TAPS Wor ki ng G oup B. Trammel |

I nternet-Draft ETH Zuri ch
I ntended status: |nformational C. Perkins
Expires: April 30, 2017 Uni versity of d asgow
T. Pauly

Appl e Inc.

M Kuehl ewi nd

ETH Zuri ch

Cct ober 27, 2016

Post Sockets, An Abstract Progranming Interface for the Transport Layer
draft-tranmel | - post - socket s-00

Abstract

Thi s docunent describes Post Sockets, an asynchronous abstract
programmi ng interface for the atom c transm ssion of objects in an
explicitly nmultipath environment. Post replaces connections with
I ong-lived associ ati ons between endpoints, with the possibility to
cache cryptographic state in order to reduce anortized connection
| atency. We present this abstract interface as an illustration of
what is possible with present devel opnents in transport protocols
when freed fromthe strictures of the current sockets AP

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nmay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on April 30, 2017

Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Tramel |, et al. Expires April 30, 2017 [ Page 1]



Internet-Draft Post Sockets Cct ober 2016

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction 2
2. Abstractions and Ternlnology 5
2.1. Association . ... 5
2.2. Listener 5
2.3. Renpte 6
2.4. Local 6
2.5. Path 6
2.6. bject 7
2. 7. St ream 9
3. Abstract Progrann1ng Interface 9
3.1. Active Association Creation . . 10
3.2. Listener and Passive Association Creatlon . 11
3.3. Sending bjects . 12
3.4. Receiving bjects . . . 12
3.5. Creating and Destroying Streans . 13
3. 6. Event s . . 13
3.7. Paths and Path Propertles . 14
3.8. Address Resol ution 14
4. Acknow edgnents . . 15
5. Informative References 15
Aut hors’ Addresses 16

1. Introduction

The BSD Uni x Sockets API’s SOCK _STREAM abstraction, by bringing
networ k sockets into the UN X progranm ng nodel, allow ng anyone who
knew how to wite prograns that dealt with sequential -access files to
also wite network applications, was a revolution in sinplicity. It
woul d not be an overstatenent to say that this sinple APl is the
reason the Internet won the protocol wars of the 1980s. SOCK STREAM
is tied to the Transnission Control Protocol (TCP), specified in 1981
[ RFCO793]. TCP has scaled remarkably well over the past three and a
hal f decades, but its total ubiquity has hidden an unconfortable
fact: the network is not really a file, and stream abstractions are
too sinplistic for nany nodern application programing nodels.

Tramel |, et al. Expires April 30, 2017 [ Page 2]



Internet-Draft Post Sockets Cct ober 2016

In the meantime, the nature of Internet access is evolving. Mny
end- user devices are connected to the Internet via nultiple
interfaces, which suggests it is time to pronote the "path" by which
a host is connected to a first-order object; we call this "path
primacy".

Implicit multipath comunication is available for these nultihoned
nodes in the present Internet architecture with the Miultipath TCP
ext ensi on (MPTCP) [RFC6824]. Since many nul ti honed nodes are
connected to the Internet through access paths with widely different
properties with respect to bandwi dth, |atency and cost, adding
explicit path control to MPTCP s APl woul d be useful in many
situations. Path primacy for cooperation with path elenents is also
useful in single-homed architectures, such as the mechani sm proposed
by the Path Layer UDP Substrate (PLUS) effort (see
[I-D.trammel | - pl us-stateful ness] and
[I-D.trammel | - pl us-abstract-nech]).

Anot her trend straining the traditional layering of the transport
stack associated with the SOCK_ STREAM i nterface is the w despread
interest in ubiquitous deploynment of encryption to guarantee
confidentiality, authenticity, and integrity, in the face of
pervasi ve surveillance [ RFC7258]. Layering the nost widely depl oyed
encryption technol ogy, Transport Layer Security (TLS), strictly atop
TCP (i.e., via a TLS library such as OpenSSL that uses the sockets
APl) requires the encryption-layer handshake to happen after the
transport-layer handshake, which increases connection setup |atency
on the order of one or two round-trip tines, an unacceptabl e del ay
for many applications. |Integrating cryptographic state setup and
mai nt enance into the path abstraction naturally conplenents efforts
in new protocols (e.g. QUCIJ[I-D hanilton-quic-transport-protocol])
to mtigate this strict |ayering.

