifies that the voucher revocation explicitly states either that
 the given voucher is valid or that it is not invalid.

 In order to validate a voucher revocation artifact, a device MUST
 verify that it was signed by a private key associated with a trusted
 certificate known to the device in its factory default state, as
 described in Section 8.1, and the device MUST verify that the voucher
 revocation hasn’t expired, and the device SHOULD verify that the
 revocation is sufficiently fresh, per local policy.

 The voucher revocation artifact, including its encoding, is formally
 defined in [draft-kwatsen-netconf-voucher].

4.6. Certificate Revocation

 The certificate revocation artifact is a list of CRLS used to verify
 the revocation status of owner certificates. Certificate revocations
 are signed by the certificate authority (or delegate) that issued the
 owner certificate.

 Certificate revocations are generally needed when it is critical for
 devices to know that assurances implied at the time the certificate
 was signed are still valid at the time the certificate is being
 processed.

Watsen & Abrahamsson Expires May 4, 2017 [Page 13]

Internet-Draft Zero Touch October 2016

 The need for devices to insist on verifying certificate revocation
 status is a decision for each manufacturer. If certificate
 revocation status verification is not asserted, then the owner
 certificates are essentially forever, which may be acceptable for
 various kinds of devices. If revocations are supported, then it
 becomes possible to support various scenarios such as handling a key
 compromise or expiration.

 If certificate revocations are supported, devices MAY dynamically
 obtain the certificate revocation artifact from an Internet based
 resource (using a CRL distribution point or an OCSP responder). If
 the access to the Internet based resource is sufficiently reliable,
 then there may not be a need for the certificate revocation artifact
 to be supplied by any other means (e.g., Section 6). However, since
 the access may not be sufficiently reliable, support for this
 artifact is defined herein, so that the voucher revocation artifact
 can be distributed by any source of bootstrapping data.

 The certificate revocation artifact is used by a device to verify the
 owner certificate (Section 4.4) that the device SHOULD have also
 received, as described in Section 5. In particular, the device
 verifies that the certificate revocation explicitly states either
 that the given certificate is valid or that it is not invalid.

 In order to validate the CRLs contained with the certificate
 revocation artifact, a device MUST verify that the CRL was signed by
 a private key associated certificate’s issuer (or delegate), and the
 device MUST verify that the CRL hasn’t expired, and the device SHOULD
 verify that the revocation is sufficiently fresh, per local policy.

 The certificate revocation artifact is formally an unsigned PKCS #7
 SignedData structure as specified by RFC 2315 [RFC2315], Section 9.1,
 containing just CRLs (no content, signatures, or certificates),
 encoded using ASN.1 distinguished encoding rules (DER), as specified
 in ITU-T X.690.

 The certificate revocation artifact contains, in order, the CRL for
 the owner certificate itself and the CRLs for all intermediate
 certificates leading up to but not including a trust anchor
 certificate.

5. Artifact Groupings

 Section 4 lists all the possible bootstrapping artifacts, but only
 certain groupings of these artifacts make sense to return in the
 various bootstrapping situations described in this document. The
 remainder of this section identifies these groupings to further
 clarify how the artifacts are used.

Watsen & Abrahamsson Expires May 4, 2017 [Page 14]

Internet-Draft Zero Touch October 2016

5.1. Unsigned Information

 The first grouping of artifacts is for unsigned information. That
 is, when the information type artifact (Section 4.1) has not been
 signed.

 Unsigned information is useful for cases when transport level
 security can be used to convey trust (e.g., HTTPS), or when the
 information can be processed in a provisional manner (i.e. unsigned
 redirect information).

 Conveying unsigned information entails communicating just one of the
 six artifacts listed in Section 4, namely the information type
 artifact.

 List of artifacts included in this grouping:
 - information type

5.2. Signed Information (without Revocations)

 The second grouping of artifacts is for when the information type
 artifact (Section 4.1) has been signed, without any revocation
 information.

 Signed information is needed when the information is obtained from an
 untrusted source of bootstrapping data (Section 6) and yet it is
 desired that the device be able to trust the information (i.e. no
 provisional processing).

 Revocation information may not need to be provided because, for
 instance, the device only uses revocation information obtained
 dynamically from Internet based resources. Another possible reason
 may be because the device does not have a reliable clock, and
 therefore the manufacturer decides to never revoke information (e.g.,
 ownership assignments are forever).

 Conveying signed information without revocation information entails
 communicating four of the six artifacts listed in Section 4.

 List of artifacts included in this grouping:
 - information type
 - signature
 - ownership voucher
 - owner certificate

Watsen & Abrahamsson Expires May 4, 2017 [Page 15]

Internet-Draft Zero Touch October 2016

5.3. Signed Information (with Revocations)

 The third grouping of artifacts is for when the information type
 artifact (Section 4.1) has been signed and also includes revocation
 information.

 Signed information, as described above, is needed when the
 information is obtained from an untrusted source of bootstrapping
 data (Section 6) and yet it is desired that the device be able to
 trust the information (i.e. no provisional processing).

 Revocation information may need to be provided because, for instance,
 the device insists on being able to verify revocations and the device
 is deployed on a private network and therefore unable to obtain the
 revocation information from Internet based resources.

 Conveying signed information with revocation information entails
 communicating all six of the artifacts listed in Section 4.

 List of artifacts included in this grouping:
 - information type
 - signature
 - ownership voucher
 - owner certificate
 - voucher revocations
 - certificate revocations

6. Sources of Bootstrapping Data

 This section defines some sources for zero touch bootstrapping data
 that a device can access. The list of sources defined here is not
 meant to be exhaustive. It is left to future documents to define
 additional sources for obtaining zero touch bootstrapping data.

 For each source defined in this section, details are given for how
 each of the six artifacts listed in Section 4 is provided.

6.1. Removable Storage

 A directly attached removable storage device (e.g., a USB flash
 drive) MAY be used as a source of zero touch bootstrapping data.

 To use a removable storage device as a source of bootstrapping data,
 a device need only detect if the removable storage device is plugged
 in and mount its filesystem.

 Use of a removable storage device is compelling, as it doesn’t
 require any external infrastructure to work. It is also compelling

Watsen & Abrahamsson Expires May 4, 2017 [Page 16]

Internet-Draft Zero Touch October 2016

 that the raw boot image file can be located on the removable storage
 device, enabling a removable storage device to be a fully self-
 standing bootstrapping solution.

 A removable storage device is an untrusted source of bootstrapping
 data. This means that the information stored on the removable
 storage device either MUST be signed, or it MUST be information that
 can be processed provisionally (e.g., unsigned redirect information).

 From an artifact perspective, since a removable storage device
 presents itself as a file-system, the bootstrapping artifacts need to
 be presented as files. The six artifacts defined in Section 4 are
 mapped to files below.

 Artifact to File Mapping:

 Information Type: Mapped to a file containing a standard YANG
 encoding for the YANG modeled data described in Section 4.1. A
 filenaming convention SHOULD be used to indicate data encoding
 (e.g., boot-info.[xml|json]).

 Signature: Mapped to a file containing the binary artifact
 described in Section 4.2.

 Ownership Voucher: Mapped to a file containing the binary
 artifact described in Section 4.3.

 Owner Certificate: Mapped to a file containing the binary
 artifact described in Section 4.4.

 Voucher Revocation: Mapped to a file containing the binary
 artifact described in Section 4.5.

 Certificate Revocation: Mapped to a file containing binary
 artifact described in Section 4.6.

 The format of the removable storage device’s filesystem and the
 naming of the files are outside the scope of this document. However,
 in order to facilitate interoperability, it is RECOMMENDED devices
 support open and/or standards based filesystems. It is also
 RECOMMENDED that devices assume a filenaming convention that enables
 more than one instance of bootstrapping data to exist on a removable
 storage device. The filenaming convention SHOULD be unique to the
 manufacturer, in order to enable bootstrapping data from multiple
 manufacturers to exist on a removable storage device.

Watsen & Abrahamsson Expires May 4, 2017 [Page 17]

Internet-Draft Zero Touch October 2016

6.2. DNS Server

 A DNS server MAY be used as a source of zero touch bootstrapping
 data.

 Using a DNS server may be a compelling option for deployments having
 existing DNS infrastructure, as it enables a touchless bootstrapping
 option that does not entail utilizing an Internet based resource
 hosted by a 3rd-party.

 To use a DNS server as a source of bootstrapping data, a device MAY
 perform a multicast DNS [RFC6762] query searching for the service
 "_zerotouch._tcp.local.". Alternatively the device MAY perform DNS-
 SD [RFC6763] via normal DNS operation, using the domain returned to
 it from the DHCP server; for example, searching for the service
 "_zerotouch._tcp.example.com".

 Unsigned DNS records (not using DNSSEC as described in [RFC6698]) are
 an untrusted source of bootstrapping data. This means that the
 information stored in the DNS records either MUST be signed, or it
 MUST be information that can be processed provisionally (e.g.,
 unsigned redirect information).

 From an artifact perspective, since a DNS server presents resource
 records (Section 3.2.1 of [RFC1035]), the bootstrapping artifacts
 need to be presented as resource records. The six artifacts defined
 in Section 4 are mapped to resource records below.

 Artifact to Resource Record Mapping:

 Information Type: Mapped to a TXT record called "info-type"
 containing a standard YANG encoding for the YANG modeled data
 described in Section 4.1. Note: no additional field is
 provided to specify the encoding.

 Signature: Mapped to a TXT record called "sig" containing the
 base64-encoding of the binary artifact described in
 Section 4.2.

 Ownership Voucher: Mapped to a TXT record called "voucher"
 containing the base64-encoding of the binary artifact described
 in Section 4.3.

 Owner Certificate: Mapped to a TXT record called "cert"
 containing the base64-encoding of the binary artifact described
 in Section 4.4.

Watsen & Abrahamsson Expires May 4, 2017 [Page 18]

Internet-Draft Zero Touch October 2016

 Voucher Revocation: Mapped to a TXT record called "vouch-rev"
 containing the base64-encoding of the binary artifact described
 in Section 4.5.

 Certificate Revocation: Mapped to a TXT record called "cert-rev"
 that containing the base64-encoding of the binary artifact
 described in Section 4.6.

 TXT records have an upper size limit of 65535 bytes (Section 3.2.1 in
 RFC1035), since ’RDLENGTH’ is a 16-bit field. Please see
 Section 3.1.3 in RFC4408 for how a TXT record can achieve this size.
 Due to this size limitation, some information type artifacts may not
 fit. In particular, the bootstrap information artifact could hit
 this upper bound, depending on the size of the included configuration
 and scripts.

 When bootstrap information is provided, it is notable that the URL
 for the boot-image the device can download would have to point to
 another server (e.g., http://, ftp://, etc.), as DNS servers do not
 themselves distribute files.

6.3. DHCP Server

 A DHCP server MAY be used as a source of zero touch bootstrapping
 data.

 To use a DHCP server as a source of bootstrapping data, a device need
 only send a DHCP lease request to a DHCP server. However, the device
 SHOULD pass the Vendor Class Identifier (option 60) field in its DHCP
 lease request, so the DHCP server can return bootstrap information
 shared by devices from the same vendor. However, if it is desired to
 return device-specific bootstrap information, then the device SHOULD
 also send the Client Identifier (option 61) field in its DHCP lease
 request, so the DHCP server can select the specific bootstrap
 information that has been staged for that one device.

 Using a DHCP server may be a compelling option for deployments having
 existing DHCP infrastructure, as it enables a touchless bootstrapping
 option that does not entail utilizing an Internet based resource
 hosted by a 3rd-party.

 A DHCP server is an untrusted source of bootstrapping data. This
 means that the information returned by the DHCP server either MUST be
 signed, or it MUST be information that can be processed provisionally
 (e.g., unsigned redirect information).

 From an artifact perspective, since a DHCP server presents data as
 DHCP options , the bootstrapping artifacts need to be presented as

Watsen & Abrahamsson Expires May 4, 2017 [Page 19]

Internet-Draft Zero Touch October 2016

 DHCP options, specifically the ones specified in Section 11.1. The
 six artifacts defined in Section 4 are mapped to the DHCP options
 specified in Section 11.1 below.

 Artifact to DHCP Option Field Mapping:

 Information Type: Mapped to the DHCP option field "information-
 type" containing the YANG modeled data described in
 Section 4.1. The additional field "encoding" is provided to
 specify the encoding used, taking the values "xml" or "json".

 Signature: Mapped to the DHCP option field "signature" containing
 the binary artifact described in Section 4.2.

 Ownership Voucher: Mapped to the DHCP option field "ownership-
 voucher" containing the binary artifact described in
 Section 4.3.

 Owner Certificate: Mapped to the DHCP option field "owner-
 certificate" containing the binary artifact described in
 Section 4.4.

 Voucher Revocation: Mapped to the DHCP option field "voucher-
 revocations" containing the binary artifact described in
 Section 4.5.

 Certificate Revocation: Mapped to the DHCP option field
 "certificate-revocations" containing the binary artifact
 described in Section 4.6.

 When bootstrap information is provided, it is notable that the URL
 for the boot-image the device can download would have to point to
 another server (e.g., http://, ftp://, etc.), as DHCP servers do not
 themselves distribute files.

6.4. Bootstrap Server

 A bootstrap server MAY be used as a source of zero touch
 bootstrapping data. A bootstrap server is defined as a RESTCONF
 ([draft-ietf-netconf-restconf]) server implementing the YANG module
 provided in Section 9.

 Unlike any other source of bootstrap data described in this document,
 a bootstrap server is not only a source of data, but it can also
 receive data from devices using the YANG-defined "notification"
 action statement defined in the YANG module (Section 9.2). The data
 sent from devices both enables visibility into the bootstrapping
 process (e.g., warnings and errors) as well as provides potentially

Watsen & Abrahamsson Expires May 4, 2017 [Page 20]

Internet-Draft Zero Touch October 2016

 useful completion status information (e.g., the device’s SSH host-
 keys).

 To use a bootstrap server as a source of bootstrapping data, a device
 MUST use the RESTCONF protocol to access the YANG container node
 /device/, passing its own serial number in the URL as the key to the
 ’device’ list.

 Using a bootstrap server as a source of bootstrapping data is a
 compelling option as it uses transport-level security in lieu of
 signed data, which may be easier to deploy in some situations.
 Additionally, the bootstrap server is able to receive notifications
 from devices, which may be critical to some deployments (e.g., the
 passing of the device’s SSH host keys).

 A bootstrap server may be trusted or an untrusted source of
 bootstrapping data, depending on how the device learned about the
 bootstrap server’s trust anchor from a trusted source. When a
 bootstrap server is trusted, the information returned from it MAY be
 signed. However, when the server is untrusted, in order for its
 information to be of any use to the device, the information MUST
 either be signed or be information that can be processed
 provisionally (e.g., unsigned redirect information).

 When a device is able to trust a bootstrap server, it MUST send its
 IDevID certificate in the form of a TLS client certificate, and it
 MUST send notifications to the bootstrap server. When a device is
 not able to trust a bootstrap server, it MUST NOT send its IDevID
 certificate in the form of a TLS client certificate, and it MUST NOT
 send any notifications to the bootstrap server.

 From an artifact perspective, since a bootstrap server presents data
 as a YANG-modeled data, the bootstrapping artifacts need to be mapped
 to nodes in the YANG module. The six artifacts defined in Section 4
 are mapped to bootstrap server nodes defined in Section 9.2 below.

 Artifact to Bootstrap Server Node Mapping:

 Information Type: Mapped to the choice node /device/information-
 type.

 Signature: Mapped to the leaf node /device/signature.

 Ownership Voucher: Mapped to the leaf node /device/ownership-
 voucher.

 Owner Certificate: Mapped to the leaf node /device/owner-
 certificate.

Watsen & Abrahamsson Expires May 4, 2017 [Page 21]

Internet-Draft Zero Touch October 2016

 Voucher Revocations: Mapped to the leaf node /device/voucher-
 revocation.

 Certificate Revocations: Mapped to the leaf-list node /device/
 certificate-revocation.

 While RESTCONF servers typically support a nested hierarchy of
 resources, zero touch bootstrap servers only need to support the
 paths /device and /device/notification. The processing instructions
 provided in Section 8.3 only uses these two URLs.

7. Workflow Overview

 The zero touch solution presented in this document is conceptualized
 to be composed of the workflows described in this section.
 Implementations MAY vary in details. Each diagram is followed by a
 detailed description of the steps presented in the diagram, with
 further explanation on how implementations may vary.

7.1. Onboarding and Ordering Devices

 The following diagram illustrates key interactions that may occur
 from when a prospective owner enrolls in a manufacturer’s zero touch
 program to when the manufacturer ships devices for an order placed by
 the prospective owner.

Watsen & Abrahamsson Expires May 4, 2017 [Page 22]

Internet-Draft Zero Touch October 2016

 +-----------+
 +------------+ |Prospective| +---+
 |Manufacturer| | Owner | |NMS|
 +------------+ +-----------+ +---+
 | | |
 | | |
 | 1. initiate enrollment | |
 #<-----------------------------| |
 # | |
 # | |
 # IDevID trust anchor | |
 #-----------------------------># set IDevID trust anchor |
 # #--------------------------->|
 # | |
 # bootstrap server | |
 # account credentials | |
 #-----------------------------># set credentials |
 # #--------------------------->|
 # | |
 # | |
 # owner certificate | |
 #-----------------------------># set certificate |
 | #--------------------------->|
 | | |
 | | |
 | 2. place device order | |
 |<-----------------------------# model devices |
 | #--------------------------->|
 | | |
 | 3. ship devices and send | |
 | device identifiers and | |
 | ownership vouchers | |
 |-----------------------------># set device identifiers |
 | # and ownership vouchers |
 | #--------------------------->|
 | | |

 Each numbered item below corresponds to a numbered item in the
 diagram above.

 1. A prospective owner of a manufacturer’s devices, or an existing
 owner that wishes to start using zero touch for future device
 orders, initiates an enrollment process with the manufacturer or
 delegate. This process includes the following:

 * Regardless how the prospective owner intends to bootstrap
 their devices, they will always obtain from the manufacturer
 or delegate the trust anchor certificate for its device’s

Watsen & Abrahamsson Expires May 4, 2017 [Page 23]

Internet-Draft Zero Touch October 2016

 IDevID certificates. This certificate will need to be
 installed on the prospective owner’s NMS so that the NMS can
 subsequently authenticate the device’s IDevID certificates.

 * If the manufacturer hosts an Internet based bootstrap server
 (e.g., a redirect server) such as described in Section 6.4,
 then credentials necessary to configure the bootstrap server
 would be provided to the prospective owner. If the bootstrap
 server is configurable through an API (outside the scope of
 this document), then the credentials might be installed on the
 prospective owner’s NMS so that the NMS can subsequently
 configure the manufacturer-hosted bootstrap server directly.

 * If the manufacturer’s devices are able to validate signed data
 (Section 8.4), then the manufacturer, acting as a certificate
 authority, may additionally sign an owner certificate for the
 prospective owner. Alternatively, and not depicted, the owner
 may obtain an owner certificate from a manufacturer-trusted
 3rd-party certificate authority, and report that certificate
 to the manufacturer. How the owner certificate is used to
 enable devices to validate signed bootstrapping data is
 described in Section 8.4. Assuming the prospective owner’s
 NMS is able to prepare and sign the bootstrapping data, the
 owner certificate would be installed on the NMS at this time.

