

EPHEMERAL DIFFIE-HELLMAN OVER COSE (EDHOC)

DRAFT-SELANDER-ACE-COSE-ECDHE-04 SELANDER, MATTSSON, PALOMBINI IETF97 ACE, NOV 17 2016

NEW VERSION -04

- Built on the SIGMA family of key exchange protocols
 - Aligning with state-of-the-art security protocols
 - Has better security properties.
 - IKEv2 and TLS 1.3 are also based on SIGMA.
- 3 messages instead of 2
 - But no extra round-trips. Application data can be sent together with message 3 (similar to TLS 1.3)
- Still implemented using CBOR and COSE
- Still Diffie-Hellman (DH) key exchange protocol with ephemeral keys

Figure 1: The basic SIGMA protocol

Figure 1: The basic SIGMA protocol

- Based on the SIGMA-I protocol that includes encryption. Adds nonces, explicit key derivation, and algorithm negotiation. Realized using CBOR and COSE.
- The DH key exchange messages may be authenticated using either pre-shared keys (PSK), raw public keys (RPK) or X.509 certificates (Cert).

- Based on the SIGMA-I protocol that includes encryption. Adds nonces, explicit key derivation, and algorithm negotiation. Realized using CBOR and COSE.
- The DH key exchange messages may be authenticated using either pre-shared keys (PSK), raw public keys (RPK) or X.509 certificates (Cert).

- Based on the SIGMA-I protocol that includes encryption. Adds nonces, explicit key derivation, and algorithm negotiation. Realized using CBOR and COSE.
- The DH key exchange messages may be authenticated using either pre-shared keys (PSK), raw public keys (RPK) or X.509 certificates (Cert).

- Based on the SIGMA-I protocol that includes encryption. Adds nonces, explicit key derivation, and algorithm negotiation. Realized using CBOR and COSE.
- The DH key exchange messages may be authenticated using either pre-shared keys (PSK), raw public keys (RPK) or X.509 certificates (Cert).

- Based on the SIGMA-I protocol that includes encryption. Adds nonces, explicit key derivation, and algorithm negotiation. Realized using CBOR and COSE.
- The DH key exchange messages may be authenticated using either pre-shared keys (PSK), raw public keys (RPK) or X.509 certificates (Cert).

- Based on the SIGMA-I protocol that includes encryption. Adds nonces, explicit key derivation, and algorithm negotiation. Realized using CBOR and COSE.
- The DH key exchange messages may be authenticated using either pre-shared keys (PSK), raw public keys (RPK) or X.509 certificates (Cert).

EDHOC MESSAGE FLOW

- All EDHOC messages are encoded with CBOR
- EDHOC message_2 and message_3 uses COSE
- Protected application data can be sent together with message 3

EXAMPLE

- Can e.g. be implemented as CoAP message exchanges with the CoAP client as party U and the CoAP server as party V.
- EDHOC and OSCOAP can be run in sequence embedded in a 2-round trip message exchange, where the base_key used in OSCOAP is obtained from EDHOC.

This is how EDHOC is use in the OSCOAP profile of ACE draft-seitz-ace-oscoap-profile

Detail of EDHOC and OSCOAP

RELATED WORK

NEXT STEPS

- Two implementations underway
 - SICS
 - Jim Schaad
- Minor updates based on review comments
- Ask for CFRG review