Fromthese three starting points - nore flexible abstraction, path
pri macy, and encryption by default - we define the Post- Socket
Application Programming Interface (APl), described in detail in this
work. Post is designed to be | anguage, transport protocol, and
architecture independent, allowi ng applications to be witten to a
common abstract interface, easily ported anmong different platforns,
and used even in environnents where transport protocol selection nmay
be done dynami cally, as proposed in the |ETF s Transport Services
wot ki ng group (see https://datatracker.ietf.org/wy/taps/charter).

Post replaces the traditional SOCK _STREAM abstraction with an Cbject
abstraction, which can be seen as a generalization of the Stream
Control Transm ssion Protocol’s [RFC4960] SOCK SEQPACKET servi ce.

bj ects can be small (e.g. nessages in nessage-oriented protocols) or
|arge (e.g. an HITP response contai ni ng header and body). It

Tramel |, et al. Expires April 30, 2017 [ Page 3]



Internet-Draft Post Sockets Cct ober 2016

repl aces the notions of a socket address and connected socket with an
Association with a renote endpoint via set of Paths. |nplenmentation
and wire format for transport protocol (s) inplenmenting the Post API
are explicitly out of scope for this work; these abstractions need
not map directly to inplenentation-level concepts, and indeed with
various amounts of shimming and glue could be inplenmented with
varyi ng success atop any sufficiently flexible transport protocol

For compatibility with situations where only strictly streamoriented
transport protocols are available, applications with data streans
that cannot be easily split into Objects at the sender, and and for
easy porting of the great deal of existing streamoriented
application code to Post, Post al so provides a SOCK _STREAM conpati bl e
abstraction, unimginatively named Stream

The key features of Post as conpared with the existing sockets AP
are:

0o Explicit Object orientation, with fram ng and atomnicity guarantees
for hject transm ssion.

0 Asynchronous reception, allowing all receiver-side interactions to
be event-driven

0 Explicit support for mnmultipath transport protocols and network
architectures.

0 Long-lived Associations, whose lifetines nmay not be bound to
underlying transport connections. This allows associations to
cache state and cryptographic key naterial to enable fast (0O-rtt)
resunption of communication

This work is the synthesis of many years of Internet transport
protocol research and devel opnent. It is heavily inspired by
concepts fromthe Stream Control Transni ssion Protocol (SCTP)
[ RFC4960], TCP M nion [I-D.iyengar-m nion-protocol],

M ni maLT[ M ni maLT], and various bul k object transports.

We present Post Sockets as an illustration of what is possible with
present devel opnents in transport protocols when freed fromthe
strictures of the current sockets API. Wile nuch of the work for

buil ding parts of the protocols needed to inplenment Post are already
ongoing in other |ETF working groups (e.g. TAPS, MPTCP, QU C, TLS)
we argue that an abstract progranm ng interface unifying access al
these efforts is necessary to fully exploit their potenti al

Tramel |, et al. Expires April 30, 2017 [ Page 4]



Internet-Draft Post Sockets Cct ober 2016

2

2

2

Abstractions and Term nol ogy
gratuitously col orful SVG goes here; see slide six of
https://ww.ietf.org/proceedi ngs/96/slides/slides-96-taps-2. pdf
in the neantine

Figure 1: Abstractions and relationships in Post Sockets

Post is based on a small set of abstractions, the rel ationships anong
whi ch are shown in Figure Figure 1 and detailed in this section

1. Association

An Association is a container for all the state necessary for a | oca
endpoint to communicate with a renote endpoint in an explicitly

mul tipath environnent. |t contains a set of Paths, certificate(s)
for identifying the renote endpoint, certificate(s) and key(s) for
identifying the |l ocal endpoint to the renote endpoint, and any cached
cryptographic state for the conmunication to the renote endpoint. An
Associ ation may have one or nore Streans active at any given tine.

bj ects are sent to Associations, as well.

Note that, in contrast to current SOCK STREAM sockets, Associ ations
are neant to be relatively long-lived. The lifetime of an
Association is not bound to the lifetime of any transport-|ayer
connecti on between the two endpoi nts; connections may be opened or

cl osed as necessary to support the Streans and Cbject transmni ssions
requi red by the application, and the application need not be bothered
with the underlying connectivity state unless this is inportant to
the application s semantics.