 2. Some time later, the prospective owner places an order with the
 manufacturer (or delegate), perhaps with a special flag checked
 for zero touch handling. At this time, or perhaps before placing
 the order, the owner may model the devices in their NMS, creating
 virtual objects for the devices with no real-world device
 associations. For instance the model can be used to simulate the
 device’s location in the network and the configuration it should
 have when fully operational.

 3. When the manufacturer or delegate fulfills the order, shipping
 the devices to their intended locations, they may notify the
 owner of the devices’s unique identifiers (e.g., serial numbers)
 and shipping destinations, which the owner may use to stage the
 network for when the devices power on. Additionally, the
 manufacturer may send one or more ownership vouchers,
 cryptographically assigning ownership of those devices to the
 rightful owner. The owner may set this information on their NMS,
 perhaps binding specific modeled devices to the unique
 identifiers and ownership vouchers.

Watsen & Abrahamsson Expires May 4, 2017 [Page 24]

Internet-Draft Zero Touch October 2016

7.2. Owner Stages the Network for Bootstrap

 The following diagram illustrates how an owner might stage the
 network for bootstrapping devices.

 +----------+ +------------+
 |Deployment| |Manufacturer| +------+ +------+
 | Specific | | Hosted | | Local| | Local| +---------+
 +---+ |Bootstrap | | Bootstrap | | DNS | | DHCP | |Removable|
 |NMS| | Server | | Server | |Server| |Server| | Storage |
 +---+ +----------+ +------------+ +------+ +------+ +---------+
 | | | | | |
 activate | | | | | |
 modeled | | | | | |
1. device | | | | | |
----------->| | | | | |
 | 2. (optional) | | | | |
 | configure | | | |
 | bootstrap | | | |
 | server | | | |
 |------->| | | | |
 | | | | | |
 | 3. (optional) configure | | |
 | bootstrap server | | | |
 |--------------------->| | | |
 | | | | | |
 | | | | | |
 | 4. (optional) configure DNS server| | |
 |---------------------------------->| | |
 | | | | | |
 | | | | | |
 | 5. (optional) configure DHCP server | |
 |--->| |
 | | | | | |
 | | | | | |
 | 6. (optional) store bootstrapping artifacts on media |
 |--->|
 | | | | | |
 | | | | | |

 Each numbered item below corresponds to a numbered item in the
 diagram above.

 1. Having previously modeled the devices, including setting their
 fully operational configurations and associating both device
 identifiers (e.g., serial numbers) and ownership vouchers, the
 owner "activates" one or more modeled devices. That is, the
 owner tells the NMS to perform the steps necessary to prepare for

Watsen & Abrahamsson Expires May 4, 2017 [Page 25]

Internet-Draft Zero Touch October 2016

 when the real-world devices power up and initiate the
 bootstrapping process. Note that, in some deployments, this step
 might be combined with the last step from the previous workflow.
 Here it is depicted that an NMS performs the steps, but they may
 be performed manually or through some other mechanism.

 2. If it is desired to use a deployment specific bootstrap server,
 it MUST be configured to provide the bootstrapping information
 for the specific devices. Configuring the bootstrap server MAY
 occur via a programmatic API not defined by this document.
 Illustrated here as an external component, the bootstrap server
 MAY be implemented as an internal component of the NMS itself.

 3. If it is desired to use a manufacturer (or delegate) hosted
 bootstrap server, it MUST be configured to provide the
 bootstrapping information for the specific devices. The
 configuration MUST be either redirect or bootstrap information.
 That is, either the manufacturer hosted bootstrap server will
 redirect the device to another bootstrap server, or provide the
 device with its bootstrapping information itself. The types of
 bootstrapping information the manufacturer hosted bootstrap
 server supports MAY vary by implementation; some implementations
 may only support redirect information, or only support bootstrap
 information, or support both redirect and bootstrap information.
 Configuring the bootstrap server MAY occur via a programmatic API
 not defined by this document.

 4. If it is desired to use a DNS server to supply bootstrapping
 information, a DNS server needs to be configured. If multicast
 DNS-SD is desired, then the server MUST reside on the local
 network, otherwise the DNS server MAY reside on a remote network.
 Please see Section 6.2 for more information about how to
 configure DNS servers. Configuring the DNS server MAY occur via
 a programmatic API not defined by this document.

 5. If it is desired to use a DHCP server to supply bootstrapping
 data, a DHCP server needs to be configured. The DHCP server may
 be accessed directly or via a DHCP relay. Please see Section 6.3
 for more information about how to configure DHCP servers.
 Configuring the DHCP server MAY occur via a programmatic API not
 defined by this document.

 6. If it is desired to use a removable storage device (e.g., USB
 flash drive) to supply bootstrapping information, the information
 would need to be placed onto it. Please see Section 6.1 for more
 information about how to configure a removable storage device.

Watsen & Abrahamsson Expires May 4, 2017 [Page 26]

Internet-Draft Zero Touch October 2016

7.3. Device Powers On

 The following diagram illustrates the sequence of activities that
 occur when a device powers on.

 +----------+
 +-----------+ |Deployment|
 | Source of | | Specific |
 +------+ | Bootstrap | |Bootstrap | +---+
 |Device| | Data | | Server | |NMS|
 +------+ +-----------+ +----------+ +---+
 | | | |
 | | | |
 | 1. if running a modified (not | | |
 | factory default) configuration, | | |
 | then exit. | | |
 | | | |
 | 2. for each source supported, check | | |
 |------------------------------------->| | |
 | | | |
 | 3. if bootstrap-information found, | | |
 | initialize self and, only if | | |
 | source is a bootstrap server, | | |
 | send notifications | | |
 |-------------------------------------># | |
 | # webhook | |
 | #----------------------->|
 | | | |
 | 4. else if redirect-information found, for | |
 | each bootstrap server specified, check | |
 |-+-->| |
 | | | |
 | | if more redirect-information is found, recurse | |
 | | (not depicted), else if bootstrap-information | |
 | | found, initialize self and post notifications | |
 | +--># |
 | # webhook |
 | #-------->|
 |
 | 5. retry sources and/or wait for manual provisioning.
 |

 The interactions in the above diagram are described below.

 1. Upon power being applied, the device’s bootstrapping logic first
 checks to see if it is running in its factory default state. If
 it is in a modified state, then the bootstrapping logic exits and
 none of the following interactions occur.

Watsen & Abrahamsson Expires May 4, 2017 [Page 27]

Internet-Draft Zero Touch October 2016

 2. For each source of bootstrapping data the device supports,
 preferably in order of closeness to the device (e.g., removable
 storage before Internet based servers), the device checks to see
 if there is any bootstrapping data for it there.

 3. If bootstrap-information is found, the device initializes itself
 accordingly (e.g., installing a boot-image and committing an
 initial configuration). If the source is a bootstrap server, and
 the bootstrap server can be trusted (i.e., TLS-level
 authentication), the device also sends progress notifications to
 the bootstrap server.

 * The contents of the initial configuration SHOULD configure an
 administrator account on the device (e.g., username, ssh-rsa
 key, etc.) and SHOULD configure the device either to listen
 for NETCONF or RESTCONF connections or to initiate call home
 connections ([draft-ietf-netconf-call-home]).

 * If the bootstrap server supports forwarding device
 notifications to external systems (e.g., via a webhook), the
 "bootstrap-complete" notification (Section 9.2) informs the
 external system to know when it can, for instance, initiate a
 connection to the device (assuming it knows the device’s
 address and the device was configured to listen for
 connections). To support this further, the bootstrap-complete
 notification also relays the device’s SSH host keys and/or TLS
 certificates, with which the external system can use to
 authenticate subsequent connections to the device.

 If the device is ever able to complete the bootstrapping process
 successfully (i.e., no longer running its factory default
 configuration), it exits the bootstrapping logic without
 considering any additional sources of bootstrapping data.

 4. Otherwise, if redirect-information is found, the device iterates
 through the list of specified bootstrap servers, checking to see
 if there is any bootstrapping data for it on them. If the
 bootstrap server returns more redirect-information, then the
 device processes it recursively. Otherwise, if the bootstrap
 server returns bootstrap-information, the device processes it
 following the description provided in (3) above.

 5. After having tried all supported sources of bootstrapping data,
 the device MAY retry again all the sources and/or provide
 manageability interfaces for manual configuration (e.g., CLI,
 HTTP, NETCONF, etc.). If manual configuration is allowed, and
 such configuration is provided, the device MUST immediately cease

Watsen & Abrahamsson Expires May 4, 2017 [Page 28]

Internet-Draft Zero Touch October 2016

 trying to obtain bootstrapping data, as it would then no longer
 be in running its factory default configuration.

8. Device Details

 Devices supporting the bootstrapping strategy described in this
 document MUST have the preconfigured factory default state and
 bootstrapping logic described in the following sections.

8.1. Factory Default State

 +--+
 | <device> |
 | |
 | +--+ |
 | | <read-only storage> | |
 | | | |
 | | 1. IDevID cert & associated intermediate certificate(s) | |
 | | 2. list of trusted Internet based bootstrap servers | |
 | | 3. list of trust anchor certs for bootstrap servers | |
 | | 4. trust anchor cert for ownership vouchers | |
 | +--+ |
 | |
 | +----------------------+ |
 | | <secure storage> | |
 | | | |
 | | 5. private key | |
 | +----------------------+ |
 | |
 +--+

 Each numbered item below corresponds to a numbered item in the
 diagram above.

 1. Devices MUST be manufactured with an initial device identifier
 (IDevID), as defined in [Std-802.1AR-2009]. The IDevID is an
 X.509 certificate, encoding the device’s unique device identifier
 (e.g., serial number). The device MUST also possess any
 intermediate certificates between the IDevID certificate and the
 manufacturer’s IDevID trust anchor certificate, which is provided
 to prospective owners separately (e.g., Section 7.1).

 2. Devices that support loading bootstrapping data from an Internet-
 based bootstrap server (see Section 6.4) MUST be manufactured
 with a configured list of trusted bootstrap servers. Consistent
 with redirect information (Section 3.1, each bootstrap server MAY
 be identified by its hostname or IP address, and an optional
 port.

Watsen & Abrahamsson Expires May 4, 2017 [Page 29]

Internet-Draft Zero Touch October 2016

 3. Devices that support loading bootstrapping data from an Internet-
 based bootstrap server (see Section 6.4) MUST also be
 manufactured with a list of trust anchor certificates that can be
 used for X.509 certificate path validation ([RFC6125], Section 6)
 on the bootstrap server’s TLS server certificate.

 4. Devices that support loading owner signed data (see Section 1.2)
 MUST also be manufactured with the trust anchor certificate for
 the ownership vouchers.

 5. Device MUST be manufactured with a private key that corresponds
 to the public key encoded in the device’s IDevID certificate.
 This private key SHOULD be securely stored, ideally by a
 cryptographic processor (e.g., a TPM).

8.2. Boot Sequence

 A device claiming to support the bootstrapping strategy defined in
 this document MUST support the boot sequence described in this
 section.

 Power On
 |
 v No
 1. Running default config? --------> Boot normally
 |
 | Yes
 v
 2. For each supported source of bootstrapping data,
 try to load bootstrapping data from the source
 |
 |
 v Yes
 3. Able to bootstrap off any source? -----> Run with new configuration
 |
 | No
 v
 4. Loop and/or wait for manual provisioning.

 Each numbered item below corresponds to a numbered item in the
 diagram above.

 1. When the device powers on, it first checks to see if it is
 running the factory default configuration. If it is running a
 modified configuration, then it boots normally.

Watsen & Abrahamsson Expires May 4, 2017 [Page 30]

Internet-Draft Zero Touch October 2016

 2. The device iterates over its list of sources for bootstrapping
 data (Section 6). Details for how to processes a source of
 bootstrapping data are provided in Section 8.3.

 3. If the device is able to bootstrap itself off any of the sources
 of bootstrapping data, it runs with the new bootstrapped
 configuration.

 4. Otherwise the device MAY loop back through the list of
 bootstrapping sources again and/or wait for manual provisioning.

8.3. Processing a Source of Bootstrapping Data

 This section describes a recursive algorithm that a device claiming
 to support the bootstrapping strategy defined in this document MUST
 use to authenticate bootstrapping data. A device enters this
 algorithm for each new source of bootstrapping data. The first time
 the device enters this algorithm, it MUST initialize a conceptual
 trust state variable, herein referred to as "trust-state", to FALSE.
 The ultimate goal of this algorithm is for the device to process
 bootstrap information (Section 3.2) while the trust-state variable is
 TRUE.

 If the data source is a bootstrap server, and the device is able to
 authenticate the server using X.509 certificate path validation
 ([RFC6125], Section 6) to one of the device’s preconfigured trust
 anchors, or to a trust anchor that it learned from a previous step,
 then the device MUST set trust-state to TRUE.

 If trust-state is TRUE, when connecting to the bootstrap server, the
 device MUST use its IDevID certificate for client certificate based
 authentication and MUST POST progress notifications using the
 bootstrap server’s "notification" action. Otherwise, if trust-state
 is FALSE, when connecting to the bootstrap server, the device MUST
 NOT use its IDevID certificate for a client certificate based
 authentication and MUST NOT POST progress notifications using the
 bootstrap server’s "notification" action.

 When accessing a bootstrap server, the device MUST only access its
 top-level resource, to obtain all the data staged for it in one GET
 request, so that it can determine if the data is signed or not, and
 thus act accordingly. If trust-state is TRUE, then the device MAY
 also accesses the bootstrap servers ’notification’ resource for the
 device.

 For any source of bootstrapping data (e.g., Section 6), if the data
 is signed and the device is able to validate the signed data using
 the algorithm described in Section 8.4, then the device MUST set

Watsen & Abrahamsson Expires May 4, 2017 [Page 31]

Internet-Draft Zero Touch October 2016

 trust-state to TRUE, else the device MUST set trust-state to FALSE.
 Note, this is worded to cover the special case when signed data is
 returned even from a trusted bootstrap server.

 If the data is bootstrap information (not redirect information), and
 trust-state is FALSE, the device MUST exit the recursive algorithm,
 returning to the state machine described in Section 8.2. Otherwise,
 the device MUST attempt to process the bootstrap information as
 described in Section 8.6. In either case, success or failure, the
 device MUST exit the recursive algorithm, returning to the state
 machine described in Section 8.2, the only difference being in how it
 responds to the "Able to bootstrap off any source?" conditional
 described in that state machine.

 If the data is redirect information, the device MUST process the
 redirect information as described in Section 8.5. This is the
 recursion step, it will cause to device to reenter this algorithm,
 but this time the data source will most definitely be a bootstrap
 server, as that is all redirect information is able to do.

8.4. Validating Signed Data

 Whenever a device is presented signed data from an untrusted source,
 it MUST validate the signed data as described in this section. If
 the signed data is provided by a trusted source, a redundant trust
 case, the device MAY skip verifying the signature.

 Whenever there is signed data, the device MUST also be provided an
 ownership voucher and an owner certificate. Depending on
 circumstances, the device MAY also be provided certificate and
 voucher revocations. How all the needed artifacts are provided for
 each source of bootstrapping data is defined in Section 6.

 The device MUST first authenticate the ownership voucher by
 validating the signature on it to one of its preconfigured trust
 anchors (see Section 8.1) and verify that the voucher contains the
 device’s unique identifier (e.g., serial number). If the device
 insists on verifying revocation status, it MUST also verify that the
 voucher isn’t expired or has been revoked. If the authentication of
 the voucher is successful, the device extracts the rightful owner’s
 identity from the voucher for use in the next step.

 Next the device MUST authenticate the owner certificate by performing
 X.509 certificate path validation on it, and by verifying that the
 certificate is both identified by the voucher and also has in its
 chain of trust the certificate identified by the voucher. If the
 device insists on verifying revocation status, it MUST also verify
 that none of the certificates in the chain of certificates have been

Watsen & Abrahamsson Expires May 4, 2017 [Page 32]

Internet-Draft Zero Touch October 2016

 revoked or expired. If the authentication of the certificate is
 successful, the device extracts the owner’s public key from the
 certificate for use in the next step.

 Finally the device MUST verify the signature over ’information type’
 artifact was generated by the private key matching the public key
 extracted from the owner certificate in the previous step.

 When the device receives the signed data from a bootstrap server, the
 device MUST use text-level operations to extract the ’information-
 type’ node from the parent ’device’ node in the response in order to
 verify the signature. It is not important if the extracted text is a
 valid YANG encoding in order to verify the signature.

 If any of these steps fail, then the device MUST mark the data as
 invalid and not perform any of the subsequent steps.

8.5. Processing Redirect Information

 In order to process redirect information (Section 3.1), the device
 MUST follow the steps presented in this section.

 Processing redirect information is straightforward. The device
 sequentially steps through the list of provided bootstrap servers
 until it can find one it can bootstrap off of.

 If a hostname is provided, and the hostname’s DNS resolution is to
 more than one IP address, the device MUST attempt to connect to all
 of the DNS resolved addresses at least once, before moving on to the
 next bootstrap server. If the device is able to obtain bootstrapping
 data from any of the DNS resolved addresses, it MUST immediately
 process that data, without attempting to connect to any of the other
 DNS resolved addresses.

 If the redirect information is trusted (e.g., trust-state is TRUE),
 and the bootstrap server entry contains a trust anchor certificate,
 then the device MUST authenticate the bootstrap server using X.509
 certificate path validation ([RFC6125], Section 6) to the specified
 trust anchor. If the device is unable to authenticate the bootstrap
 server to the specified trust anchor, the device MUST NOT attempt a
 provisional connection to the bootstrap server (i.e., by blindly
 accepting its server certificate).

 If the redirect information is untrusted (e.g., trust-state is
 FALSE), the device MUST discard any trust anchors provided by the
 redirect information and establish a provisional connection to the
 bootstrap server (i.e., by blindly accepting its TLS server
 certificate).

Watsen & Abrahamsson Expires May 4, 2017 [Page 33]

Internet-Draft Zero Touch October 2016

8.6. Processing Bootstrap Information

 In order to process bootstrap information (Section 3.2), the device
 MUST follow the steps presented in this section.

 When processing bootstrap information, the device MUST first process
 the boot image information, then execute the pre-configuration script
 (if any), then commit the initial configuration, and then execute the
 script (if any), in that order. If the device encounters an error at
 any step, it MUST NOT proceed to the next step.

 First the device MUST determine if the image it is running satisfies
 the specified boot image criteria (e.g., name or fingerprint match).
 If it does not, the device MUST download, verify, and install the
 specified boot image, and then reboot. To verify the boot image, the
 device MUST check that the boot image file matches the fingerprint
 (e.g., sha256) supplied by the bootstrapping information. Upon
 rebooting, the device MUST still be in its factory default state,
 causing the bootstrapping process to run again, which will eventually
 come to this very point, but this time the device’s running image
 will satisfy the specified criteria, and thus the device will move to
 processing the next step.

 Next, for devices that support executing scripts, if a pre-
 configuration script has been specified, the device MUST execute the
 script and check its exit status code to determine if had any
 warnings or errors. In the case of errors, the device MUST reset
 itself in such a way that force the reinstallation of its boot image,
 thereby wiping out any bad state the script might have left behind.

 Next the device commits the provided initial configuration. Assuming
 no errors, the device moves to processing the next step.

 Again, for devices that support executing scripts, if a post-
 configuration script has been specified, the device MUST execute the
 script and check its exit status code to determine if it had any
 warnings or errors. In the case of errors, the device MUST reset
 itself in such a way that force the reinstallation of its boot image,
 thereby wiping out any bad state the script might have left behind.

 At this point, the device has completely processed the bootstrapping
 data and is ready to be managed. If the device obtained the
 bootstrap information from a trusted bootstrap server, the device
 MUST send the ’bootstrap-complete’ notification now.

 At this point the device is configured and no longer running its
 factory default configuration. Notably, if the bootstrap information

Watsen & Abrahamsson Expires May 4, 2017 [Page 34]

Internet-Draft Zero Touch October 2016

 configured the device it initiate a call home connection, the device
 would proceed to do so now.

9. RESTCONF API for Bootstrap Servers

 This section defines a YANG ([RFC6020]) module that is used to define
 the RESTCONF ([draft-ietf-netconf-restconf]) API used by the
 bootstrap server defined in Section 6.4. Examples illustrating this
 API in use are provided in Appendix A.

9.1. Tree Diagram

 The following tree diagram provides an overview for the bootstrap
 server RESTCONF API. The syntax used for this tree diagram is
 described in Section 1.4.

Watsen & Abrahamsson Expires May 4, 2017 [Page 35]

Internet-Draft Zero Touch October 2016

 module: ietf-zerotouch-bootstrap-server
 +--ro device* [unique-id]
 +--ro unique-id string
 +--ro (information-type)
 | +--:(redirect-information)
 | | +--ro redirect-information
 | | +--ro bootstrap-server* [address]
 | | +--ro address inet:host
 | | +--ro port? inet:port-number
 | | +--ro trust-anchor? binary
 | +--:(bootstrap-information)
 | +--ro bootstrap-information
 | +--ro boot-image
 | | +--ro name string
 | | +--ro (hash-algorithm)
 | | | +--:(sha256)
 | | | +--ro sha256? string
 | | +--ro uri* inet:uri
 | +--ro configuration-handling? enumeration
 | +--ro pre-configuration-script? script
 | +--ro configuration?
 | +--ro post-configuration-script? script
 +--ro signature? binary
 +--ro ownership-voucher? binary
 +--ro owner-certificate? binary
 +--ro voucher-revocation? binary
 +--ro certificate-revocation? binary
 +---x notification
 +---w input
 +---w notification-type enumeration
 +---w message? string
 +---w ssh-host-keys
 | +---w ssh-host-key*
 | +---w format enumeration
 | +---w key-data string
 +---w trust-anchors
 +---w trust-anchor*
 +---w protocol* enumeration
 +---w certificate binary

 In the above diagram, notice that all of the protocol accessible
 nodes are read-only, to assert that devices can only pull data from
 the bootstrap server.

 Also notice that the module defines an action statement, which
 devices use to provide progress notifications to the bootstrap
 server.

Watsen & Abrahamsson Expires May 4, 2017 [Page 36]

Internet-Draft Zero Touch October 2016

9.2. YANG Module

 The bootstrap server’s device-facing API is normatively defined by
 the YANG module defined in this section.

 Note: the module defined herein uses data types defined in [RFC2315],
 [RFC5280], [RFC6234], [RFC6991], and [draft-kwatsen-netconf-voucher].

<CODE BEGINS> file "ietf-zerotouch-bootstrap-server@2016-10-31.yang"

module ietf-zerotouch-bootstrap-server {
 yang-version "1.1";

 namespace
 "urn:ietf:params:xml:ns:yang:ietf-zerotouch-bootstrap-server";
 prefix "ztbs";

 import ietf-inet-types {
 prefix inet;
 reference "RFC 6991: Common YANG Data Types";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>
 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>";

 description
 "This module defines an interface for bootstrap servers, as defined
 by RFC XXXX: Zero Touch Provisioning for NETCONF or RESTCONF based
 Management.

 Copyright (c) 2014 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Simplified BSD License set forth in Section
 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the RFC
 itself for full legal notices.";

Watsen & Abrahamsson Expires May 4, 2017 [Page 37]

Internet-Draft Zero Touch October 2016

 revision "2016-10-31" {
 description
 "Initial version";
 reference
 "RFC XXXX: Zero Touch Provisioning for NETCONF or RESTCONF based
 Management";
 }

 list device {
 key unique-id;
 config false;

 description
 "A device’s record entry. This is the only RESTCONF resource
 that a device will GET, as described in Section 8.2 in RFC XXXX.
 Getting just this top-level node provides a device with all the
 data it needs in a single request.";
 reference
 "RFC XXXX: Zero Touch Provisioning for NETCONF or
 RESTCONF based Management";

 leaf unique-id {
 type string;
 description
 "A unique identifier for the device (e.g., serial number).
 Each device accesses its bootstrapping record by its unique
 identifier.";
 }

 choice information-type {
 mandatory true;
 description
 "This choice statement ensures the response only contains
 redirect-information or bootstrap-information. Note that
 this is the only mandatory true node, as the other nodes
 are not needed when the device trusts the bootstrap server,
 in which case the data does not need to be signed.";

 container redirect-information {
 description
 "This is redirect information, as described in Section 3.1
 in RFC XXXX. Its purpose is to redirect a device to another
 bootstrap server.";
 reference
 "RFC XXXX: Zero Touch Provisioning for NETCONF or RESTCONF
 based Management";

Watsen & Abrahamsson Expires May 4, 2017 [Page 38]

Internet-Draft Zero Touch October 2016

 list bootstrap-server {
 key address;
 description
 "A bootstrap server entry.";

 leaf address {
 type inet:host;
 mandatory true;
 description
 "The IP address or hostname of the bootstrap server the
 device should redirect to.";
 }
 leaf port {
 type inet:port-number;
 default 443;
 description
 "The port number the bootstrap server listens on.";
 }
 leaf trust-anchor { //should there be two fields like voucher?
 type binary;
 description
 "An X.509 v3 certificate structure as specified by RFC
 5280, Section 4, encoded using ASN.1 distinguished
 encoding rules (DER), as specified in ITU-T X.690. A
 certificate that a device can use as a trust anchor
 to authenticate the bootstrap server it is being
 redirected to.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile.
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }
 }
 }

 container bootstrap-information {

 description
 "This is bootstrap information, as described in Section 3.2 in
 RFC XXXX. Its purpose is to provide the device everything it
 needs to bootstrap itself.";
 reference
 "RFC XXXX: Zero Touch Provisioning for NETCONF or RESTCONF

Watsen & Abrahamsson Expires May 4, 2017 [Page 39]

Internet-Draft Zero Touch October 2016

 based Management";

 container boot-image {
 description
 "Specifies criteria for the boot image the device MUST
 be running.";

 leaf name { // maybe this should be a regex?
 type string;
 mandatory true;
 description
 "The name of a software image that the device MUST
 be running in order to process the remaining nodes.";
 }
 choice hash-algorithm {
 mandatory true;
 description
 "Identifies the hash algorithm used.";
 leaf sha256 {
 type string;
 description
 "The hex-encoded SHA-256 hash over the boot
 image file. This is used by the device to
 verify a downloaded boot image file.";
 reference
 "RFC 6234: US Secure Hash Algorithms.";
 }
 }
 leaf-list uri {
 type inet:uri;
 min-elements 1;
 description
 "An ordered list of URIs to where the boot-image file MAY
 be obtained. Deployments MUST know in which URI schemes
 (http, ftp, etc.) a device supports. If a secure scheme
 (e.g., https) is provided, a device MAY establish a
 provisional connection to the server, by blindly
 accepting the server’s credentials (e.g., its TLS
 certificate)";
 }
 }

 leaf configuration-handling {
 type enumeration {
 enum merge {
 description
 "Merge configuration into existing running configuration.";
 }

Watsen & Abrahamsson Expires May 4, 2017 [Page 40]

Internet-Draft Zero Touch October 2016

 enum replace {
 description
 "Replace existing running configuration with the passed
 configuration.";
 }
 }
 description
 "This enumeration indicates how the server should process
 the provided configuration. When not specified, the device
 MAY determine how to process the configuration using other
 means (e.g., vendor-specific metadata).";
 }

 leaf pre-configuration-script {
 type script;
 description
 "A script that, when present, is executed before the
 configuration has been processed.";
 }

 anydata configuration {
 must "../configuration-handling";
 description
 "Any configuration data model known to the device. It may
 contain manufacturer-specific and/or standards-based data
 models.";
 }

 leaf post-configuration-script {
 type script;
 description
 "A script that, when present, is executed after the
 configuration has been processed.";
 }
 }
 }

 leaf signature {
 type binary;
 must "../redirect-information or ../bootstrap-information" {
 description
 "An information type must be present whenever an
 signature is present.";
 }
 description
 "A PKCS#7 SignedData structure, as specified by Section 9.1
 of RFC 2315, containing just the signature (no content,
 certificates, or CRLs), encoded using ASN.1 distinguished

Watsen & Abrahamsson Expires May 4, 2017 [Page 41]

Internet-Draft Zero Touch October 2016

 encoding rules (DER), as specified in ITU-T X.690.

 This signature is generated by the device’s owner using
 the private key associated with the owner certificate
 over the information-type node, exactly as it’s presented
 to the device. The device MUST use text-level operations
 to extract the information-type node from the larger
 ’device’ response in order to verify it. It is not
 important if the extracted text is itself a valid
 encoding (e.g., XML or JSON).";
 reference
 "RFC 2315:
 PKCS #7: Cryptographic Message Syntax Version 1.5
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }

 leaf ownership-voucher {
 type binary;
 must "../signature" {
 description
 "A signature must be present whenever an ownership voucher
 is presented.";
 }
 must "../owner-certificate" {
 description
 "An owner certificate must be present whenever an ownership
 voucher is presented.";
 }
 description
 "A ’voucher’ structure, per draft-kwatsen-netconf-voucher.
 The voucher needs to reference the device’s unique identifier
 and also specify the owner certificate’s identity and a CA
 certificate in the owner certificate’s chain of trust.";
 reference
 "draft-kwatsen-netconf-voucher:
 Voucher and Voucher Revocation Profiles for Bootstrapping
 Protocols";
 }

 leaf owner-certificate {
 type binary;
 must "../signature" {
 description
 "A signature must be present whenever an owner certificate

Watsen & Abrahamsson Expires May 4, 2017 [Page 42]

Internet-Draft Zero Touch October 2016

 is presented.";
 }
 must "../ownership-voucher" {
 description
 "An ownership voucher must be present whenever an owner
 certificate is presented.";
 }
 description
 "An unsigned PKCS #7 SignedData structure, as specified
 by Section 9.1 in RFC 2315, containing just certificates
 (no content, signatures, or CRLs), encoded using ASN.1
 distinguished encoding rules (DER), as specified in
 ITU-T X.690.

 This structure contains, in order, the owner certificate
 itself and all intermediate certificates leading up to a
 trust anchor certificate. The owner certificate MAY
 optionally include the trust anchor certificate.";
 reference
 "RFC 2315:
 PKCS #7: Cryptographic Message Syntax Version 1.5.
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }

 leaf voucher-revocation {
 type binary;
 must "../ownership-voucher" {
 description
 "An ownership voucher must be present whenever a voucher
 revocation is presented.";
 }
 description
 "A ’voucher-revocation’ structure, as defined in
 draft-kwatsen-netconf-voucher. The voucher revocation
 definitively states whether a voucher is valid or not.";
 reference
 "draft-kwatsen-netconf-voucher:
 Voucher and Voucher Revocation Profiles for Bootstrapping
 Protocols";
 }

 leaf certificate-revocation {
 type binary;
 must "../owner-certificate" {

Watsen & Abrahamsson Expires May 4, 2017 [Page 43]

Internet-Draft Zero Touch October 2016

 description
 "An owner certificate must be present whenever an voucher
 revocation is presented.";
 }
 description
 "An unsigned PKCS #7 SignedData structure, as specified by
 Section 9.1 in RFC 2315, containing just CRLs (no content,
 signatures, or certificates), encoded using ASN.1
 distinguished encoding rules (DER), as specified in
 ITU-T X.690.

 This structure contains, in order, the CRL for the owner
 certificate itself and the CRLs for all intermediate
 certificates leading up to but not including a trust
 anchor certificate.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile.
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }

 action notification {
 input {
 leaf notification-type {
 type enumeration {
 enum bootstrap-initiated {
 description
 "Indicates that the device has just accessed the
 bootstrap server. The ’message’ field below MAY
 contain any additional information that the
 manufacturer thinks might be useful.";
 }
 enum validation-error {
 description
 "Indicates that the device had an issue validating
 the response from the bootstrap server. The
 ’message’ field below SHOULD indicate the specific
 error. This message also indicates that the device
 has abandoned trying to bootstrap off this bootstrap
 server.";
 }
 enum signature-validation-error {
 description

Watsen & Abrahamsson Expires May 4, 2017 [Page 44]

Internet-Draft Zero Touch October 2016

 "Indicates that the device had an issue validating the
 bootstrapping data. For instance, this could be due
 to the device expecting signed data, but only found
 unsigned data, or because the ownership voucher didn’t
 include the device’s unique identifier, or because the
 signature didn’t match. The ’message’ field below
 SHOULD indicate the specific error. This message also
 indicates that the device has abandoned trying to
 bootstrap off this bootstrap server.";
 }
 enum image-mismatch {
 description
 "Indicates that the device has determined that its
 running image does not match the specified criteria.
 The ’message’ field below SHOULD indicate both what
 image the device is currently running.";
 }
 enum image-download-error {
 description
 "Indicates that the device had an issue downloading
 the image, which could be for reasons such as a file
 server being unreachable to the downloaded file
 being the incorrect file (signature mismatch). The
 ’message’ field about SHOULD indicate the specific
 error. This message also indicates that the device
 has abandoned trying to bootstrap off this bootstrap
 server.";
 }
 enum pre-script-warning {
 description
 "Indicates that the device obtained a greater than
 zero exit status code from the script when it was
 executed. The ’message’ field below SHOULD indicate
 both the resulting exit status code, as well as
 capture any stdout/stderr messages the script may
 have produced.";
 }
 enum pre-script-error {
 description
 "Indicates that the device obtained a less than zero
 exit status code from the script when it was executed.
 The ’message’ field below SHOULD indicate both the
 resulting exit status code, as well as capture any
 stdout/stderr messages the script may have produced.
 This message also indicates that the device has
 abandoned trying to bootstrap off this bootstrap
 server.";
 }

Watsen & Abrahamsson Expires May 4, 2017 [Page 45]

Internet-Draft Zero Touch October 2016

 enum config-warning {
 description
 "Indicates that the device obtained warning messages
 when it committed the initial configuration. The
 ’message’ field below SHOULD indicate the warning
 messages that were generated.";
 }
 enum config-error {
 description
 "Indicates that the device obtained error messages
 when it committed the initial configuration. The
 ’message’ field below SHOULD indicate the error
 messages that were generated. This message also
 indicates that the device has abandoned trying to
 bootstrap off this bootstrap server.";
 }
 enum post-script-warning {
 description
 "Indicates that the device obtained a greater than
 zero exit status code from the script when it was
 executed. The ’message’ field below SHOULD indicate
 both the resulting exit status code, as well as
 capture any stdout/stderr messages the script may
 have produced.";
 }
 enum post-script-error {
 description
 "Indicates that the device obtained a less than zero
 exit status code from the script when it was executed.
 The ’message’ field below SHOULD indicate both the
 resulting exit status code, as well as capture any
 stdout/stderr messages the script may have produced.
 This message also indicates that the device has
 abandoned trying to bootstrap off this bootstrap
 server.";
 }
 enum bootstrap-complete {
 description
 "Indicates that the device successfully processed the
 all the bootstrapping data and that it is ready to
 be managed. The ’message’ field below MAY contain
 any additional information that the manufacturer
 thinks might be useful. After sending this message,
 the device is not expected to access the bootstrap
 server again.";
 }
 enum informational {
 description

Watsen & Abrahamsson Expires May 4, 2017 [Page 46]

Internet-Draft Zero Touch October 2016

 "Indicates any additional information not captured by
 any of the other notification-type. The ’message’
 field below SHOULD contain any additional information
 that the manufacturer thinks might be useful.";
 }
 }
 mandatory true;
 description
 "The type of notification provided.";
 }
 leaf message {
 type string;
 description
 "An optional human-readable value.";
 }
 container ssh-host-keys {
 description
 "A list of SSH host keys an NMS may use to authenticate
 a NETCONF connection to the device with.";
 list ssh-host-key {
 when "../notification-type = ’bootstrap-complete’" {
 description
 "SSH host keys are only sent when the notification
 type is ’bootstrap-complete’.";
 }
 description
 "An SSH host-key";
 leaf format {
 type enumeration {
 enum ssh-dss { description "ssh-dss"; }
 enum ssh-rsa { description "ssh-rsa"; }
 }
 mandatory true;
 description
 "The format of the SSH host key.";
 }
 leaf key-data {
 type string;
 mandatory true;
 description
 "The key data for the SSH host key";
 }
 }
 }
 container trust-anchors {
 description
 "A list of trust anchor certificates an NMS may use to
 authenticate a NETCONF or RESTCONF connection to the

Watsen & Abrahamsson Expires May 4, 2017 [Page 47]

Internet-Draft Zero Touch October 2016

 device with.";
 list trust-anchor {
 when "../notification-type = ’bootstrap-complete’" {
 description
 "Trust anchors are only sent when the notification
 type is ’bootstrap-complete’.";
 }
 description
 "A list of trust anchor certificates an NMS may use to
 authenticate a NETCONF or RESTCONF connection to the
 device with.";
 leaf-list protocol {
 type enumeration {
 enum netconf-ssh { description "netconf-ssh"; }
 enum netconf-tls { description "netconf-tls"; }
 enum restconf-tls { description "restconf-tls"; }
 enum netconf-ch-ssh { description "netconf-ch-ssh"; }
 enum netconf-ch-tls { description "netconf-ch-tls"; }
 enum restconf-ch-tls { description "restconf-ch-tls"; }
 }
 min-elements 1;
 description
 "The protocols that this trust anchor secures.";
 }
 leaf certificate {
 type binary;
 mandatory true;
 description
 "An X.509 v3 certificate structure, as specified by
 Section 4 in RFC5280, encoded using ASN.1 distinguished
 encoding rules (DER), as specified in ITU-T X.690.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile.
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }
 }
 }
 }
 } // end action

 } // end device

Watsen & Abrahamsson Expires May 4, 2017 [Page 48]

Internet-Draft Zero Touch October 2016

 typedef script {
 type binary;
 description
 "A device specific script that enables the execution of commands
 to perform actions not possible thru configuration alone.

 No attempt is made to standardize the contents, running context,
 or programming language of the script. The contents of the
 script are considered specific to the vendor, product line,
 and/or model of the device.

 If a script is erroneously provided to a device that does not
 support the execution of scripts, the device SHOULD send a
 ’script-warning’ notification message, but otherwise continue
 processing the bootstrapping data as if the script had not
 been present.

 The script returns exit status code ’0’ on success and non-zero
 on error, with accompanying stderr/stdout for logging purposes.
 In the case of an error, the exit status code will specify what
 the device should do.

 If the exit status code is greater than zero, then the device
 should assume that the script had a soft error, which the
 script believes does not affect manageability. If the device
 obtained the bootstrap information from a bootstrap server,
 it SHOULD send a ’script-warning’ notification message.