Pat hs may be dynamically added or renoved from an association, as
wel |, as connectivity between the endpoints changes. Cryptographic
identifiers and state for endpoints nay al so be added and renpved as
necessary due to certificate lifetines, key rollover, and revocation

2. Li st ener

In many applications, there is a distinction between the active
opener (or connection initiator, often a client), and the passive
opener (often a server). A Listener represents an endpoint’s
willingness to start Associations in this passive opener/server role.
It is, in essence, a one-sided, Path-less Association from which
fully-formed Associ ations can be created.

Tramel |, et al. Expires April 30, 2017 [ Page 5]



I nt

2. 3.

2. 4.

2.5.

ernet-Draft Post Sockets Cct ober 2016

Li steners work very nmuch like sockets on which the listen(2) call has
been called in the SOCK STREAM API

Renot e

A Renote represents all the information required to establish and

mai ntain a connection with the far end of an Association: network-

| ayer address, transport-layer port, information about public keys or
certificate authorities used to identify the renote on connection
establishnent, etc. Each Association is associated with a single
Renote, either explicitly by the application (when created by active
open) or by the Listener (when created by passive open). The

resol ution of Renotes from higher-layer information (URl's, hostnanes)
i s architecture-dependent.

Local

A Local represents all the information about the |ocal endpoint
necessary to establish an Association or a Listener: interface and
port designators, as well as certificates and associ ated private
keys.

Pat h

A Path represents a |l ocal and renote endpoint address, an optiona
set of internmediary path elements between the | ocal and renote
endpoi nt addresses, and a set of properties associated with the path.

The set of available properties is a function of the underlying

net wor k-1 ayer protocols used to expose the properties to the
endpoint. However, the followi ng core properties are generally
useful for applications and transport |ayer protocols to choose anbng
pat hs for specific Objects:

0 Maxi mum Transmi ssion Unit (MIU): the nmaxi num size of an Qbject’s
payl oad (subtracting transport, network, and link |ayer overhead)
which will likely fit into a single frame. Derived from signals
sent by path el ements, where available, and/or path MIU di scovery
processes run by the transport |ayer

0 Latency Expectation: expected one-way del ay al ong the Path.
General |y provided by inline nmeasurenents perfornmed by the
transport |ayer, as opposed to signal ed by path el ements.

0 Loss Probability Expectation: expected probability of a | oss of
any given single frame along the Path. Generally provided by
inline neasurenents performed by the transport |ayer, as opposed
to signaled by path el ements.

Tramel |, et al. Expires April 30, 2017 [ Page 6]



Internet-Draft Post Sockets Cct ober 2016

0 Available Data Rate Expectation: expected maxi mum data rate al ong
the Path. May be derived from passive neasurenents by the
transport layer, or fromsignals frompath el ements.

0 Reserved Data Rate: Conmitted, reserved data rate for the given
Associ ation along the Path. Requires a bandw dth reservation
service in the underlying transport and network | ayer protocol

o Path El enent Menbership: ldentifiers for some or all nodes al ong
the path, depending on the capabilities of the underlying network
| ayer protocol to provide this.

Path properties are generally read-only. MU is a property of the
underlying link-1ayer technology on each link in the path; |atency,

| oss, and rate expectations are dynam c properties of the network
configuration and network traffic conditions; path el ement nenbership
is a function of network topology. In an explicitly multipath
architecture, application and transport |ayer requirenents are net by
having nultiple paths with different properties to select from Post
can also provide signaling to the path, but this signaling is derived
frominformation provided to the Object abstraction, bel ow

Note that information about the path and signaling to path el enents
could be provided by a facility such as PLUS
[I-D.tramel | - pl us-abstract-nech].

2.6. bject

Post provides two ways to send data over an Association. W start
with the Cbject abstraction, as a fundamental insight behind the
interface is that nost applications fundanentally deal in object
transport.