 If the exit status code is less than zero, the device should
 assume the script had a hard error, which the script believes
 will affect manageability. In this case, the device SHOULD
 send a ’script-error’ notification message followed by a
 reset that will force a new boot-image install (wiping out
 anything the script may have done) and restart the entire
 bootstrapping process again.";
 }

}

<CODE ENDS>

10. Security Considerations

Watsen & Abrahamsson Expires May 4, 2017 [Page 49]

Internet-Draft Zero Touch October 2016

10.1. Immutable storage for trust anchors

 Devices MUST ensure that all their trust anchor certificates,
 including those for connecting to bootstrap servers and verifying
 ownership vouchers, are protected from external modification.

 It may be necessary to update these certificates over time (e.g., the
 manufacturer wants to delegate trust to a new CA). It is therefore
 expected that devices MAY update these trust anchors when needed
 through a verifiable process, such as a software upgrade using signed
 software images.

10.2. Clock Sensitivity

 The solution in this document relies on TLS certificates, owner
 certificates, and ownership vouchers, all of which require an
 accurate clock in order to be processed correctly (e.g., to test
 validity dates and revocation status). Implementations MUST ensure
 devices have an accurate clock when shipped from manufacturing
 facilities, and take steps to prevent clock tampering.

 If it is not possible to ensure clock accuracy, it is RECOMMENDED
 that implementations disable the aspects of the solution having clock
 sensitivity. In particular, such implementations should assume that
 TLS certificates, owner certificates, and ownership vouchers are not
 revokable, In real-world terms, this means that manufacturers SHOULD
 only issue a single ownership voucher for the lifetime of some
 devices.

 It is important to note that implementations SHOULD NOT rely on NTP
 for time, as it is not a secure protocol.

10.3. Blindly authenticating a bootstrap server

 This document allows a device to blindly authenticate a bootstrap
 server’s TLS certificate. It does so to allow for cases where the
 redirect information may be obtained in an unsecured manner, which is
 desirable to support in some cases.

 To compensate for this, this document requires that devices, when
 connected to an untrusted bootstrap server, do not send their IDevID
 certificate for client authentication, and they do not POST any
 progress notifications, and they assert that data downloaded from the
 server is signed.

Watsen & Abrahamsson Expires May 4, 2017 [Page 50]

Internet-Draft Zero Touch October 2016

10.4. Entropy loss over time

 Section 7.2.7.2 of the IEEE Std 802.1AR-2009 standard says that
 IDevID certificate should never expire (i.e. having the notAfter
 value 99991231235959Z). Given the long-lived nature of these
 certificates, it is paramount to use a strong key length (e.g.,
 512-bit ECC).

10.5. Serial Numbers

 This draft suggests using the device’s serial number as the unique
 identifier in its IDevID certificate. This is because serial numbers
 are ubiquitous and prominently contained in invoices and on labels
 affixed to devices and their packaging. That said, serial numbers
 many times encode revealing information, such as the device’s model
 number, manufacture date, and/or sequence number. Knowledge of this
 information may provide an adversary with details needed to launch an
 attack.

10.6. Sequencing Sources of Bootstrapping Data

 For devices supporting more than one source for bootstrapping data,
 no particular sequencing order has to be observed for security
 reasons, as the solution for each source is considered equally
 secure. However, from a privacy perspective, it is RECOMMENDED that
 devices access local sources before accessing remote sources.

11. IANA Considerations

11.1. The BOOTP Manufacturer Extensions and DHCP Options Registry

 The following registrations are in accordance to RFC 2939 [RFC2939]
 for "BOOTP Manufacturer Extensions and DHCP Options" registry
 maintained at http://www.iana.org/assignments/bootp-dhcp-parameters.

11.1.1. DHCP v4 Option

Watsen & Abrahamsson Expires May 4, 2017 [Page 51]

Internet-Draft Zero Touch October 2016

 Tag: XXX

 Name: Zero Touch Information

 Returns up to six zero touch bootstrapping artifacts.

 Code Len
 +-----+-----+----------+------------------+-----------+
 | XXX | n | encoding | information-type | signature |
 +-----+-----+----------+------------------+-----------+

 +-------------------+-------------------+-------------------------+
 | owner-certificate | ownership-voucher | certificate-revocations |
 +-------------------+-------------------+-------------------------+

 +---------------------+
 | voucher-revocations |
 +---------------------+

 Reference: RFC XXXX

11.1.2. DHCP v6 Option

 Tag: YYY

 Name: Zero Touch Information

 Returns up to six zero touch bootstrapping artifacts.

 Code Len
 +-----+-----+----------+------------------+-----------+
 | XXX | n | encoding | information-type | signature |
 +-----+-----+----------+------------------+-----------+

 +-------------------+-------------------+-------------------------+
 | owner-certificate | ownership-voucher | certificate-revocations |
 +-------------------+-------------------+-------------------------+

 +---------------------+
 | voucher-revocations |
 +---------------------+

 Reference: RFC XXXX

Watsen & Abrahamsson Expires May 4, 2017 [Page 52]

Internet-Draft Zero Touch October 2016

11.2. The IETF XML Registry

 This document registers one URI in the IETF XML registry [RFC3688].
 Following the format in [RFC3688], the following registration is
 requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-zerotouch-bootstrap-server
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

11.3. The YANG Module Names Registry

 This document registers one YANG module in the YANG Module Names
 registry [RFC6020]. Following the format defined in [RFC6020], the
 the following registration is requested:

 name: ietf-zerotouch-bootstrap-server
 namespace: urn:ietf:params:xml:ns:yang:ietf-zerotouch-bootstrap-server
 prefix: ztbs
 reference: RFC XXXX

12. Other Considerations

 Both this document and [draft-ietf-anima-bootstrapping-keyinfra]
 define bootstrapping mechanisms. The authors have collaborated on
 both solutions and believe that each solution has merit and, in fact,
 can work together. That is, it is possible for a device to support
 both solutions simultaneously.

13. Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): David Harrington,
 Michael Behringer, Dean Bogdanovic, Martin Bjorklund, Joe Clarke,
 Toerless Eckert, Stephen Farrell, Stephen Hanna, Wes Hardaker, Russ
 Mundy, Reinaldo Penno, Randy Presuhn, Max Pritikin, Michael
 Richardson, Phil Shafer, Juergen Schoenwaelder.

 Special thanks goes to Steve Hanna, Russ Mundy, and Wes Hardaker for
 brainstorming the original I-D’s solution during the IETF 87 meeting
 in Berlin.

14. References

Watsen & Abrahamsson Expires May 4, 2017 [Page 53]

Internet-Draft Zero Touch October 2016

14.1. Normative References

 [draft-ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ieft-netconf-restconf-10 (work in
 progress), 2016, <https://datatracker.ietf.org/html/draft-
 ietf-netconf-restconf-10>.

 [draft-kwatsen-netconf-voucher]
 Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
 "Voucher and Voucher Revocation Profiles for Bootstrapping
 Protocols", draft-kwatsen-netconf-voucher-00 (work in
 progress), 2016, <https://datatracker.ietf.org/html/draft-
 kwatsen-netconf-voucher>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <http://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax
 Version 1.5", RFC 2315, DOI 10.17487/RFC2315, March 1998,
 <http://www.rfc-editor.org/info/rfc2315>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <http://www.rfc-editor.org/info/rfc6125>.

Watsen & Abrahamsson Expires May 4, 2017 [Page 54]

Internet-Draft Zero Touch October 2016

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <http://www.rfc-editor.org/info/rfc6234>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <http://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <http://www.rfc-editor.org/info/rfc6763>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <http://www.rfc-editor.org/info/rfc6991>.

 [RFC7468] Josefsson, S. and S. Leonard, "Textual Encodings of PKIX,
 PKCS, and CMS Structures", RFC 7468, DOI 10.17487/RFC7468,
 April 2015, <http://www.rfc-editor.org/info/rfc7468>.

 [Std-802.1AR-2009]
 IEEE SA-Standards Board, "IEEE Standard for Local and
 metropolitan area networks - Secure Device Identity",
 December 2009, <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

14.2. Informative References

 [draft-ietf-anima-bootstrapping-keyinfra]
 Pritikin, M., Behringer, M., and S. Bjarnason,
 "Bootstrapping Key Infrastructures", draft-ietf-anima-
 bootstrapping-keyinfra-03 (work in progress), 2016,
 <https://datatracker.ietf.org/html/draft-ietf-anima-
 bootstrapping-keyinfra>.

 [draft-ietf-netconf-call-home]
 Watsen, K., "NETCONF Call Home (work in progress)", draft-
 ieft-netconf-restconf-10 (work in progress), December
 2015, <https://datatracker.ietf.org/html/draft-ietf-
 netconf-call-home-17>.

 [draft-ietf-netconf-server-model]
 Watsen, K., "NETCONF Server Model (work in progress)",
 draft-ieft-netconf-server-model-09 (work in progress),
 March 2016, <https://datatracker.ietf.org/html/draft-ietf-
 netconf-call-home-17>.

Watsen & Abrahamsson Expires May 4, 2017 [Page 55]

Internet-Draft Zero Touch October 2016

 [RFC2939] Droms, R., "Procedures and IANA Guidelines for Definition
 of New DHCP Options and Message Types", BCP 43, RFC 2939,
 DOI 10.17487/RFC2939, September 2000,
 <http://www.rfc-editor.org/info/rfc2939>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6698] Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698, August
 2012, <http://www.rfc-editor.org/info/rfc6698>.

 [RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, DOI 10.17487/RFC7317, August
 2014, <http://www.rfc-editor.org/info/rfc7317>.

Watsen & Abrahamsson Expires May 4, 2017 [Page 56]

Internet-Draft Zero Touch October 2016

Appendix A. API Examples

 This section presents some examples illustrating device interactions
 with a bootstrap server to access Redirect and Bootstrap information,
 both unsigned and signed, as well as to send a progress notification.
 These examples show the bootstrap information containing
 configuration from the YANG modules in [RFC7317] and
 [draft-ietf-netconf-server-model].

A.1. Unsigned Redirect Information

 The following example illustrates a device using the API to fetch its
 bootstrapping data. In this example, the device receives unsigned
 redirect information. This example is representative of a response a
 trusted redirect server might return.

 REQUEST

 [’\’ line wrapping added for formatting only]

 GET https://example.com/restconf/data/ietf-zerotouch-bootstrap-server:\
 device=123456 HTTP/1.1
 HOST: example.com
 Accept: application/yang.data+xml

 RESPONSE

 HTTP/1.1 200 OK
 Date: Sat, 31 Oct 2015 17:02:40 GMT
 Server: example-server
 Content-Type: application/yang.data+xml

 <!-- ’\’ line wrapping added for formatting purposes only -->

 <device
 xmlns="urn:ietf:params:xml:ns:yang:ietf-zerotouch-bootstrap-server">
 <unique-id>123456789</unique-id>
 <redirect-information>
 <bootstrap-server>
 <address>phs1.example.com</address>
 <port>8443</port>
 <trust-anchor>
 WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM\
 lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk\
 zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot\
 NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd\

Watsen & Abrahamsson Expires May 4, 2017 [Page 57]

Internet-Draft Zero Touch October 2016

 VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER\
 V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF\
 NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC\
 Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN\
 WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW\
 QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ\
 MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ\
 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2\
 RJSUJQFRStS0Cg==
 </trust-anchor>
 </bootstrap-server>
 <bootstrap-server>
 <address>phs2.example.com</address>
 <port>8443</port>
 <trust-anchor>
 WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM\
 lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk\
 zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot\
 NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd\
 VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER\
 V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF\
 NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC\
 Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN\
 WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW\
 QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ\
 MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ\
 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2\
 RJSUJQFRStS0Cg==
 </trust-anchor>
 </bootstrap-server>
 </redirect-information>
 </device>

A.2. Signed Redirect Information

 The following example illustrates a device using the API to fetch its
 bootstrapping data. In this example, the device receives signed
 redirect information. This example is representative of a response
 that redirect server might return if concerned the device might not
 be able to authenticate its TLS certificate.

 REQUEST

 [’\’ line wrapping added for formatting only]

 GET https://example.com/restconf/data/ietf-zerotouch-bootstrap-server:\
 device=123456 HTTP/1.1
 HOST: example.com

Watsen & Abrahamsson Expires May 4, 2017 [Page 58]

Internet-Draft Zero Touch October 2016

 Accept: application/yang.data+xml

 RESPONSE

 HTTP/1.1 200 OK
 Date: Sat, 31 Oct 2015 17:02:40 GMT
 Server: example-server
 Content-Type: application/yang.data+xml

 <!-- ’\’ line wrapping added for formatting purposes only -->

 <device
 xmlns="urn:ietf:params:xml:ns:yang:ietf-zerotouch-bootstrap-server">
 <unique-id>123456789</unique-id>
 <redirect-information>
 <bootstrap-server>
 <address>phs1.example.com</address>
 <port>8443</port>
 <trust-anchor>
 WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM\
 lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk\
 zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot\
 NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd\
 VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER\
 V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF\
 NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC\
 Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN\
 WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW\
 QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ\
 MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ\
 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2\
 RJSUJQFRStS0Cg==
 </trust-anchor>
 </bootstrap-server>
 <bootstrap-server>
 <address>phs2.example.com</address>
 <port>8443</port>
 <trust-anchor>
 WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM\
 lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk\
 zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot\
 NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd\
 VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER\
 V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF\
 NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC\
 Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN\

Watsen & Abrahamsson Expires May 4, 2017 [Page 59]

Internet-Draft Zero Touch October 2016

 WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW\
 QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ\
 MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ\
 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2\
 RJSUJQFRStS0Cg==
 </trust-anchor>
 </bootstrap-server>
 </redirect-information>
 <signature>
 RDEuRiZNRNLeJpgN9YWkXLAZX2rASwy041EMmZ6KAkWUd3ZmXucfoLpdRemfuPii\
 QGp1bmlwZXIuY29tMB4XDTE0MDIyNzE0MTM1MloXDTE1MDIyNzE0MTM1MlowMDET\
 MBEGA1UEChQKVFBNX1ZlbmRvcjEZMBcGA1UEAxQQSnVuaXBlcl9YWFhYWF9DQTCC\
 NTOufhQsD2t4TYpEkzLEiZqSswdBOaPxPcJLQNW8Bw2xN+A9GX=
 </signature>
 <ownership-voucher>
 ChQQSnVuaXBlcl9OZXR3b3JrczEdMBsGA1UECxQUQ2VydGlmaWNhdGVfSXNzdWFu\
 Y2UxGTAXBgNVBAMUEFRQTV9UcnVzdF9BbmNob3IxHTAbBgkqhkiG9w0BCQEWDmNh\
 MBEGA1UEChQKVFBNX1ZlbmRvcjEZMBcGA1UEAxQQSnVuaXBlcl9YWFhYWF9DQTCC\
 ASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANL5Mk5qFsVuqo+JmXWLmFxI\
 yh/JaftWYf7m3KBzOdg2MIHfBgNVHSMEgdcwgdSAFDSljCNmTN5b+CDujJLlyDal\
 WFPaoYGwpIGtMIGqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTES\
 MBAGA1UEBxMJU3Vubnl2YWxlMRkwFwYDVQQKFBBKdW5pcGVyX05ldHdvcmtzMR0w\
 GwYDVQQLFBRDZXJ0aWZpY2F0ZV9Jc3N1YW5jZTEZMBcGA1UEAxQQVFBNX1RydXN0\
 X0FuY2hvcjEdMBsGCSqGSIb3DQEJARYOY2FAanVuaXBlci5jb22CCQDUbsEdTn5v\
 MjAO
 </ownership-voucher>
 <owner-certificate>
 MIIExTCCA62gAwIBAgIBATANBgkqhkiG9w0BAQsFADCBqjELMAkGA1UEBhMCVVMx\
 EzARBgNVBAgTCkNhbGlmb3JuaWExEjAQBgNVBAcTCVN1bm55dmFsZTEZMBcGA1UE\
 ChQQSnVuaXBlcl9OZXR3b3JrczEdMBsGA1UECxQUQ2VydGlmaWNhdGVfSXNzdWFu\
 Y2UxGTAXBgNVBAMUEFRQTV9UcnVzdF9BbmNob3IxHTAbBgkqhkiG9w0BCQEWDmNh\
 QGp1bmlwZXIuY29tMB4XDTE0MDIyNzE0MTM1MloXDTE1MDIyNzE0MTM1MlowMDET\
 MBEGA1UEChQKVFBNX1ZlbmRvcjEZMBcGA1UEAxQQSnVuaXBlcl9YWFhYWF9DQTCC\
 ASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANL5Mk5qFsVuqo+JmXWLmFxI\
 RDEuRiZNRNLeJpgN9YWkXLAZX2rASwy041EMmZ6KAkWUd3ZmXucfoLpdRemfuPii\
 ap1DgmS3IaYl/s4OOF8yzcYJprm8O7NyZp+Y9H1U/7Qfp97/KbqwCgkHSzOlnt0X\
 KQTpIM/rNrbrkuTmalezFoFS7mrxLXJAsfP1guVcD7sLCyjvegL8pRCCrU9xyKLF\
 8u/Qz4s0x0uzcGYh0sd3iWj21+AtigSLdMD76/j/VzftQL8B1yp3vc1EZiowOwq4\
 KmORbiKU2GTGZkaCgCjmrWpvrYWLoXv/sf2nPLyK6YjiWsslOJtRO+KzRbs2B18C\
 AwEAAaOCAW0wggFpMBIGA1UdEwEB/wQIMAYBAf8CAQAwHQYDVR0OBBYEFHppoyXF\
 yh/JaftWYf7m3KBzOdg2MIHfBgNVHSMEgdcwgdSAFDSljCNmTN5b+CDujJLlyDal\
 WFPaoYGwpIGtMIGqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTES\
 MBAGA1UEBxMJU3Vubnl2YWxlMRkwFwYDVQQKFBBKdW5pcGVyX05ldHdvcmtzMR0w\
 GwYDVQQLFBRDZXJ0aWZpY2F0ZV9Jc3N1YW5jZTEZMBcGA1UEAxQQVFBNX1RydXN0\
 X0FuY2hvcjEdMBsGCSqGSIb3DQEJARYOY2FAanVuaXBlci5jb22CCQDUbsEdTn5v\
 MjAOBgNVHQ8BAf8EBAMCAgQwQgYDVR0fBDswOTA3oDWgM4YxaHR0cDovL2NybC5q\
 dW5pcGVyLm5ldD9jYT1KdW5pcGVyX1RydXN0X0FuY2hvcl9DQTANBgkqhkiG9w0B\
 AQsFAAOCAQEAOuD7EBilqQcT3t2C4AXta1gGNNwdldLLw0jtk4BMiA9l//DZfskB\

Watsen & Abrahamsson Expires May 4, 2017 [Page 60]

Internet-Draft Zero Touch October 2016

 2AaJtiseLTXsMF6MQwDs1YKkiXKLu7gBZDlJ6NiDwy1UnXhi2BDG+MYXQrc6p76K\
 z3bsVwZlaJQCdF5sbggc1MyrsOu9QirnRZkIv3R8ndJH5K792ztLquulAcMfnK1Y\
 NTOufhQsD2t4TYpEkzLEiZqSswdBOaPxPcJLQNW8Bw2xN+A9GX7WJzEbT/G7MUfo\
 Sb+U2PVsQTDWEzUjVnG7vNWYxirnAOZ0OXEWWYxHUJntx6DsbXYuX7D1PkkNr7ir\
 96DpOPtX7h8pxxGSDPBXIyvg02aFMphstQ==
 </owner-certificate>
 <voucher-revocation>
 QGp1bmlwZXIuY29tMB4XDTE0MDIyNzE0MTM1MloXDTE1MDIyNzE0MTM1MlowMDET\
 MBEGA1UEChQKVFBNX1ZlbmRvcjEZMBcGA1UEAxQQSnVuaXBlcl9YWFhYWF9DQTCC\
 ASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANL5Mk5qFsVuqo+JmXWLmFxI\
 RDEuRiZNRNLeJpgN9YWkXLAZX2rASwy041EMmZ6KAkWUd3ZmXucfoLpdRemfuPii\
 KQTpIM/rNrbrkuTmalezFoFS7mrxLXJAsfP1guVcD7sLCyjvegL8pRCCrU9xyKLF\
 8u/Qz4s0x0uzcGYh0sd3iWj21+AtigSLdMD76/j/VzftQL8B1yp3vc1EZiowOwq4\
 AwEAAaOCAW0wggFpMBIGA1UdEwEB/wQIMAYBAf8CAQAwHQYDVR0OBBYEFHppoyXF\
 WFPaoYGwpIGtMIGqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTES\
 NTOufhQsD2t4TYpEkzLEiZqSswdBOaPxPcJLQNW8Bw2xN+A9GX=
 </voucher-revocation>
 <certificate-revocation>
 Y2UxGTAXBgNVBAMUEFRQTV9UcnVzdF9BbmNob3IxHTAbBgkqhkiG9w0BCQEWDmNh\
 MBEGA1UEChQKVFBNX1ZlbmRvcjEZMBcGA1UEAxQQSnVuaXBlcl9YWFhYWF9DQTCC\
 ASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANL5Mk5qFsVuqo+JmXWLmFxI\
 yh/JaftWYf7m3KBzOdg2MIHfBgNVHSMEgdcwgdSAFDSljCNmTN5b+CDujJLlyDal\
 WFPaoYGwpIGtMIGqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTES\
 MBAGA1UEBxMJU3Vubnl2YWxlMRkwFwYDVQQKFBBKdW5pcGVyX05ldHdvcmtzMR0w\
 GwYDVQQLFBRDZXJ0aWZpY2F0ZV9Jc3N1YW5jZTEZMBcGA1UEAxQQVFBNX1RydXN0\
 X0FuY2hvcjEdMBsGCSqGSIb3DQEJARYOY2FAanVuaXBlci5jb22CCQDUbsEdTn5v\
 MjAO==
 </certificate-revocation>
 </device>

A.3. Unsigned Bootstrap Information

 The following example illustrates a device using the API to fetch its
 bootstrapping data. In this example, the device receives unsigned
 bootstrapping information. This example is representative of a
 response a locally deployed bootstrap server might return.

REQUEST

[’\’ line wrapping added for formatting only]

GET https://example.com/restconf/data/ietf-zerotouch-bootstrap-server:\
device=123456 HTTP/1.1
HOST: example.com
Accept: application/yang.data+xml

RESPONSE

Watsen & Abrahamsson Expires May 4, 2017 [Page 61]

Internet-Draft Zero Touch October 2016

HTTP/1.1 200 OK
Date: Sat, 31 Oct 2015 17:02:40 GMT
Server: example-server
Content-Type: application/yang.data+xml

<!-- ’\’ line wrapping added for formatting purposes only -->

<device
 xmlns="urn:ietf:params:xml:ns:yang:ietf-zerotouch-bootstrap-server">
 <unique-id>123456789</unique-id>
 <bootstrap-information>
 <boot-image>
 <name>
 boot-image-v3.2R1.6.img
 </name>
 <md5>
 SomeMD5String
 </md5>
 <sha1>
 SomeSha1String
 </sha1>
 <uri>
 ftp://ftp.example.com/path/to/file
 </uri>
 </boot-image>
 <configuration-handling>merge</configuration-handling>
 <configuration>
 <!-- from ietf-system.yang -->
 <system xmlns="urn:ietf:params:xml:ns:yang:ietf-system">
 <authentication>
 <user>
 <name>admin</name>
 <authorized-key>
 <name>admin’s rsa ssh host-key</name>
 <algorithm>ssh-rsa</algorithm>
 <key-data>AAAAB3NzaC1yc2EAAAADAQABAAABAQDeJMV8zrtsi8CgEsR\
 jCzfve2m6zD3awSBPrh7ICggLQvHVbPL89eHLuecStKL3HrEgXaI/O2Mw\
 E1lG9YxLzeS5p2ngzK61vikUSqfMukeBohFTrDZ8bUtrF+HMLlTRnoCVc\
 WAw1lOr9IDGDAuww6G45gLcHalHMmBtQxKnZdzU9kx/fL3ZS5G76Fy6sA\
 vg7SLqQFPjXXft2CAhin8xwYRZy6r/2N9PMJ2Dnepvq4H2DKqBIe340jW\
 EIuA7LvEJYql4unq4Iog+/+CiumTkmQIWRgIoj4FCzYkO9NvRE6fOSLLf\
 gakWVOZZgQ8929uWjCWlGlqn2mPibp2Go1</key-data>
 </authorized-key>
 </user>
 </authentication>
 </system>

Watsen & Abrahamsson Expires May 4, 2017 [Page 62]

Internet-Draft Zero Touch October 2016

 <!-- from ietf-netconf-server.yang -->
 <netconf-server
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-server">
 <call-home>
 <application>
 <name>config-mgr</name>
 <ssh>
 <endpoints>
 <endpoint>
 <name>east-data-center</name>
 <address>11.22.33.44</address>
 </endpoint>
 <endpoint>
 <name>west-data-center</name>
 <address>55.66.77.88</address>
 </endpoint>
 </endpoints>
 <host-keys>
 <host-key>my-call-home-x509-key</host-key>
 </host-keys>
 </ssh>
 </application>
 </call-home>
 </netconf-server>
 </configuration>
 </bootstrap-information>
</device>

A.4. Signed Bootstrap Information

 The following example illustrates a device using the API to fetch its
 bootstrapping data. In this example, the device receives signed
 bootstrap information. This example is representative of a response
 that bootstrap server might return if concerned the device might not
 be able to authenticate its TLS certificate.

REQUEST

[’\’ line wrapping added for formatting only]

GET https://example.com/restconf/data/ietf-zerotouch-bootstrap-server:\
device=123456 HTTP/1.1
HOST: example.com
Accept: application/yang.data+xml

RESPONSE

Watsen & Abrahamsson Expires May 4, 2017 [Page 63]

Internet-Draft Zero Touch October 2016

HTTP/1.1 200 OK
Date: Sat, 31 Oct 2015 17:02:40 GMT
Server: example-server
Content-Type: application/yang.data+xml

<!-- ’\’ line wrapping added for formatting purposes only -->

<device
 xmlns="urn:ietf:params:xml:ns:yang:ietf-zerotouch-bootstrap-server">
 <unique-id>123456789</unique-id>
 <bootstrap-information>
 <boot-image>
 <name>
 boot-image-v3.2R1.6.img
 </name>
 <md5>
 SomeMD5String
 </md5>
 <sha1>
 SomeSha1String
 </sha1>
 <uri>
 /path/to/on/same/bootserver
 </uri>
 </boot-image>
 <configuration>
 <!-- from ietf-system.yang -->
 <system xmlns="urn:ietf:params:xml:ns:yang:ietf-system">
 <authentication>
 <user>
 <name>admin</name>
 <authorized-key>
 <name>admin’s rsa ssh host-key</name>
 <algorithm>ssh-rsa</algorithm>
 <key-data>AAAAB3NzaC1yc2EAAAADAQABAAABAQDeJMV8zrtsi8CgEsR\
 jCzfve2m6zD3awSBPrh7ICggLQvHVbPL89eHLuecStKL3HrEgXaI/O2Mw\
 E1lG9YxLzeS5p2ngzK61vikUSqfMukeBohFTrDZ8bUtrF+HMLlTRnoCVc\
 WAw1lOr9IDGDAuww6G45gLcHalHMmBtQxKnZdzU9kx/fL3ZS5G76Fy6sA\
 vg7SLqQFPjXXft2CAhin8xwYRZy6r/2N9PMJ2Dnepvq4H2DKqBIe340jW\
 EIuA7LvEJYql4unq4Iog+/+CiumTkmQIWRgIoj4FCzYkO9NvRE6fOSLLf\
 gakWVOZZgQ8929uWjCWlGlqn2mPibp2Go1</key-data>
 </authorized-key>
 </user>
 </authentication>
 </system>
 <!-- from ietf-netconf-server.yang -->

Watsen & Abrahamsson Expires May 4, 2017 [Page 64]

Internet-Draft Zero Touch October 2016

 <netconf-server
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-server">
 <call-home>
 <application>
 <name>config-mgr</name>
 <ssh>
 <endpoints>
 <endpoint>
 <name>east-data-center</name>
 <address>11.22.33.44</address>
 </endpoint>
 <endpoint>
 <name>west-data-center</name>
 <address>55.66.77.88</address>
 </endpoint>
 </endpoints>
 <host-keys>
 <host-key>my-call-home-x509-key</host-key>
 </host-keys>
 </ssh>
 </application>
 </call-home>
 </netconf-server>
 </configuration>
 </bootstrap-information>
 <signature>
 RDEuRiZNRNLeJpgN9YWkXLAZX2rASwy041EMmZ6KAkWUd3ZmXucfoLpdRemfuPii\
 QGp1bmlwZXIuY29tMB4XDTE0MDIyNzE0MTM1MloXDTE1MDIyNzE0MTM1MlowMDET\
 MBEGA1UEChQKVFBNX1ZlbmRvcjEZMBcGA1UEAxQQSnVuaXBlcl9YWFhYWF9DQTCC\
 NTOufhQsD2t4TYpEkzLEiZqSswdBOaPxPcJLQNW8Bw2xN+A9GX=
 </signature>
 <ownership-voucher>
 ChQQSnVuaXBlcl9OZXR3b3JrczEdMBsGA1UECxQUQ2VydGlmaWNhdGVfSXNzdWFu\
 Y2UxGTAXBgNVBAMUEFRQTV9UcnVzdF9BbmNob3IxHTAbBgkqhkiG9w0BCQEWDmNh\
 MBEGA1UEChQKVFBNX1ZlbmRvcjEZMBcGA1UEAxQQSnVuaXBlcl9YWFhYWF9DQTCC\
 ASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANL5Mk5qFsVuqo+JmXWLmFxI\
 yh/JaftWYf7m3KBzOdg2MIHfBgNVHSMEgdcwgdSAFDSljCNmTN5b+CDujJLlyDal\
 WFPaoYGwpIGtMIGqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTES\
 MBAGA1UEBxMJU3Vubnl2YWxlMRkwFwYDVQQKFBBKdW5pcGVyX05ldHdvcmtzMR0w\
 GwYDVQQLFBRDZXJ0aWZpY2F0ZV9Jc3N1YW5jZTEZMBcGA1UEAxQQVFBNX1RydXN0\
 X0FuY2hvcjEdMBsGCSqGSIb3DQEJARYOY2FAanVuaXBlci5jb22CCQDUbsEdTn5v\
 MjAO
 </ownership-voucher>
 <owner-certificate>
 MIIExTCCA62gAwIBAgIBATANBgkqhkiG9w0BAQsFADCBqjELMAkGA1UEBhMCVVMx\
 EzARBgNVBAgTCkNhbGlmb3JuaWExEjAQBgNVBAcTCVN1bm55dmFsZTEZMBcGA1UE\
 ChQQSnVuaXBlcl9OZXR3b3JrczEdMBsGA1UECxQUQ2VydGlmaWNhdGVfSXNzdWFu\
 Y2UxGTAXBgNVBAMUEFRQTV9UcnVzdF9BbmNob3IxHTAbBgkqhkiG9w0BCQEWDmNh\

Watsen & Abrahamsson Expires May 4, 2017 [Page 65]

Internet-Draft Zero Touch October 2016

 QGp1bmlwZXIuY29tMB4XDTE0MDIyNzE0MTM1MloXDTE1MDIyNzE0MTM1MlowMDET\
 MBEGA1UEChQKVFBNX1ZlbmRvcjEZMBcGA1UEAxQQSnVuaXBlcl9YWFhYWF9DQTCC\
 ASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANL5Mk5qFsVuqo+JmXWLmFxI\
 RDEuRiZNRNLeJpgN9YWkXLAZX2rASwy041EMmZ6KAkWUd3ZmXucfoLpdRemfuPii\
 ap1DgmS3IaYl/s4OOF8yzcYJprm8O7NyZp+Y9H1U/7Qfp97/KbqwCgkHSzOlnt0X\
 KQTpIM/rNrbrkuTmalezFoFS7mrxLXJAsfP1guVcD7sLCyjvegL8pRCCrU9xyKLF\
 8u/Qz4s0x0uzcGYh0sd3iWj21+AtigSLdMD76/j/VzftQL8B1yp3vc1EZiowOwq4\
 KmORbiKU2GTGZkaCgCjmrWpvrYWLoXv/sf2nPLyK6YjiWsslOJtRO+KzRbs2B18C\
 AwEAAaOCAW0wggFpMBIGA1UdEwEB/wQIMAYBAf8CAQAwHQYDVR0OBBYEFHppoyXF\
 yh/JaftWYf7m3KBzOdg2MIHfBgNVHSMEgdcwgdSAFDSljCNmTN5b+CDujJLlyDal\
 WFPaoYGwpIGtMIGqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTES\
 MBAGA1UEBxMJU3Vubnl2YWxlMRkwFwYDVQQKFBBKdW5pcGVyX05ldHdvcmtzMR0w\
 GwYDVQQLFBRDZXJ0aWZpY2F0ZV9Jc3N1YW5jZTEZMBcGA1UEAxQQVFBNX1RydXN0\
 X0FuY2hvcjEdMBsGCSqGSIb3DQEJARYOY2FAanVuaXBlci5jb22CCQDUbsEdTn5v\
 MjAOBgNVHQ8BAf8EBAMCAgQwQgYDVR0fBDswOTA3oDWgM4YxaHR0cDovL2NybC5q\
 dW5pcGVyLm5ldD9jYT1KdW5pcGVyX1RydXN0X0FuY2hvcl9DQTANBgkqhkiG9w0B\
 AQsFAAOCAQEAOuD7EBilqQcT3t2C4AXta1gGNNwdldLLw0jtk4BMiA9l//DZfskB\
 2AaJtiseLTXsMF6MQwDs1YKkiXKLu7gBZDlJ6NiDwy1UnXhi2BDG+MYXQrc6p76K\
 z3bsVwZlaJQCdF5sbggc1MyrsOu9QirnRZkIv3R8ndJH5K792ztLquulAcMfnK1Y\
 NTOufhQsD2t4TYpEkzLEiZqSswdBOaPxPcJLQNW8Bw2xN+A9GX7WJzEbT/G7MUfo\
 Sb+U2PVsQTDWEzUjVnG7vNWYxirnAOZ0OXEWWYxHUJntx6DsbXYuX7D1PkkNr7ir\
 96DpOPtX7h8pxxGSDPBXIyvg02aFMphstQ==
 </owner-certificate>
 <voucher-revocation>
 QGp1bmlwZXIuY29tMB4XDTE0MDIyNzE0MTM1MloXDTE1MDIyNzE0MTM1MlowMDET\
 MBEGA1UEChQKVFBNX1ZlbmRvcjEZMBcGA1UEAxQQSnVuaXBlcl9YWFhYWF9DQTCC\
 ASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANL5Mk5qFsVuqo+JmXWLmFxI\
 RDEuRiZNRNLeJpgN9YWkXLAZX2rASwy041EMmZ6KAkWUd3ZmXucfoLpdRemfuPii\
 KQTpIM/rNrbrkuTmalezFoFS7mrxLXJAsfP1guVcD7sLCyjvegL8pRCCrU9xyKLF\
 8u/Qz4s0x0uzcGYh0sd3iWj21+AtigSLdMD76/j/VzftQL8B1yp3vc1EZiowOwq4\
 AwEAAaOCAW0wggFpMBIGA1UdEwEB/wQIMAYBAf8CAQAwHQYDVR0OBBYEFHppoyXF\
 WFPaoYGwpIGtMIGqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTES\
 NTOufhQsD2t4TYpEkzLEiZqSswdBOaPxPcJLQNW8Bw2xN+A9GX=
 </voucher-revocation>
 <certificate-revocation>
 Y2UxGTAXBgNVBAMUEFRQTV9UcnVzdF9BbmNob3IxHTAbBgkqhkiG9w0BCQEWDmNh\
 MBEGA1UEChQKVFBNX1ZlbmRvcjEZMBcGA1UEAxQQSnVuaXBlcl9YWFhYWF9DQTCC\
 ASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANL5Mk5qFsVuqo+JmXWLmFxI\
 yh/JaftWYf7m3KBzOdg2MIHfBgNVHSMEgdcwgdSAFDSljCNmTN5b+CDujJLlyDal\
 WFPaoYGwpIGtMIGqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTES\
 MBAGA1UEBxMJU3Vubnl2YWxlMRkwFwYDVQQKFBBKdW5pcGVyX05ldHdvcmtzMR0w\
 GwYDVQQLFBRDZXJ0aWZpY2F0ZV9Jc3N1YW5jZTEZMBcGA1UEAxQQVFBNX1RydXN0\
 X0FuY2hvcjEdMBsGCSqGSIb3DQEJARYOY2FAanVuaXBlci5jb22CCQDUbsEdTn5v\
 MjAO==
 </certificate-revocation>
</device>

Watsen & Abrahamsson Expires May 4, 2017 [Page 66]

Internet-Draft Zero Touch October 2016

A.5. Progress Notifications

 The following example illustrates a device using the API to post a
 notification to a trusted bootstrap server. Illustrated below is the
 ’bootstrap-complete’ message, but the device may send other
 notifications to the server while bootstrapping (e.g., to provide
 status updates).

 The bootstrap server MUST NOT process a notification from a device
 without first authenticating the device. This is in contrast to when
 a device is fetching data from the server, a read-only operation, in
 which case device authentication is not strictly required (e.g., when
 sending signed information).

 In this example, the device sends a notification indicating that it
 has completed bootstrapping off the data provided by the server.
 This example illustrates the device sending both its SSH host keys
 and TLS server certificate to the bootstrap server, which the
 bootstrap server may, for example, pass to an NMS, as discussed in
 Section 7.3.

 Note that devices that are able to present an IDevID certificate
 [Std-802.1AR-2009], when establishing SSH or TLS connections, do not
 need to include its DevID certificate in the bootstrap-complete
 message. It is unnecessary to send the DevID certificate in this
 case because the IDevID certificate does not need to be pinned by an
 NMS in order to be trusted.