An Object is an atonmic unit of communication between applications; or
in other words, an ordered collection of bytes BO..Bm such that
every byte Bn depends on every other byte in the hject. An object
that cannot be delivered in its entirety within the constraints of
the network connectivity and the requirenments of the application is
not delivered at all.

bj ects can represent both relatively snmall structures, such as
messages in application-layer protocols built around datagram or
message exchange, as well as relatively large structures, such files
of arbitrary size in a filesystem (bjects larger than the MIU on
the Path on which they are sent will be segnented into multiple
frames. Muiltiple objects that will fit into a single frame may be
concatenated into one frane. There is no preference for transnmtting
the multiple franes for a given Object in any particular order, or by

Tramel |, et al. Expires April 30, 2017 [ Page 7]



Internet-Draft Post Sockets Cct ober 2016

default, that objects will be delivered in the order sent by the
application. This inplies that both the sending and receiving
endpoi nt, whether in the application |layer or the transport |ayer
nmust guarantee storage for the full size of an object.

Three obj ect properties allow applications fine control ordering and
reliability requirenents in line with application semantics. An

bj ect may have a "lifetine" - a wallclock duration before which the
obj ect must be available to the application |layer at the renpote end.
If alifetime cannot be net, the object is discarded as soon as
possi ble; therefore, hjects with lifetinmes are inplicitly sent non-
reliably, and lifetimes are used to prioritize Cbject delivery.
Lifetimes may be signaled to path el enments by the underlying
transport, so that path elenents that realize a lifetinme cannot be
met can di scard franmes containing the object instead of forwarding

t hem

Second, hjects may have a "niceness" - a category in an unbounded
hi erarchy nost naturally represented as a non-negative integer. By
default, Objects are in niceness class 0, or highest priority.

Ni ceness class 1 (bjects will yield to niceness class 0 objects,
class 2 to class 1, and so on. Niceness may be translated to a
priority signal for exposure to path elenents (e.g. DSCP codepoint)
to allow prioritization along the path as well as at the sender and
receiver. This inversion of normal schemes for expressing priority
has a convenient property: priority increases as both niceness and
deadl i ne decrease

An object may have both a niceness and a lifetine - objects with
hi gher niceness classes will yield to | ower classes if resource
constraints nean only one can neet the lifetine.

Third, an Object may have "antecedents"” - other Objects on which it
depends, which nust be delivered before it (the "successor") is
delivered. The sending transport uses deadlines, niceness, and
antecedents, along with informati on about the properties of the Paths
avai l abl e, to deternine when to send which object down which Pat h.

When an application has hard semantic requirenents that all the
frames of a given object be sent down a given Path or Paths, these
hard constraints can al so be expressed by the application

After calling the send function, the application can register event
handl ers to be inforned of the transnission status of the object; the
obj ect can either be acknow edged (i.e., it has been received in ful
by the renpte endpoint) or expired (its lifetine ran out before it
was acknow edged).

Tramel |, et al. Expires April 30, 2017 [ Page 8]



Internet-Draft Post Sockets Cct ober 2016

2. 7. St ream

The Stream abstraction is provided for two reasons. First, since it
is the nost |like the existing SOCK STREAM interface, it is the

sinmpl est abstraction to be used by applications ported to Post to
take advantages of Path prinmacy. Second, sone environnments have
connectivity so inpaired (by local network operation policy and/or
accidental mddl ebox interference) that only stream based transport
protocol s are avail abl e, and applications should have the option to
use streans directly in these situations.

A Streamis a sequence of bytes BO .. Bmsuch that the reception (and
delivery to the receiving application of) Bn always depends on Bn-1
This property is inherited fromthe BSD UNI X file abstracti on, which
in turn inherited it fromthe physical linmtations of sequential
access nedi a (stacks of punch cards, paper and/or magnetic tape).

A Streamis bound to an Association. Witing a byte to the stream
will cause it to be received by the rempte, in order, or will cause
an error condition and termnation of the streamif the byte cannot
be delivered. Due to the strong sequential dependence on a stream
streans nust always be reliable and ordered. |If frames containing
Stream data are | ost, these nust be retransnmitted or reconstructed
using an error correction technique. |f franes containing Stream
data arrive out of order, the renote end nust buffer themuntil the
unordered franes are received and reassenbl ed.

As with Objects, Streans nmay have a niceness for prioritization
When mi xing Stream and Cbj ect data on the sanme Path in an

associ ation, the niceness classes for Streans and Cbjects are
interleaved; e.g. niceness 2 Streamfranes will yield to niceness 1
bj ect franes.