REQUEST

[’\’ line wrapping added for formatting only]

POST https://example.com/restconf/data/ietf-zerotouch-bootstrap-server:\
device=123456/notification HTTP/1.1
HOST: example.com
Content-Type: application/yang.data+xml

<!-- ’\’ line wrapping added for formatting purposes only -->

<input
 xmlns="urn:ietf:params:xml:ns:yang:ietf-zerotouch-bootstrap-server">
 <notification-type>bootstrap-complete</notification-type>
 <message>example message</message>
 <ssh-host-keys>
 <ssh-host-key>
 <format>ssh-rsa</format>
 <key-data>
 AAAAB3NzaC1yc2EAAAADAQABAAABAQDeJMV8zrtsi8CgEsRCjCzfve2m6\

Watsen & Abrahamsson Expires May 4, 2017 [Page 67]

Internet-Draft Zero Touch October 2016

 zD3awSBPrh7ICggLQvHVbPL89eHLuecStKL3HrEgXaI/O2MwjE1lG9YxL\
 zeS5p2ngzK61vikUSqfMukeBohFTrDZ8bUtrF+HMLlTRnoCVcCWAw1lOr\
 9IDGDAuww6G45gLcHalHMmBtQxKnZdzU9kx/fL3ZS5G76Fy6sA5vg7SLq\
 QFPjXXft2CAhin8xwYRZy6r/2N9PMJ2Dnepvq4H2DKqBIe340jWqEIuA7\
 LvEJYql4unq4Iog+/+CiumTkmQIWRgIoj4FCzYkO9NvRE6fOSLLf6gakW\
 VOZZgQ8929uWjCWlGlqn2mPibp2Go1
 </key-data>
 </ssh-host-key>
 <ssh-host-key>
 <format>ssh-dsa</format>
 <key-data>
 zD3awSBPrh7ICggLQvHVbPL89eHLuecStKL3HrEgXaI/O2MwjE1lG9YxL\
 zeS5p2ngzK61vikUSqfMukeBohFTrDZ8bUtrF+HMLlTRnoCVcCWAw1lOr\
 9IDGDAuww6G45gLcHalHMmBtQxKnZdzU9kx/fL3ZS5G76Fy6sA5vg7SLq\
 AAAAB3NzaC1yc2EAAAADAQABAAABAQDeJMV8zrtsi8CgEsRCjCzfve2m6\
 QFPjXXft2CAhin8xwYRZy6r/2N9PMJ2Dnepvq4H2DKqBIe340jWqEIuA7\
 LvEJYql4unq4Iog+/+CiumTkmQIWRgIoj4FCzYkO9NvRE6fOSLLf6gakW\
 VOZZgQ8929uWjCWlGlqn2mPibp2Go1
 </key-data>
 </ssh-host-key>
 </ssh-host-keys>
 <trust-anchors>
 <trust-anchor>
 <protocol>netconf-ssh</protocol>
 <protocol>netconf-tls</protocol>
 <protocol>restconf-tls</protocol>
 <protocol>netconf-ch-ssh</protocol>
 <protocol>netconf-ch-tls</protocol>
 <protocol>restconf-ch-tls</protocol>
 <certificate>
 WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM\
 lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk\
 zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot\
 NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd\
 VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER\
 V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF\
 NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC\
 Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN\
 WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW\
 QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ\
 MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ\
 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2\
 RJSUJQFRStS0Cg==
 </certificate>
 </trust-anchor>
 </trust-anchors>

</input>

Watsen & Abrahamsson Expires May 4, 2017 [Page 68]

Internet-Draft Zero Touch October 2016

RESPONSE

HTTP/1.1 204 No Content
Date: Sat, 31 Oct 2015 17:02:40 GMT
Server: example-server

Appendix B. Artifact Examples

 This section presents examples for how the ’information type’
 artifact (Section 4.1) can be encoded into a document that can be
 distributed outside the bootstrap server’s RESETCONF API. The
 encoding for these artifacts is the same as if an HTTP GET request
 had been sent to the RESTCONF URL for the specific resource.

 These examples show the bootstrap information containing
 configuration from the YANG modules in [RFC7317] and
 [draft-ietf-netconf-server-model].

 Only examples for information type artifact are provided as the other
 five artifacts in Section 4 have their own encodings.

B.1. Redirect Information

 The following example illustrates how redirect information can be
 encoded into an artifact.

 INSERT _TEXT_FROM_FILE(refs/ex-file-redirect-information.xml)

B.2. Bootstrap Information

 The following example illustrates how bootstrap information can be
 encoded into an artifact.

 INSERT _TEXT_FROM_FILE(refs/ex-file-bootstrap-information.xml)

Appendix C. Change Log

C.1. ID to 00

 o Major structural update; the essence is the same. Most every
 section was rewritten to some degree.

 o Added a Use Cases section

 o Added diagrams for "Actors and Roles" and "NMS Precondition"
 sections, and greatly improved the "Device Boot Sequence" diagram

Watsen & Abrahamsson Expires May 4, 2017 [Page 69]

Internet-Draft Zero Touch October 2016

 o Removed support for physical presence or any ability for
 configlets to not be signed.

 o Defined the Zero Touch Information DHCP option

 o Added an ability for devices to also download images from
 configuration servers

 o Added an ability for configlets to be encrypted

 o Now configuration servers only have to support HTTP/S - no other
 schemes possible

C.2. 00 to 01

 o Added boot-image and validate-owner annotations to the "Actors and
 Roles" diagram.

 o Fixed 2nd paragraph in section 7.1 to reflect current use of
 anyxml.

 o Added encrypted and signed-encrypted examples

 o Replaced YANG module with XSD schema

 o Added IANA request for the Zero Touch Information DHCP Option

 o Added IANA request for media types for boot-image and
 configuration

C.3. 01 to 02

 o Replaced the need for a configuration signer with the ability for
 each NMS to be able to sign its own configurations, using
 manufacturer signed ownership vouchers and owner certificates.

 o Renamed configuration server to bootstrap server, a more
 representative name given the information devices download from
 it.

 o Replaced the concept of a configlet by defining a southbound
 interface for the bootstrap server using YANG.

 o Removed the IANA request for the boot-image and configuration
 media types

Watsen & Abrahamsson Expires May 4, 2017 [Page 70]

Internet-Draft Zero Touch October 2016

C.4. 02 to 03

 o Minor update, mostly just to add an Editor’s Note to show how this
 draft might integrate with the draft-pritikin-anima-bootstrapping-
 keyinfra.

C.5. 03 to 04

 o Major update formally introducing unsigned data and support for
 Internet-based redirect servers.

 o Added many terms to Terminology section.

 o Added all new "Guiding Principles" section.

 o Added all new "Sources for Bootstrapping Data" section.

 o Rewrote the "Interactions" section and renamed it "Workflow
 Overview".

C.6. 04 to 05

 o Semi-major update, refactoring the document into more logical
 parts

 o Created new section for information types

 o Added support for DNS servers

 o Now allows provisional TLS connections

 o Bootstrapping data now supports scripts

 o Device Details section overhauled

 o Security Considerations expanded

 o Filled in enumerations for notification types

C.7. 05 to 06

 o Minor update

 o Added many Normative and Informative references.

 o Added new section Other Considerations.

Watsen & Abrahamsson Expires May 4, 2017 [Page 71]

Internet-Draft Zero Touch October 2016

C.8. 06 to 07

 o Minor update

 o Added an Editorial Note section for RFC Editor.

 o Updated the IANA Considerations section.

C.9. 07 to 08

 o Minor update

 o Updated to reflect review from Michael Richardson.

C.10. 08 to 09

 o Added in missing "Signature" artifact example.

 o Added recommendation for manufacturers to use interoperable
 formats and file naming conventions for removable storage devices.

 o Added configuration-handling leaf to guide if config should be
 merged, replaced, or processed like an edit-config/yang-patch
 document.

 o Added a pre-configuration script, in addition to the post-
 configuration script from -05 (issue #15).

C.11. 09 to 10

 o Factored ownership vocher and voucher revocation to a separate
 document: draft-kwatsen-netconf-voucher. (issue #11)

 o Removed <configuration-handling> options ’edit-config’ and yang-
 patch’. (issue #12)

 o Defined how a signature over signed-data returned from a bootstrap
 server is processed. (issue #13)

 o Added recommendation for removable storage devices to use open/
 standard file systems when possible. (issue #14)

 o Replaced notifications "script-[warning/error]" with "[pre/post]-
 script-[warning/error]". (goes with issue #15)

 o switched owner-certificate to be encoded using the pkcs#7 format.
 (issue #16)

Watsen & Abrahamsson Expires May 4, 2017 [Page 72]

Internet-Draft Zero Touch October 2016

 o Replaced md5/sha1 with sha256 inside a choice statement, for
 future extensibility. (issue #17)

 o A ton of editorial changes, as I went thru the entire draft with a
 fine-toothed comb.

C.12. 10 to 11

 o fixed yang validation issues found by IETFYANGPageCompilation.
 note: these issues were NOT found by pyang --ietf or by the
 submission-time validator...

 o fixed a typo in the yang module, someone the config false
 statement was removed.

Authors’ Addresses

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

 Mikael Abrahamsson
 T-Systems

 EMail: "mikael.abrahamsson@t-systems.se

Watsen & Abrahamsson Expires May 4, 2017 [Page 73]

NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Intended status: Standards Track M. Richardson
Expires: May 4, 2017 SSW
 M. Pritikin
 T. Eckert
 Cisco Systems
 October 31, 2016

 Voucher and Voucher Revocation Profiles for Bootstrapping Protocols
 draft-kwatsen-netconf-voucher-00

Abstract

 This memo defines the two artifacts "voucher" and "voucher-
 revocation", which are YANG-defined structures that have been signed
 by a TBD algorithm.

 The voucher artifact is generated by the device’s manufacture or
 delegate. The voucher’s purpose is to securely assign one or more
 devices to an owner. The voucher informs each device which entity it
 should consider to be its owner.

 The voucher revocation artifact is used by the manufacturer or
 delegate (i.e. the issuer of the voucher) to revoke vouchers, if
 ever necessary. The voucher revocation format defined herein
 supports both issuer-wide and voucher-specific constructs, enabling
 usage flexibility.

 For both artifacts, this memo only defines the artifact, leaving it
 to future work to describe specialized protocols for accessing them.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Watsen, et al. Expires May 4, 2017 [Page 1]

Internet-Draft Voucher and Revocation Profiles October 2016

 This Internet-Draft will expire on May 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Requirements Language . 3
 3. Tree Diagram Notation . 3
 4. Voucher . 4
 4.1. Tree Diagram . 4
 4.2. Examples . 4
 4.3. YANG Module . 5
 5. Voucher Revocation . 9
 5.1. Tree Diagram . 9
 5.2. Examples . 10
 5.3. YANG Module . 11
 6. Security Considerations 16
 6.1. Clock Sensitivity . 16
 7. IANA Considerations . 16
 7.1. The IETF XML Registry 16
 7.2. The YANG Module Names Registry 17
 8. Acknowledgements . 17
 9. References . 17
 9.1. Normative References 17
 9.2. Informative References 17
 Appendix A. Change Log . 19
 Authors’ Addresses . 19

1. Introduction

 This document defines a strategy to securely assign devices to an
 owner, using an artifact signed, directly or indirectly, by the
 device’s manufacturer. This artifact is known as the voucher.

Watsen, et al. Expires May 4, 2017 [Page 2]

Internet-Draft Voucher and Revocation Profiles October 2016

 A voucher may be useful in several contexts, but the driving
 motivation herein is to support secure bootstrapping mechanisms, such
 as are defined in [draft-ietf-netconf-zerotouch] and
 [draft-ietf-anima-bootstrapping-keyinfra]. Assigning ownership is
 important to bootstrapping mechanisms so that the booting device can
 authenticate the network that’s trying to take control of it.

 The lifetimes of vouchers may vary. In some bootstrapping protocols
 the vouchers may be ephemeral, whereas in others the vouchers may be
 potentially long-lived. In order to support the second category of
 vouchers, this document also defines a voucher revocation artifact,
 enabling the manufacturer or delegate to communicate the validity of
 its vouchers.

 For both artifacts, this memo only defines the artifact, leaving it
 to future work to describe specialized protocols for accessing them.

 This document uses YANG [RFC7950] to define the voucher and voucher
 revocation formats. YANG is a data modeling language with
 established mappings to XML and JSON, with mappings to other
 encodings in progress. Which encodings a particular solution uses is
 outside the scope of this document.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in the
 sections below are to be interpreted as described in RFC 2119
 [RFC2119].

3. Tree Diagram Notation

 The meaning of the symbols in the above diagram is as follows:

 o Brackets "[" and "]" enclose list keys.

 o Braces "{" and "}" enclose feature names, and indicate that the
 named feature must be present for the subtree to be present.

 o Abbreviations before data node names: "rw" (read-write) represents
 configuration data and "ro" (read-only) represents state data.

 o Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list and leaf-list.

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

Watsen, et al. Expires May 4, 2017 [Page 3]

Internet-Draft Voucher and Revocation Profiles October 2016

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

4. Voucher

 The voucher is generated by the device’s manufacture or delegate.
 The voucher’s purpose is to securely assign one or more devices to an
 owner. The voucher informs each device which entity it should
 consider to be its owner.

 The voucher is signed by the device’s manufacturer or delegate.
 NOTE: AT THIS TIME, THE SIGNING STRATEGY HAS NOT BEEN SELECTED.

4.1. Tree Diagram

 Following is the tree diagram for the YANG module specified in
 Section 4.3. Details regarding each node in the tree diagram are
 provided in the YANG module. Please see Section 3 for information on
 tree diagram notation.

 module: ietf-voucher
 +--ro voucher
 +--ro assertion enumeration
 +--ro trusted-ca-certificate? binary
 +--ro certificate-id
 | +--ro cn-id? string
 | +--ro dns-id? string
 +--ro unique-id* string
 +--ro nonce? string
 +--ro created-on? yang:date-and-time
 +--ro expires-on? yang:date-and-time
 +--ro revocation-location? inet:uri
 +--ro additional-data?

4.2. Examples

 The following illustrates an ephemeral voucher encoded in JSON:

 {
 "ietf-voucher:voucher": {
 "assertion": "logged",
 "trusted-ca-certificate": "base64-encoded X.509 DER",
 "owner-id": "Registrar3245",
 "unique-id": "JADA123456789",
 "created-on": "2016-10-07T19:31:42Z",
 "nonce": "987987623489567"
 }
 }

Watsen, et al. Expires May 4, 2017 [Page 4]

Internet-Draft Voucher and Revocation Profiles October 2016

 The following illustrates a long-lived voucher encoded in XML:

 <voucher
 xmlns="urn:ietf:params:xml:ns:yang:ietf-voucher">
 <assertion>verified</assertion>
 <trusted-ca-certificate>
 base64-encoded X.509 DER
 </trusted-ca-certificate>
 <certificate-id>
 <cn-id>Example Inc.</cn-id> <!-- maybe this should be a DN? -->
 <dns-id>example.com</dns-id>
 </certificate-id>
 <unique-id>AAA123456789</unique-id>
 <unique-id>BBB123456789</unique-id>
 <unique-id>CCC123456789</unique-id>
 <created-on>2016-10-07T19:31:42Z</created-on>
 </voucher>

4.3. YANG Module

module ietf-voucher {
 yang-version 1.1;

 namespace
 "urn:ietf:params:xml:ns:yang:ietf-voucher";
 prefix "vch";

 import ietf-yang-types { prefix yang; }
 import ietf-inet-types { prefix inet; }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>
 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>
 Author: Max Pritikin
 <mailto:pritikin@cisco.com>
 Author: Michael Richardson
 <mailto:mcr+ietf@sandelman.ca>";

 description
 "This module defines the format for a voucher, which is
 produced by a device’s manufacturer or delegate to securely
 assign one or more devices to an ’owner’, so that the
 devices may establish a secure connection to the owner’s

Watsen, et al. Expires May 4, 2017 [Page 5]

Internet-Draft Voucher and Revocation Profiles October 2016

 network infrastructure.";

 revision "2016-10-31" {
 description
 "Initial version";
 reference
 "RFC XXXX: Voucher and Voucher Revocation Profiles
 for Bootstrapping Protocols";
 }

 // top-level container
 container voucher {
 config false;
 description
 "A voucher that can be used to assign one or more devices to
 an owner.";

 leaf assertion {
 type enumeration {
 enum verified {
 description
 "Indicates that the ownership has been positively
 verified by the device’s manufacturer or delegate
 (e.g., through sales channel integration).";
 }
 enum logged {
 description
 "Indicates that this ownership assignment has been
 logged into a database maintained by the device’s
 manufacturer or delegate (voucher transparency).";
 }
 }
 mandatory true;
 description
 "The assertion is a statement from the manufacturer or
 delegate regarding the nature of this voucher. This
 allows the device to know what assurance the manufacturer
 provides, which supports more detailed policy checks
 such as ’I only want to allow verified devices, not
 just logged devices’.";
 }

 leaf trusted-ca-certificate {
 type binary;
 description
 "An X.509 v3 certificate structure as specified by RFC 5280,
 Section 4 encoded using the ASN.1 distinguished encoding
 rules (DER), as specified in ITU-T X.690.

Watsen, et al. Expires May 4, 2017 [Page 6]

Internet-Draft Voucher and Revocation Profiles October 2016

 This certificate is used by a bootstrapping device to
 trust another public key infrastructure, in order to
 verify another certificate supplied to the device
 separately by the bootstrapping protocol, the other
 certificate must have this certificate somewhere in
 its chain of certificates.";

 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile.
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }

 container certificate-id {
 description
 "When provided, the device MUST also perform RFC 6125
 style validation of another certificate supplied to
 the device separately by the bootstrapping protocol
 against all the provided ids.";
 leaf cn-id {
 type string;
 description
 "The common name field in the cetificate must match
 this value.";
 }
 leaf dns-id {
 type string;
 description
 "A subjectAltName entry of type dNSName in the
 certificate must match this value.";
 }
 }

 leaf-list unique-id {
 type string;
 min-elements 1;
 description
 "A regular expression identifying one more more device
 unique identifiers (e.g., serial numbers). For instance,
 the expression could match just a single serial number,
 or it might match a range of serial numbers. Devices
 use this value to determine if the voucher applies to
 them.";

Watsen, et al. Expires May 4, 2017 [Page 7]

Internet-Draft Voucher and Revocation Profiles October 2016

 // Ed. both the zerotouch and brwski solutions are devid
 // oriented, and so renaming this field to ’serial-number’
 // wouldn’t be crazy. But devid/serial-number (typically)
 // assumes physical chassis, is it worth using this
 // term which might extend to e.g. virtual appliances?
 }

 leaf nonce {
 type string; // unit64?
 description
 "what can be said about this that’s ANIMA-neutral?";
 }

 leaf created-on {
 type yang:date-and-time;
 description
 "The date this voucher was created";
 }

 leaf expires-on {
 type yang:date-and-time;
 description
 "An optional date value for when this voucher expires.";
 }

 leaf revocation-location {
 type inet:uri;
 description
 "A URI indicating where revocation information may be obtained.";
 }

 anydata additional-data {
 description
 "Additional data signed by the manufacturer. The manufacturer
 might put additional data into its vouchers, for human
 consumption or device consumption.";

 // Ed. is the additional data normative? - if so, should we
 // remove this free-form field, and assume it will be formally
 // extended later? Note: the zerotouch draft doesn’t need this
 // field...
 }
 }
}

Watsen, et al. Expires May 4, 2017 [Page 8]

Internet-Draft Voucher and Revocation Profiles October 2016

5. Voucher Revocation

 The vouchers revocation artifact is used to verify the revocation
 status of vouchers. Voucher revocations are signed by the
 manufacturer or delegate (i.e. the issuer of the voucher). Vouchers
 revocation statements MAY be verified by devices during the
 bootstrapping process, or at any time before or after by any entity
 (e.g., registrar or equivalent) as needed. Registrars or equivalent
 SHOULD verify voucher revocation statements and make policy decisions
 in case devices are not doing so themselves.

 Revocations are generally needed when it is critical for devices to
 know that assurances implied at the time the voucher was signed are
 still valid at the time the voucher is being processed.

 As mentioned in Section 1, the lifetimes of vouchers may vary. In
 some bootstrapping protocols the vouchers may be ephemeral, whereas
 in others the vouchers may be potentially long-lived. For
 bootstrapping protocols that support ephemeral vouchers, there is no
 need to support revocations. For bootstrapping protocols that
 support long-lived vouchers, the need to support revoking vouchers is
 a decision for each manufacturer.

 If revocations are not supported then voucher assignments are
 essentially forever, which may be acceptable for various kinds of
 devices. If revocations are supported, then it becomes possible to
 support various scenarios such as handling a key compromise or change
 in ownership.

 The voucher revocation format defined herein supports both issuer-
 wide (similar to a CRL) or voucher-specific (similar to an OCSP
 response) constructs, enabling usage flexibility.

 NOTE: AT THIS TIME, THE SIGNING STRATEGY HAS NOT BEEN SELECTED.

5.1. Tree Diagram

 Following is the tree diagram for the YANG module specified in
 Section 5.3. Details regarding each node in the tree diagram are
 provided in the YANG module. Please see Section 3 for information on
 tree diagram notation.

Watsen, et al. Expires May 4, 2017 [Page 9]

Internet-Draft Voucher and Revocation Profiles October 2016

 module: ietf-voucher-revocation
 +--ro voucher-revocation
 +--ro revocation-type enumeration
 +--ro created-on yang:date-and-time
 +--ro expires-on? yang:date-and-time
 +--ro (voucher-revocation-type)?
 | +--:(issuer-wide)
 | | +--ro issuer-wide
 | | +--ro (list-type)?
 | | +--:(whitelist)
 | | | +--ro whitelist
 | | | +--ro voucher-identifier* string
 | | +--:(blacklist)
 | | +--ro blacklist
 | | +--ro voucher-identifier* string
 | +--:(voucher-specific)
 | +--ro voucher-specific
 | +--ro voucher-identifier string
 | +--ro voucher-status enumeration
 | +--ro revocation-information
 | +--ro revoked-on yang:date-and-time
 | +--ro revocation-reason enumeration
 +--ro additional-data?

5.2. Examples

 The following illustrates an issuer-wide voucher revocation in XML:

 <voucher-revocation
 xmlns="urn:ietf:params:xml:ns:yang:ietf-voucher-revocation">
 <revocation-type>issuer-wide</revocation-type>
 <created-on>2016-10-31T23:59:59Z</created-on>
 <expires-on>2016-12-31T23:59:59Z</expires-on>
 <issuer-wide>
 <blacklist>
 <voucher-identifier>some fingerprint</voucher-identifier>
 <voucher-identifier>some fingerprint</voucher-identifier>
 <voucher-identifier>some fingerprint</voucher-identifier>
 </blacklist>
 </issuer-wide>
 </voucher>

 The following illustrates a voucher-specific revocation in JSON:

Watsen, et al. Expires May 4, 2017 [Page 10]

Internet-Draft Voucher and Revocation Profiles October 2016

 {
 "ietf-voucher-revocation:voucher-revocation": {
 "revocation-type": "voucher-specific",
 "created-on": "2016-10-31T23:59:59Z"
 "expires-on": "2016-12-31T23:59:59Z"
 "voucher-specific": [
 "voucher-identifier": "some fingerprint",
 "voucher-status": "revoked",
 "revocation-information": [
 "revoked-on": "2016-11-31T23:59:59Z",
 "revocation-reason": "key-compromise"
]
]
 }
 }

5.3. YANG Module

module ietf-voucher-revocation {
 yang-version 1.1;

 namespace
 "urn:ietf:params:xml:ns:yang:ietf-voucher-revocation";
 prefix "vr";

 import ietf-yang-types { prefix yang; }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>
 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>
 Author: Max Pritikin
 <mailto:pritikin@cisco.com>
 Author: Michael Richardson
 <mailto:mcr+ietf@sandelman.ca>";

 description
 "This module defines the format for a voucher revocation,
 which is produced by a manufacturer or delegate to indicate
 the revocation status of vouchers.";

 revision "2016-10-31" {
 description
 "Initial version";

Watsen, et al. Expires May 4, 2017 [Page 11]

Internet-Draft Voucher and Revocation Profiles October 2016

 reference
 "RFC XXXX: Voucher and Voucher Revocation Profiles
 for Bootstrapping Protocols";
 }

 // top-level container
 container voucher-revocation {
 config false;
 description
 "A voucher revocation that can provide revocation status
 information for one or more devices.";

 leaf revocation-type {
 type enumeration {
 enum issuer-wide {
 description
 "Indicates that this revocation spans all
 the vouchers the issuer has issued to date";
 }
 enum voucher-specific {
 description
 "Indicated that this revocation only regards
 a single voucher.";
 }
 }
 mandatory true;
 description
 "The revocation-type indicates if the revocation
 is issuer-wide or voucher-specific. Both variations
 exist to enable implementations to choose between the
 number of revocation artifacts generated versus
 individual artifact size.";
 }

 leaf created-on {
 type yang:date-and-time;
 mandatory true;
 description
 "The date this voucher was created";
 }

 leaf expires-on {
 type yang:date-and-time;
 description
 "An optional date value for when this voucher expires.";
 }

 choice voucher-revocation-type {

Watsen, et al. Expires May 4, 2017 [Page 12]

Internet-Draft Voucher and Revocation Profiles October 2016

 description
 "Identifies the revocation type as being either issuer-wide
 or voucher-specific.";

 container issuer-wide {
 description
 "This revocation provides issuer-wide revocation status
 (similar to a CRL).";

 choice list-type {
 description
 "Indentifies if this issuer-wide revocation is provided
 in the form of a whitelist or a blacklist";

 container whitelist {
 leaf-list voucher-identifier {
 type string;
 description
 "A fingerprint over the voucher artifact.";
 }
 description
 "Indicates that the listed of vouchers are known
 to be good. If a voucher is not listed, then
 it is considered revoked.";
 }

 container blacklist {
 leaf-list voucher-identifier {
 type string;
 description
 "A fingerprint over the voucher artifact.
 Missing if list is empty.";
 }
 description
 "Indicates that the list of vouchers have been
 revoked. If a voucher is not listed, then it
 is considered good.";
 }

 } // end list-type

 } // end issuer-wide

 container voucher-specific {
 description
 "This revocation provides voucher-specific revocation
 status (similar to an OCSP response).";

Watsen, et al. Expires May 4, 2017 [Page 13]

Internet-Draft Voucher and Revocation Profiles October 2016

 leaf voucher-identifier {
 type string;
 mandatory true;
 description
 "A fingerprint over the voucher artifact.";
 }

 leaf voucher-status {
 type enumeration {
 enum good {
 description
 "Indicates that this voucher is valid";
 }
 enum revoked {
 description
 "Indicates that this voucher is invalid";
 }
 enum unknown {
 description
 "Indicates that the voucher’s status is unknown";
 }
 }
 mandatory true;
 description
 "Indicates if the revocation status for the specified
 voucher.";
 }

 container revocation-information {
 must "../voucher-status = ’revoked’";

 leaf revoked-on {
 type yang:date-and-time;
 mandatory true;
 description
 "The date this voucher was revoked";
 }

 leaf revocation-reason {
 type enumeration {
 enum unspecified {
 description
 "Indicates that the reason the voucher
 was revoked is unspecified.";
 }
 enum key-compromise {
 description
 "Indicates that the reason the voucher

Watsen, et al. Expires May 4, 2017 [Page 14]

Internet-Draft Voucher and Revocation Profiles October 2016

 was revoked is because its key was
 compromised.";
 }
 enum issuer-compromise {
 description
 "Indicates that the reason the voucher
 was revoked is because its issuer was
 compromised.";
 }
 enum affiliation-changed {
 description
 "Indicates that the reason the voucher
 was revoked is because its affiliation
 changed (e.g., device assigned to a
 new owner.";
 }
 enum superseded {
 description
 "Indicates that the reason the voucher
 was revoked is because it has been
 superseded (e.g., the previous voucher
 expired.";
 }
 enum cessation-of-operation {
 description
 "Indicates that the reason the voucher
 was revoked is because its issuer has
 ceased operations.";
 }
 } // end enumeration

 mandatory true;
 description
 "modeled after ’CRLReason’ in RFC 5280.";
 } // end revocation reason

 description
 "Provides details regarding why a voucher’s revocation.
 Modeled after ’ResponseData’ in RFC6960.";

 } // end revocation-information

 } // end voucher-specific
 }

 anydata additional-data {
 description
 "Additional data signed by the manufacturer. The manufacturer

Watsen, et al. Expires May 4, 2017 [Page 15]

Internet-Draft Voucher and Revocation Profiles October 2016

 might put additional data into its voucher revocations, for
 human or device consumption.";

 // Ed. is the additional data normative? - if so, should we
 // remove this free-form field, and assume it will be formally
 // extended later? Note: the zerotouch draft doesn’t need this
 // field...
 }

 }
}

6. Security Considerations

6.1. Clock Sensitivity

 This document defines artifacts containing time values for voucher
 expirations and revocations, which require an accurate clock in order
 to be processed correctly. Implementations MUST ensure devices have
 an accurate clock when shipped from manufacturing facilities, and
 take steps to prevent clock tampering.

 If it is not possible to ensure clock accuracy, it is RECOMMENDED
 that implementations disable the aspects of the solution having clock
 sensitivity. In particular, such implementations should assume that
 vouchers neither ever expire or are revokable.

 It is important to note that implementations SHOULD NOT rely on NTP
 for time, as it is not a secure protocol.

7. IANA Considerations

7.1. The IETF XML Registry

 This document registers two URIs in the IETF XML registry [RFC3688].
 Following the format in [RFC3688], the following registrations are
 requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-voucher
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-voucher-revocation
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

Watsen, et al. Expires May 4, 2017 [Page 16]

Internet-Draft Voucher and Revocation Profiles October 2016

7.2. The YANG Module Names Registry

 This document registers two YANG modules in the YANG Module Names
 registry [RFC6020]. Following the format defined in [RFC6020], the
 the following registrations are requested:

 name: ietf-voucher
 namespace: urn:ietf:params:xml:ns:yang:ietf-voucher
 prefix: vch
 reference: RFC XXXX

 name: ietf-voucher-revocation
 namespace: urn:ietf:params:xml:ns:yang:ietf-voucher-revocation
 prefix: vchr
 reference: RFC XXXX

8. Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name):

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <http://www.rfc-editor.org/info/rfc7950>.

9.2. Informative References

 [draft-ietf-anima-bootstrapping-keyinfra]
 Pritikin, M., Richardson, M., Behringer, M., and S.
 Bjarnason, "Bootstrapping Key Infrastructures", draft-
 ietf-anima-bootstrapping-keyinfra (work in progress),
 2016, <https://tools.ietf.org/html/draft-ietf-anima-
 bootstrapping-keyinfra>.

Watsen, et al. Expires May 4, 2017 [Page 17]

Internet-Draft Voucher and Revocation Profiles October 2016

 [draft-ietf-netconf-zerotouch]
 Watsen, K. and M. Abrahamsson, "Zero Touch Provisioning
 for NETCONF or RESTCONF based Management", draft-ietf-
 netconf-zerotouch (work in progress), 2016,
 <https://tools.ietf.org/html/draft-ietf-netconf-
 zerotouch>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

Watsen, et al. Expires May 4, 2017 [Page 18]

Internet-Draft Voucher and Revocation Profiles October 2016

Appendix A. Change Log

Authors’ Addresses

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

 Michael C. Richardson
 Sandelman Software Works

 EMail: mcr+ietf@sandelman.ca
 URI: http://www.sandelman.ca/

 Max Pritikin
 Cisco Systems

 EMail: pritikin@cisco.com

 Toerless Eckert
 Cisco Systems

 EMail: tte+anima@cs.fau.de

Watsen, et al. Expires May 4, 2017 [Page 19]

Network Working Group M. Bjorklund, Ed.
Internet-Draft Tail-f Systems
Intended status: Standards Track J. Schoenwaelder
Expires: April 30, 2017 Jacobs University
 P. Shafer
 K. Watsen
 Juniper
 R. Wilton
 Cisco
 October 27, 2016

 A Revised Conceptual Model for YANG Datastores
 draft-nmdsdt-netmod-revised-datastores-00

Abstract

 Datastores are a fundamental concept binding the YANG data modeling
 language to protocols transporting data defined in YANG data models,
 such as NETCONF or RESTCONF. This document defines a revised
 conceptual model of datastores based on the experience gained with
 the initial simpler model and addressing requirements that were not
 well supported in the initial model.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Bjorklund, et al. Expires April 30, 2017 [Page 1]

Internet-Draft October 2016

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Background . 3
 3. Terminology . 4
 4. Original Model of Datastores 4
 5. Revised Model of Datastores 6
 5.1. The <intended> datastore 8
 5.2. The <applied> datastore 8
 5.2.1. Missing Resources 9
 5.2.2. System-controlled Resources 9
 5.3. The <operational-state> datastore 9
 6. Implications . 9
 6.1. Implications on NETCONF 9
 6.1.1. Migration Path 10
 6.2. Implications on RESTCONF 10
 6.3. Implications on YANG 11
 6.4. Implications on Data Models 11
 7. Data Model Design Guidelines 11
 7.1. Auto-configured or Auto-negotiated Values 11
 8. Data Model . 12
 9. IANA Considerations . 14
 10. Security Considerations 14
 11. Acknowledgments . 14
 12. References . 15
 12.1. Normative References 15
 12.2. Informative References 15
 Appendix A. Example Data . 16
 Appendix B. Open Issues . 19
 Authors’ Addresses . 20

1. Introduction

 This document provides a revised architectural framework for
 datastores as they are used by network management protocols such as
 NETCONF [RFC6241], RESTCONF [I-D.ietf-netconf-restconf] and the YANG
 [RFC7950] data modeling language. Datastores are a fundamental
 concept binding management data models to network management
 protocols and agreement on a common architectural model of datastores
 ensures that data models can be written in a network management

Bjorklund, et al. Expires April 30, 2017 [Page 2]

Internet-Draft October 2016

 protocol agnostic way. This architectural framework identifies a set
 of conceptual datastores but it does not mandate that all network
 management protocols expose all these conceptual datastores.
 Furthermore, the architecture does not detail how data is encoded by
 network management protocols.

2. Background

 NETCONF [RFC6241] provides the following definitions:

 o datastore: A conceptual place to store and access information. A
 datastore might be implemented, for example, using files, a
 database, flash memory locations, or combinations thereof.

 o configuration datastore: The datastore holding the complete set of
 configuration data that is required to get a device from its
 initial default state into a desired operational state.

 YANG 1.1 [RFC7950] provides the following refinements when NETCONF is
 used with YANG (which is the usual case but note that NETCONF was
 defined before YANG did exist):

 o datastore: When modeled with YANG, a datastore is realized as an
 instantiated data tree.

 o configuration datastore: When modeled with YANG, a configuration
 datastore is realized as an instantiated data tree with
 configuration data.

 RFC 6244 defined operational state data as follows:

 o Operational state data is a set of data that has been obtained by
 the system at runtime and influences the system’s behavior similar
 to configuration data. In contrast to configuration data,
 operational state is transient and modified by interactions with
 internal components or other systems via specialized protocols.

 Section 4.3.3 of RFC 6244 discusses operational state and among other
 things mentions the option to consider operational state as being
 stored in another datastore. Section 4.4 of this document then
 concludes that at the time of the writing, modeling state as a
 separate data tree is the recommended approach.

 Implementation experience and requests from operators
 [I-D.ietf-netmod-opstate-reqs], [I-D.openconfig-netmod-opstate]
 indicate that the datastore model initially designed for NETCONF and
 refined by YANG needs to be extended. In particular, the notion of
 intended configuration and applied configuration has developed.

Bjorklund, et al. Expires April 30, 2017 [Page 3]

Internet-Draft October 2016

 Furthermore, separating operational state data from configuration
 data in a separate branch in the data model has been found
 operationally complicated. The relationship between the branches is
 not machine readable and filter expressions operating on
 configuration data and on related operational state data are
 different.

3. Terminology

 This document defines the following terms:

 o configuration data: Data that determines how a device behaves.
 Configuration data can originate from different sources. In YANG
 1.1, configuration data is the "config true" nodes.

 o static configuration data: Configuration data that is eventually
 persistent and used to get a device from its initial default state
 into its desired operational state.

 o dynamic configuration data: Configuration data that is obtained
 dynamically during the operation of a device through interaction
 with other systems and not persistent.

 o system configuration data: Configuration data that is supplied by
 the device itself.

 o data-model-defined configuration data: Configuration data that is
 not explicitly provided but for which a value defined in the data
 model is used. In YANG 1.1, such data can be defined with the
 "default" statement or in "description" statements.

4. Original Model of Datastores

 The following drawing shows the original model of datastores as it is
 currently used by NETCONF [RFC6241]:

Bjorklund, et al. Expires April 30, 2017 [Page 4]

Internet-Draft October 2016

 +-------------+ +-----------+
 | <candidate> | | <startup> |
 | (ct, rw) |<---+ +--->| (ct, rw) |
 +-------------+ | | +-----------+
 | | | |
 | +-----------+ |
 +-------->| <running> |<--------+
 | (ct, rw) |
 +-----------+
 |
 v
 operational state <--- control plane
 (cf, ro)

 ct = config true; cf = config false
 rw = read-write; ro = read-only
 boxes denote datastores

 Note that read-only (ro) and read-write (rw) is to be understood at a
 conceptual level. In NETCONF, for example, support for the
 <candidate> and <startup> datastores is optional and the <running>
 datastore does not have to be writable. Furthermore, the <startup>
 datastore can only be modified by copying <running> to <startup> in
 the standardized NETCONF datastore editing model. The RESTCONF
 protocol does not expose these differences and instead provides only
 a writable unified datastore, which hides whether edits are done
 through a <candidate> datastore or by directly modifying the
 <running> datastore or via some other implementation specific
 mechanism. RESTCONF also hides how configuration is made persistent.
 Note that implementations may also have additional datastores that
 can propagate changes to the <running> datastore. NETCONF explicitly
 mentions so called named datastores.

 Some observations:

 o Operational state has not been defined as a datastore although
 there were proposals in the past to introduce an operational state
 datastore.

 o The NETCONF <get/> operation returns the content of the <running>
 configuration datastore together with the operational state. It
 is therefore necessary that config false data is in a different
 branch than the config true data if the operational state data can
 have a different lifetime compared to configuration data or if
 configuration data is not immediately or successfully applied.

 o Several implementations have proprietary mechanisms that allow
 clients to store inactive data in the <running> datastore; this

Bjorklund, et al. Expires April 30, 2017 [Page 5]

Internet-Draft October 2016

 inactive data is only exposed to clients that indicate that they
 support the concept of inactive data; clients not indicating
 support for inactive data receive the content of the <running>
 datastore with the inactive data removed. Inactive data is
 conceptually removed during validation.

 o Some implementations have proprietary mechanisms that allow
 clients to define configuration templates in <running>. These
 templates are expanded automatically by the system, and the
 resulting configuration is applied internally.

 o Some operators have reported that it is essential for them to be
 able to retrieve the configuration that has actually been
 successfully applied, which may be a subset or a superset of the
 <running> configuration.