The underlying transport protocol may nake whatever use of the Paths
and known properties of those Paths it sees fit when transporting a
Stream

3. Abstract Programming Interface

We now turn to the design of an abstract programmng interface to
provide a sinple interface to Post’s abstractions, constrained by the
foll owi ng design principles:

0o Flexibility is paranpbunt. So is sinplicity. Applications nmust be
given as many controls and as nuch information as they may need,
but they nust be able to ignore controls and information
irrelevant to their operation. This inplies that the "default"

Tramel |, et al. Expires April 30, 2017 [ Page 9]



Internet-Draft Post Sockets Cct ober 2016

interface nust be no nore conplicated than BSD sockets, and nust
do sonet hi ng reasonabl e.

A new APl cannot be bound to a single transport protocol and
expect wi de deploynent. As the APl is transport-independent and
may support runtinme transport selection, it nust inpose the

m ni mum possi bl e set of constraints on its underlying transports,
t hough some APl features may require underlying transport features
to work optimally. It nust be possible to inplenent Post over
vanilla TCP in the present Internet architecture.

Reception is an inherently asynchronous activity. Wile the API
is designed to be as platformindependent as possible, one key
insight it is based on is that an object receiver’s behavior in a
packet -swi tched network is inherently asynchronous, driven by the
recei pt of packets, and that this asynchronicity nust be reflected
in the API. The actual inplenentation of receive and event
cal I backs will need to be aligned to the method a given platform
provi des for asynchronous |/0O

The APl we define consists of three classes (listener, association
and strean), four entry points (listen(), associate(), send(), and
open_streanm()) and a set of callbacks for handling events at each
endpoint. The details are given in the subsections bel ow.

3. 1.

Active Associ ation Creation

Associ ations can be created two ways: actively by a connection
initiator, and passively by a Listener that accepts a connection
Connection initiation uses the associate() entry point:

associ ation = associate(local, renmote, receive_handl er)

wher e:

(0]

| ocal : a resolved Local (see Section 3.8) describing the |oca
identity and interface(s) to use

renote: a resolved Renmpte (see Section 3.8) to associate with

receive_handl er: a call back to be invoked when new objects are
recei ved; see Section 3.4

The returned association has the follow ng additional properties:

(0]

paths: a set of Paths that the Association can currently use to
transport (Objects. Wen the underlying transport connection is
closed, this set will be enpty. For explicitly multipath

Tramel |, et al. Expires April 30, 2017 [ Page 10]



Internet-Draft Post Sockets Cct ober 2016

architectures and transports, this set may change dynanically
during the lifetine of an association, even while it remains
connect ed.

Since the existence of an association does not necessarily inply
current connection state at both ends of the Association, these

obj ects are durable, and can be cached, m grated, and restored, as

Il ong as the mappings to their event handlers are stable. An attenpts
to send an object or open a streamon a dormant, previously actively-
opened association will cause the underlying transport connection
state to be resuned.

3.2. Listener and Passive Associ ati on Creation

In order to accept new Association requests fromclients, a server
must create a Listener object, using the listen() entry point:

listener = listen(local, accept_handl er)

wher e:

o local: resolved Local (see Section 3.8) describing the |loca
identity and interface(s) to use for Associations created by this
|istener.

0 accept_handl er: callback to be invoked each time an association is
requested by a renote, to finalize setting the association up
Platfornms may provide a default here for supporting synchronous
associ ation request handling via an object queue.

The accept _handl er has the foll owi ng prototype:

accepted = accept_handl er(listener, |ocal, renote)

wher e:

o local: a resolved Local on which the association request was
recei ved.

o0 renote: a resolved Renpbte fromwhich the association request was
received.

0 accepted: flag, true if the handl er decided to accept the request,
fal se otherw se

The accept _handler() calls the accept() entry point to finally create
t he associ ati on:

Tramel |, et al. Expires April 30, 2017 [ Page 11]



Internet-Draft Post Sockets Cct ober 2016

associ ation = accept(listener, local, renpote, receive_handl er)
3.3. Sending bjects
bj ects are sent using the send() entry point:

send(associ ation, bytes, [lifetine], [niceness], [oid],
[ ant ecedent _oi ds], [paths])}

wher e:
0 association: the association to send the object on

0 bytes: sequence of bytes making up the object. For platforns
wi t hout bounded byte arrays, this may be inplenmented as a pointer
and a | ength.

o lifetime: lifetime of the object in nilliseconds. This paraneter
is optional and defaults to infinity (for fully reliable object
transport).