5. Revised Model of Datastores

 Below is a new conceptual model of datastores extending the original
 model in order reflect the experience gained with the original model.

Bjorklund, et al. Expires April 30, 2017 [Page 6]

Internet-Draft October 2016

 +-------------+ +-----------+
 | <candidate> | | <startup> |
 | (ct, rw) |<---+ +--->| (ct, rw) |
 +-------------+ | | +-----------+
 | | | |
 | +-----------+ |
 +-------->| <running> |<--------+
 | (ct, rw) |
 +-----------+
 |
 | // e.g., removal of ’inactive’
 | // nodes, expansion of templates
 v
 +------------+
 | <intended> | // subject to validation
 | (ct, ro) |
 +------------+
 |
 | // e.g., missing resources or
 | // delays
 v
 +-----------+
 | <applied> |<---+--- dynamic configuration
 | (ct, ro) | | protocols
 +-----------+ +--- control-plane datastores
 |
 | +--- auto-discovery
 | +-----+--- control-plane protocols
 | | +--- control-plane datastores
 v v
 +---------------------+
 | <operational-state> |
 | (ct + cf, ro) |
 +---------------------+

 ct = config true; cf = config false
 rw = read-write; ro = read-only
 boxes denote datastores

 The model foresees control-plane datastores that are by definition
 not part of the persistent configuration of a device. In some
 contexts, these have been termed ephemeral datastores since the
 information is ephemeral, i.e., lost upon reboot. The control-plane
 datastores interact with the rest of the system through the <applied>
 or <operational-state> datastores, depending on the type of data they
 contain. Note that the ephemeral datastore discussed in I2RS
 documents maps to a control-plane datastore in the revised datastore
 model described here.

Bjorklund, et al. Expires April 30, 2017 [Page 7]

Internet-Draft October 2016

5.1. The <intended> datastore

 The <intended> datastore is a read-only datastore that consists of
 config true nodes. It is tightly coupled to <running>. When data is
 written to <running>, the data that is to be validated is also
 conceptually written to <intended>. Validation is performed on the
 contents of <intended>.

 On a traditional NETCONF implementation, <running> and <intended> are
 always the same.

 Currently there are no standard mechanisms defined that affect
 <intended> so that it would have different contents than <running>,
 but this architecture allows for such mechanisms to be defined.

 One example of such a mechanism is support for marking nodes as
 inactive in <running>. Inactive nodes are not copied to <intended>,
 and are thus not taken into account when validating the
 configuration.

 Another example is support for templates. Templates are expanded
 when copied into <intended>, and the result is validated.

5.2. The <applied> datastore

 The <applied> datastore is a read-only datastore that consists of
 config true nodes. It contains the currently active configuration on
 the device. This data can come from several sources; from
 <intended>, from dynamic configuration protocols (e.g., DHCP), or
 from control-plane datastores.

 As data flows into the <applied> and <operational-state> datastores,
 it is conceptually marked with a metadata annotation ([RFC7952]) that
 indicates its origin. The "origin" metadata annotation is defined in
 Section 8. The values are YANG identities. The following identities
 are defined:

 +-- origin
 +-- static
 +-- dynamic
 +-- data-model
 +-- system

 These identities can be further refined, e.g., there might be an
 identity "dhcp" derived from "dynamic".

Bjorklund, et al. Expires April 30, 2017 [Page 8]

Internet-Draft October 2016

 The <applied> datastore contains the subset of the instances in the
 <operational-state> datastore where the "origin" values are derived
 from or equal to "static" or "dynamic".

5.2.1. Missing Resources

 Sometimes some parts of <intended> configuration refer to resources
 that are not present and hence parts of the <intended> configuration
 cannot be applied. A typical example is an interface configuration
 that refers to an interface that is not currently present. In such a
 situation, the interface configuration remains in <intended> but the
 interface configuration will not appear in <applied>.

5.2.2. System-controlled Resources

 Sometimes resources are controlled by the device and such system
 controlled resources appear in (and disappear from) the
 <operational-state> dynamically. If a system controlled resource has
 matching configuration in <intended> when it appears, the system will
 try to apply the configuration, which causes the configuration to
 appear in <applied> eventually (if application of the configuration
 was successful).

5.3. The <operational-state> datastore

 The <operational-state> datastore is a read-only datastore that
 consists of config true and config false nodes. In the original
 NETCONF model the operational state only had config false nodes. The
 reason for incorporating config true nodes here is to be able to
 expose all operational settings without having to replicate
 definitions in the data models.

 The <operational-state> datastore contains all configura data
 actually used by the system, i.e., all applied configuration, system
 configuration and data-model-defined configuration. This data is
 marked with the "origin" metadata annotation. In addition, the
 <operational-state> datastore also contains state data.

 In the <operational-state> datastore, semantic constraints defined in
 the data model are not applied. See Appendix B.

6. Implications

6.1. Implications on NETCONF

 o A mechanism is needed to announce support for <intended>,
 <applied>, and <operational-state>.

Bjorklund, et al. Expires April 30, 2017 [Page 9]

Internet-Draft October 2016

 o Support for <intended>, <applied>, and <operational-state> should
 be optional to implement.

 o For systems supporting <intended> or <applied> configuration
 datastores, the <get-config/> operation may be used to retrieve
 data stored in these new datastores.

 o A new operation should be added to retrieve the operational state
 data store (e.g., <get-state/>). An alternative is to define a
 new operation to retrieve data from any datastore (e.g.,
 <get-data> with the name of the datastore as a parameter). In
 principle <get-config/> could work but it would be a confusing
 name.

 o The <get/> operation will be deprecated since it returns data from
 two datastores that may overlap in the revised datastore model.

6.1.1. Migration Path

 A common approach in current data models is to have two separate
 trees "/foo" and "/foo-state", where the former contains config true
 nodes, and the latter config false nodes. A data model that is
 designed for the revised architectural framework presented in this
 document will have a single tree "/foo" with a combination of config
 true and config false nodes.

 A server that implements the <operational-state> datastore can
 implement a module of the old design. In this case, some instances
 are probably reported both in the "/foo" tree and in the "/foo-state"
 tree.

 A server that does not implement the <operational-state> datastore
 can implement a module of the new design, but with limited
 functionality. Specifically, it may not be possible to retrieve all
 operationally used instances (e.g., dynamically configured or system-
 controlled). The same limitation applies to a client that does not
 implement the <operational-state> datastore, but talks to a server
 that implements it.

6.2. Implications on RESTCONF

 o The {+restconf}/data resource represents the combined
 configuration and state data resources that can be accessed by a
 client. This is effectively bundling <running> together with
 <operational-state>, much like the <get/> operation of NETCONF.
 This design should be deprecated.

Bjorklund, et al. Expires April 30, 2017 [Page 10]

Internet-Draft October 2016

 o A new query parameter is needed to indicate that data from
 <operational-state> is requested.

6.3. Implications on YANG

 o Some clarifications may be needed if this revised model is
 adopted. YANG currently describes validation in terms of the
 <running> configuration datastore while it really happens on the
 <intended> configuration datastore.

6.4. Implications on Data Models

 o Since the NETCONF <get/> operation returns the content of the
 <running> configuration datastore and the operational state
 together in one tree, data models were often forced to branch at
 the top-level into a config true branch and a structurally similar
 config false branch that replicated some of the config true nodes
 and added state nodes. With the revised datastore model this is
 not needed anymore since the different datastores handle the
 different lifetimes of data objects. Introducing this model
 together with the deprecation of the <get/> operation makes it
 possible to write simpler models.

 o There may be some differences in the value set of some nodes that
 are used for both configuration and state. At this point of time,
 these are considered to be rare cases that can be dealt with using
 different nodes for the configured and state values.

 o It is important to design data models with clear semantics that
 work equally well for instantiation in a configuration datastore
 and instantiation in the <operational-state> datastore.

7. Data Model Design Guidelines

7.1. Auto-configured or Auto-negotiated Values

 Sometimes configuration leafs support special values that instruct
 the system to automatically configure a value. An example is an MTU
 that is configured to ’auto’ to let the system determine a suitable
 MTU value. Another example is Ethernet auto-negotiation of link
 speed. In such a situation, it is recommended to model this as two
 separate leafs, one config true leaf for the input to the auto-
 negotiation process, and one config false leaf for the output from
 the process.

Bjorklund, et al. Expires April 30, 2017 [Page 11]

Internet-Draft October 2016

8. Data Model

 <CODE BEGINS> file "ietf-yang-architecture@2016-10-13.yang"

 module ietf-yang-architecture {
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-architecture";
 prefix arch;

 import ietf-yang-metadata {
 prefix md;
 }

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Editor: Martin Bjorklund
 <mailto:mbj@tail-f.com>";

 description
 "This YANG module defines an ’origin’ metadata annotation,
 and a set of identities for the origin value. The ’origin’
 metadata annotation is used to mark data in the applied
 and operational state datastores with information on where
 the data originated.

 Copyright (c) 2016 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (http://www.rfc-editor.org/info/rfcxxxx); see the RFC itself
 for full legal notices.";

 revision 2016-10-13 {
 description
 "Initial revision.";
 reference

Bjorklund, et al. Expires April 30, 2017 [Page 12]

Internet-Draft October 2016

 "RFC XXXX: A Revised Conceptual Model for YANG Datastores";
 }

 /*
 * Identities
 */

 identity origin {
 description
 "Abstract base identitiy for the origin annotation.";
 }

 identity static {
 base origin;
 description
 "Denotes data from static configuration (e.g., <intended>).";
 }

 identity dynamic {
 base origin;
 description
 "Denotes data from dynamic configuration protocols
 or dynamic datastores (e.g., DHCP).";
 }

 identity system {
 base origin;
 description
 "Denotes data created by the system independently of what
 has been configured.";
 }

 identity data-model {
 base origin;
 description
 "Denotes data that does not have an explicitly configured
 value, but has a default value in use. Covers both simple
 defaults and complex defaults.";
 }

 /*
 * Metadata annotations
 */

 md:annotation origin {
 type identityref {
 base origin;
 }

Bjorklund, et al. Expires April 30, 2017 [Page 13]

Internet-Draft October 2016

 }

 }

 <CODE ENDS>

9. IANA Considerations

 TBD

10. Security Considerations

 This document discusses a conceptual model of datastores for network
 management using NETCONF/RESTCONF and YANG. It has no security
 impact on the Internet.

11. Acknowledgments

 This document grew out of many discussions that took place since
 2010. Several Internet-Drafts ([I-D.bjorklund-netmod-operational],
 [I-D.wilton-netmod-opstate-yang], [I-D.ietf-netmod-opstate-reqs],
 [I-D.kwatsen-netmod-opstate], [I-D.openconfig-netmod-opstate]) and
 [RFC6244] touched on some of the problems of the original datastore
 model. The following people were authors to these Internet-Drafts or
 otherwise actively involved in the discussions that led to this
 document:

 o Lou Berger, LabN Consulting, L.L.C., <lberger@labn.net>

 o Andy Bierman, YumaWorks, <andy@yumaworks.com>

 o Marcus Hines, Google, <hines@google.com>

 o Christian Hopps, Deutsche Telekom, <chopps@chopps.org>

 o Acee Lindem, Cisco Systems, <acee@cisco.com>

 o Ladislav Lhotka, CZ.NIC, <lhotka@nic.cz>

 o Thomas Nadeau, Brocade Networks, <tnadeau@lucidvision.com>

 o Anees Shaikh, Google, <aashaikh@google.com>

 o Rob Shakir, Google, <robjs@google.com>

 Juergen Schoenwaelder was partly funded by Flamingo, a Network of
 Excellence project (ICT-318488) supported by the European Commission
 under its Seventh Framework Programme.

Bjorklund, et al. Expires April 30, 2017 [Page 14]

Internet-Draft October 2016

12. References

12.1. Normative References

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-17 (work in
 progress), September 2016.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <http://www.rfc-editor.org/info/rfc7950>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",
 RFC 7952, DOI 10.17487/RFC7952, August 2016,
 <http://www.rfc-editor.org/info/rfc7952>.

12.2. Informative References

 [I-D.bjorklund-netmod-operational]
 Bjorklund, M. and L. Lhotka, "Operational Data in NETCONF
 and YANG", draft-bjorklund-netmod-operational-00 (work in
 progress), October 2012.

 [I-D.ietf-netmod-opstate-reqs]
 Watsen, K. and T. Nadeau, "Terminology and Requirements
 for Enhanced Handling of Operational State", draft-ietf-
 netmod-opstate-reqs-04 (work in progress), January 2016.

 [I-D.kwatsen-netmod-opstate]
 Watsen, K., Bierman, A., Bjorklund, M., and J.
 Schoenwaelder, "Operational State Enhancements for YANG,
 NETCONF, and RESTCONF", draft-kwatsen-netmod-opstate-02
 (work in progress), February 2016.

 [I-D.openconfig-netmod-opstate]
 Shakir, R., Shaikh, A., and M. Hines, "Consistent Modeling
 of Operational State Data in YANG", draft-openconfig-
 netmod-opstate-01 (work in progress), July 2015.

Bjorklund, et al. Expires April 30, 2017 [Page 15]

Internet-Draft October 2016

 [I-D.wilton-netmod-opstate-yang]
 Wilton, R., ""With-config-state" Capability for NETCONF/
 RESTCONF", draft-wilton-netmod-opstate-yang-02 (work in
 progress), December 2015.

 [RFC6244] Shafer, P., "An Architecture for Network Management Using
 NETCONF and YANG", RFC 6244, DOI 10.17487/RFC6244, June
 2011, <http://www.rfc-editor.org/info/rfc6244>.

Appendix A. Example Data

 In this example, the following fictional module is used:

 module example-system {
 yang-version 1.1;
 namespace urn:example:system;
 prefix sys;

 import ietf-inet-types {
 prefix inet;
 }

 container system {
 leaf hostname {
 type string;
 }

 list interface {
 key name;

 leaf name {
 type string;
 }

 container auto-negotiation {
 leaf enabled {
 type boolean;
 default true;
 }
 leaf speed {
 type uint32;
 units mbps;
 description
 "The advertised speed, in mbps.";
 }
 }

 leaf speed {

Bjorklund, et al. Expires April 30, 2017 [Page 16]

Internet-Draft October 2016

 type uint32;
 units mbps;
 config false;
 description
 "The speed of the interface, in mbps.";
 }

 list address {
 key ip;

 leaf ip {
 type inet:ip-address;
 }
 leaf prefix-length {
 type uint8;
 }
 }
 }
 }
 }

 The operator has configured the host name and two interfaces, so the
 contents of <intended> is:

 <system xmlns="urn:example:system">

 <hostname>foo</hostname>

 <interface>
 <name>eth0</name>
 <auto-negotiation>
 <speed>1000</speed>
 </auto-negotiation>
 <address>
 <ip>2001:db8::10</ip>
 <prefix-length>32</prefix-length>
 </address>
 </interface>

 <interface>
 <name>eth1</name>
 <address>
 <ip>2001:db8::20</ip>
 <prefix-length>32</prefix-length>
 </address>
 </interface>

 </system>

Bjorklund, et al. Expires April 30, 2017 [Page 17]

Internet-Draft October 2016

 The system has detected that the hardware for one of the configured
 interfaces ("eth1") is not yet present, so the configuration for that
 interface is not applied. Further, the system has received a host
 name and an additional IP address for "eth0" over DHCP. This is
 reflected in <applied>:

 <system
 xmlns="urn:example:system"
 xmlns:arch="urn:ietf:params:xml:ns:yang:ietf-yang-architecture">

 <hostname arch:origin="arch:dynamic">bar</hostname>

 <interface arch:origin="arch:static">
 <name>eth0</name>
 <auto-negotiation>
 <speed>1000</speed>
 </auto-negotiation>
 <address>
 <ip>2001:db8::10</ip>
 <prefix-length>32</prefix-length>
 </address>
 <address arch:origin="arch:dynamic">
 <ip>2001:db8::1:100</ip>
 <prefix-length>32</prefix-length>
 </address>
 </interface>

 </system>

 In <operational-state>, all data from <applied> is present, in
 addition to a default value, a loopback interface automatically added
 by the system, and the result of the "speed" auto-negotiation:

Bjorklund, et al. Expires April 30, 2017 [Page 18]

Internet-Draft October 2016

 <system
 xmlns="urn:example:system"
 xmlns:arch="urn:ietf:params:xml:ns:yang:ietf-yang-architecture">

 <hostname arch:origin="arch:dynamic">bar</hostname>

 <interface arch:origin="arch:static">
 <name>eth0</name>
 <auto-negotiation>
 <enabled arch:origin="arch:data-model">true</enabled>
 <speed>1000</speed>
 </auto-negotiation>
 <speed>100</speed>
 <address>
 <ip>2001:db8::10</ip>
 <prefix-length>32</prefix-length>
 </address>
 <address arch:origin="arch:dynamic">
 <ip>2001:db8::1:100</ip>
 <prefix-length>32</prefix-length>
 </address>
 </interface>

 <interface arch:origin="arch:system">
 <name>lo0</name>
 <address>
 <ip>::1</ip>
 <prefix-length>128</prefix-length>
 </address>
 </interface>

 </system>

Appendix B. Open Issues

 1. Do we need another DS <active> inbetween <running> and
 <intended>? This DS would allow a client to see all active
 nodes, including unexpanded templates.

 2. How do we handle semantical constraints in <operational-state>?
 Are they just ignored? Do we need a new YANG statement to define
 if a "must" constraints applies to the <operational-state>?

 3. Should it be possible to ask for <applied> in RESTCONF?

 4. Better name for "static configuration"?

 5. Better name for "intended"?

Bjorklund, et al. Expires April 30, 2017 [Page 19]

Internet-Draft October 2016

Authors’ Addresses

 Martin Bjorklund (editor)
 Tail-f Systems

 Email: mbj@tail-f.com

 Juergen Schoenwaelder
 Jacobs University

 Email: j.schoenwaelder@jacobs-university.de

 Phil Shafer
 Juniper

 Email: phil@juniper.net

 Kent Watsen
 Juniper

 Email: kwatsen@juniper.net

 Rob Wilton
 Cisco

 Email: rwilton@cisco.com

Bjorklund, et al. Expires April 30, 2017 [Page 20]

	draft-bierman-netconf-rfc6536bis-00
	draft-ietf-netconf-keystore-00
	draft-ietf-netconf-netconf-client-server-01
	draft-ietf-netconf-netconf-event-notifications-01
	draft-ietf-netconf-restconf-client-server-01
	draft-ietf-netconf-restconf-notif-01
	draft-ietf-netconf-rfc5277bis-01
	draft-ietf-netconf-ssh-client-server-01
	draft-ietf-netconf-tls-client-server-01
	draft-ietf-netconf-yang-push-04
	draft-ietf-netconf-zerotouch-11
	draft-kwatsen-netconf-voucher-00
	draft-nmdsdt-netmod-revised-datastores-00