0 niceness: the object’s niceness class. This paraneter is optiona
and defaults to zero (for | owest niceness / highest priority)

0 oid: opaque identifier for an object, assigned by the application
Used to refer to this object as a subsequently sent object’s
ant ecedent, or in an ack or expired handl er (see Section 3.6).
Optional, defaults to null.

0 antecedent oids: set of object identifiers on which this object
depends and whi ch nmust be sent before this object. Optional
defaults to enpty, neaning this object has no antecedent
constrai nts.

0 paths: set of paths, as a subset of those available to the
association, to explicitly use for this object. Optional
defaults to enpty, neaning all paths are acceptable.

Calls to send are non-bl ocking; a synchronous send whi ch bl ocks on
renot e acknow edgnent or expiry of an object can be inplenented by a
call to send() followed by a wait on the ack or expired events (see
Section 3.6).

3.4. Receiving bjects
An application receives objects via its receive_handl er call back

regi stered at association creation tine. This callback has the
foll owi ng prototype

Tramel |, et al. Expires April 30, 2017 [ Page 12]



Internet-Draft Post Sockets Cct ober 2016

recei ve_handl er (associ ati on, bytes)

where: - association: the association the object was received from
- bytes: the sequence of bytes nmmking up the object.

For ease of porting synchronous datagram applications,
i mpl enment ati ons may nake a default receive handl er avail able, which
al | ows messages to be synchronously polled froma per-association
obj ect queue. If this default is available, the entry point for the
polling call is:
byt es = recei ve_next (associ ation)

3.5. Creating and Destroying Streans

A stream may be created on an association via the open_strean() entry
poi nt :

stream = open_strean{association, [sid])

wher e:

0 association: the association to open the stream on

0 sid: opaque identifier for a stream For transport protocols
whi ch do not support nultiple streanmi ng, this argunent has no

ef fect.

A streamwith a given sid nmust be opened by both sides before it can
be used.

The stream obj ect returned should act like a file descriptor or
bidirectional 1/0O object, according to the conventions of the
pl atform i npl ementi ng Post.

3.6. Events
Message reception is a specific case of an event that can occur on an
association. QOher events are also available, and the application
can register event handlers for each of these. Event handlers are
regi stered via the handle() entry point:
handl e(associ ati on, event, handler) or
handl e(oi d, event, handl er)

wher e

Tramel |, et al. Expires April 30, 2017 [ Page 13]



Internet-Draft Post Sockets Cct ober 2016

0 association: the association to register a handler on, or
0 oid: the object identifier to register a handler on
0 event: an identifier of the event to register a handl er on

o handler: a callback to be invoked when the event occurs, or nul
if the event shoul d be ignored.

The follow ng events are supported; every event handl er takes the
association on which it is registered as well as any additiona
argunments |isted

0 receive (bytes): an object has been received
0o path up (path): a path is newWy available
o0 path_down (path): a path is no |longer avail able

o0 dormant: no nore paths are available, the association is now
dormant, and the connection will need to be resuned if further
objects are to be sent

0 ack (oid): an object was successfully received by the renote
o expired (oid): an object expired before being sent to the renote

Handl ers for the ack and expired events can be registered on an
association (in which case they are called for all objects sent on
the association) or on an oid (in which case they are only called for
the oid).

3.7. Paths and Path Properties

As defined in Section 2.5, the properties of a path include both the
addresses of elenments along the path as well as neasurenent-derived
| atency and capacity characteristics. The path_up and path_down
events provide access to information about the paths available via
the path argunent to the event handler. This argunent encapsul ates
these properties in a platformand transport-specific way, depending
on the availability of information about the path.

3.8. Address Resol ution
Address resolution turns the nane of a Renpte into a resol ved Renote
obj ect, which encapsulates all the information needed to connect

(address, certificate paranmeters, cached cryptographic state, etc.);
and an interface identifier on a local systemto informati on needed

Tramel |, et al. Expires April 30, 2017 [ Page 14]



Internet-Draft Post Sockets Cct ober 2016

to connect. Renpte and |ocal resolvers have the follow ng entry
poi nt s:

renote = resol ve(endpoi nt _nane, configuration)
| ocal = resolve_l ocal (endpoi nt_name, configuration)
wher e:

0 endpoint_nane: a nane identifying the renote or |ocal endpoint,
i ncludi ng port

o configuration: a platformspecific configuration object for
configuring certificates, name resolution contexts, cached
cryptographic state, etc.

4. Acknow edgnents

Many t hanks to Laurent Chuat and Jason Lee at the Network Security
G oup at ETH Zurich for contributions to the initial design of Post
Socket s.

This work is partially supported by the European Conmi ssi on under
Hori zon 2020 grant agreenent no. 688421 Measurenent and Architecture
for a Mddl eboxed Internet (MAM), and by the Swiss State Secretariat
for Education, Research, and Innovation under contract no. 15.0268.
This support does not inply endorsenent.

5. Informative References

[1-D.ham | ton-quic-transport-protocol]
Ham lton, R, lyengar, J., Swett, I., and A Wik, "QUC
A UDP- Based Multipl exed and Secure Transport”, draft-
ham | t on- qui c-transport-protocol -00 (work in progress),
July 2016

[1-D.iyengar-nini on-protocol]
Jana, J., Cheshire, S., and J. Graessley, "Mnion - Wre
Protocol ", draft-iyengar-m nion-protocol-02 (work in
progress), October 2013.

[I-D.tramrel | - pl us-abstract - nech]
Tramrel |, B., "Abstract Mechani sns for a Cooperative Path
Layer under Endpoint Control", draft-trammell-plus-
abstract-nech-00 (work in progress), Septenber 2016.

Tramel |, et al. Expires April 30, 2017 [ Page 15]



Internet-Draft Post Sockets Cct ober 2016

[I-D.trammel | - pl us- st at ef ul ness]
Kuehl ewi nd, M, Tramrell, B., and J. Hil debrand,
"Transport-I| ndependent Path Layer State Managenent",
draft-trammel | - pl us-stateful ness-00 (work in progress),
Cct ober 2016.

[ M ni maLT]
Petullo, W, Zhang, X., Solworth, J., Bernstein, D., and
T. Lange, "M ninmalLT, M nimal-|atency Networking Through
Better Security", My 2013.

[ RFCO793] Postel, J., "Transmi ssion Control Protocol", STD 7,
RFC 793, DO 10.17487/ RFC0793, Septenber 1981,
<http://ww. rfc-editor.org/info/rfc793>.

[ RFC4960] Stewart, R, Ed., "Stream Control Transni ssion Protocol",
RFC 4960, DO 10. 17487/ RFC4960, Septenber 2007,
<http://wwmv. rfc-editor.org/info/rfc4960>.

[ RFC6824] Ford, A, Raiciu, C., Handley, M, and O Bonaventure,
"TCP Extensions for Multipath Operation with Miltiple
Addresses”, RFC 6824, DO 10.17487/ RFC6824, January 2013,
<http://ww.rfc-editor.org/info/rfc6824>.

[RFC7258] Farrell, S. and H Tschofenig, "Pervasive Mnitoring Is an
Attack", BCP 188, RFC 7258, DO 10.17487/ RFC7258, My
2014, <http://www.rfc-editor.org/info/rfc7258>.

Aut hors’ Addr esses

Brian Trammel |
ETH Zuri ch

d oriastrasse 35
8092 Zurich
Switzerl and

Email: ietf@ramell.ch

Col in Perkins

Uni versity of d asgow
School of Conmputing Science
d asgow Gl2 8QQ

United Ki ngdom

Enmai | : csp@per ki ns. net

Tramel |, et al. Expires April 30, 2017 [ Page 16]



Internet-Draft Post Sockets Cct ober 2016

Tommy Paul y

Appl e Inc.
1 Infinite Loop

Cupertino, California 95014
United States of Anerica

Emai | . tpaul y@ppl e. com
Mrja Kuehl ewi nd

ETH Zurich

d oriastrasse 35

8092 Zurich

Swi t zer |l and

Email: mirja. kuehlewi nd@i k. ee. ethz. ch

Tramel |, et al. Expires April 30, 2017 [ Page 17]



